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Abstract

We introduce Diddy, a collection of Python scripts for analyzing infi-
nite discrete dynamical systems. The main focus is on generalized mul-
tidimensional shifts of finite type (SFTs). We show how Diddy can be
used to easily define SFTs and cellular automata, and analyze their basic
properties. We also showcase how to verify or rediscover some results from
coding theory and cellular automata theory.

Keywords: Discrete dynamics; Symbolic dynamics; Cellular automata;
Algorithms; Software.

1 Introduction

This paper introduces and showcases Diddy, a new Python library and domain-
specific language (DSL) for defining and analyzing infinite discrete dynamical
systems. Its main purpose is to facilitate research of concrete multidimensional
shifts of finite type (SFTs) and cellular automata (CA), but the authors’ intent
is to extend it to encompass e.g. classes of finite graphs, geometric tilings and
substitution systems. Diddy is free and open source, and available at [15].

The Diddy project arose from the authors’ previous research, which has
lately been characterized by computer-assisted proofs of combinatorial and dy-
namical properties of discrete objects. [14, 13, 16] Such research would greatly
benefit from a flexible language for defining multidimensional subshifts and cel-
lular automata (instead of working directly with cumbersome lists of forbidden
patterns or local rules), a unified interface to a SAT solver and other auxiliary
programs, and the ability to easily switch between a special-purpose language
and Python when needed. Diddy can be used either as a standalone interpreted
language or as a Python library; in this article, we focus on the former.

∗ORCID: 0000-0002-2059-194X
†ORCID: 0000-0001-5541-8517
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Diddy is a work in progress and under rapid development. We do not promise
that future versions will be compatible with the sample code in this document.
At the time of writing, the main features of Diddy are:

• The ability to define SFTs and CAs with first-order logical formulae, and
by composing other CAs.

• Tests for SFT containment and CA equality.

• Computation of upper and lower bounds for the topological entropy and
the minimum asymptotic density of a configuration of an SFT.

• A visualizer for the patterns of an SFT, with the ability to automatically
complete a small pattern into a larger one.

2 Definitions

Let H be a group generated by a finite set S ⊂ H . A graph G = (V,E) is H-
like, if H acts freely on G by graph automorphisms and the nodes are divided
into finitely many H-orbits. This means that there is a finite set R ⊂ V of
representative nodes, and the edge set E is completely determined by the set of
edges with at least one endpoint in R.

We concentrate on the caseG = Zd in what follows. For ~n ∈ Zd, the translate
~n ·R of R is called a cell, and the cells form a partition of V . All Diddy objects
live on top of a Zd-like graph with a fixed set of representatives, called the
topology. For most of the definitions below, one can assume V = Zd and E = ∅,
which corresponds to the standard setting of symbolic dynamics used in e.g. [9].
General Zd-like graphs are convenient in modeling certain objects in Diddy.

Let A be a finite set, called the alphabet. A configuration on a graph G =
(V,E) is a function x : V → A that labels each node with an element of A.
If G is a Zd-like graph, then Zd acts on the set of all configurations AV by
translation: (~n · x)v = x~n·v for all x ∈ AV , v ∈ V and ~n ∈ Zd. We call AV

the full G-shift. A configuration x ∈ AV is ~n-periodic, or periodic along ~n, if
~n ·x = x. It is totally periodic if it is periodic along some vectors ~n1, . . . , ~nd ∈ Zd

that span Rd.
A finite pattern over A on G is given by a finite domain D ⊂ V and a

function P : D → A. We denote D = D(P ). Every set F of finite patterns on
G defines a G-subshift XF ⊂ AV as the set of configurations where no element
of F occurs:

XF = {x ∈ AV | ∀P ∈ F, ~n ∈ Zd : (~n · x)|D(P ) 6= P}.

If F is finite, then XF is a shift of finite type, or SFT.
Let X ⊂ AV and Y ⊂ BV be G-subshifts. Let R ⊂ V be the representative

nodes. A block map is a function f : X → Y defined by a finite neighborhood
N ⊂ V and a local rule F : AN → BR by f(x)~n·r = F ((~n · x)|N )r for all r ∈ R
and ~n ∈ Zd. A cellular automaton is a block map from a full G-shift to itself.

Let W : A → R be a function, which we interpret as giving weights to the
elements of A. The upper density of a configuration x ∈ AV is defined as

W (x) = lim sup
k→∞

∑

~n∈[−k,k]d
∑

r∈RW (x~n·r)

|R|(2k + 1)d
.
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The minimum density W (X) of a subshift X ⊂ AV is infx∈XW (x). It is
known that the minimum density of a subshift X can always be reached by a
configuration x ∈ X for which the limit superior in W (x) is actually a limit.

Let V be a set of variables. A Boolean formula over V is either a variable
v ∈ V or one of the forms ¬φ, φ∨ψ, or φ∧ψ, where φ and ψ are Boolean formulas
over V . A formula φ is satisfiable, if there is an assignment π : V → {True,False}
such that φ evaluates to True when its variables are substituted with their π-
values. A formula is in conjunctive normal form (CNF), if it has the form
∧k
i=1

∨ni

j=1 ai,j , where each a(i,j) is a variable or the negation of a variable. Every
formula is equivalent to a CNF formula. The Boolean satisfiability problem
(SAT) is the following decision problem: given a Boolean formula in CNF,
determine if it is satisfiable. SAT is NP-complete, but modern SAT solvers are
remarkably efficient at solving many kinds of real-world SAT instances. Diddy
uses the Glucose 4.1 solver [1] through the PySAT library [6].

A (maximizing) linear program is given by a set of variables V and a set of
constraints of the form a1v1+ · · ·+anvn ⊲⊳ b, where ⊲⊳ is one of ≤, = or ≥, each
vi is a variable, and a1, . . . , an, b ∈ R are constants. To solve the linear program
for a variable v ∈ V means to find a valuation π : V → R for the variables such
that each constraint holds and π(v) is maximal. There is an obvious variant
that minimizes the value instead. Efficient algorithms exist for solving linear
programs. Diddy uses the default solver of the Pulp library [12].

3 Representations

In Diddy, the topology G = (V,E) is defined by fixing the finite set R ⊂ V
of representatives, and a finite set E0 of triples (r, s, ~n) ∈ R2 × Zd. Then the
nodes V = {(~v, r) | ~n ∈ Zd, r ∈ R} and edges E = {((~m, r), (~m + ~n, s)) | ~m ∈
Zd, (r, s, ~n) ∈ E0} of G are obtained by translating R and E0. The action of
Zd is given by ~n · (~m, r) = (~m+ ~n, r). For example, the two-dimensional square
grid can be specified by R = {a} and E0 = {(a, a, (0, 1)), (a, a, (1, 0))}.

In order to use SAT solvers to analyze symbolic dynamical objects, we
must encode the relevant problems as SAT instances. Diddy can represent
an SFT X ⊂ AV over G in two ways: as a concrete collection of forbidden
patterns, or as a Boolean formula that represents the complement of such a
collection. First, an alphabet A = {a0, . . . , am−1} of size m is represented by
a collection of m − 1 Boolean variables v1, . . . vm−1 together with the formula
φA(v1, . . . , vm−1) =

∧

1≤i<j<m ¬vi ∨ ¬vj stating that at most one of them can
be true. The interpretation is that the all-False assignment represents a0, and
the assignment of some vi as True represents ai.

Suppose that D ⊂ V is a finite set and ψ is a Boolean formula over a
variable set V that includes ve,i for e ∈ D and 1 ≤ i < m and possibly some
auxiliary variables. It defines an SFT Xψ ⊂ AV as follows. A configuration
x ∈ AV is in X if and only if for each ~n ∈ Zd, there exists an assignment
π : V → {True,False} such that ψ evaluates to True, and for each e ∈ D, the
assignment π restricted to ve,1, . . . , ve,m−1 represents (~n · x)e. In other words,
we set the values of the variables ve,i according to the local pattern of x at ~n,
and require that the partially evaluated ψ is satisfiable.

The representation by a Boolean formula is used for every SFT, and the
representation by forbidden patterns only when needed. The reason is that con-
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verting a list of forbidden patterns F into a CNF formula φF is straightforward,
and the size (in computer memory) of φF is linear in that of F . However, a
Boolean formula may require an exponentially larger set of forbidden patterns.

To represent a block map, we need to specify the neighborhood N ⊂ V and
the local rule F : AN → BR. It suffices to describe for each node r ∈ R and
symbol b ∈ B the set of patterns P ∈ AN satisyfing F (P )r = b. This can be
coded as a Boolean formula analogously to what we did with SFTs. Thus a
block maps is defined by |R||B| Boolean formulas.

4 Defining topologies, SFTs and block maps

Recall that a Zd-like topology G = (V,E) is defined by specifying the set R ⊂ V
of representatives and a set E0 of triples (r, s, ~n) ∈ R2×Zd. In Diddy, the triples
are named, and can be referred to by these names. For example, the following
code defines the two-dimensional hexagonal grid (which is also available via
the built-in command %topology hex). The representatives are R = {0, 1},
and there are six triples, named lt, rt, up and dn. Two triples may have
equal names, if they originate from distinct vertices. We also illustrate defining
alphabets, in this case the binary alphabet A = {0, 1}.

%dim 2

%nodes 0 1

%topology

lt (0,0,0) (-1,0,1); lt (0,0,1) (0,0,0); rt (0,0,0) (0,0,1);

rt (0,0,1) (1,0,0); up (0,0,0) (0,1,1); dn (0,0,0) (0,-1,1)

%alphabet 0 1

In Diddy, SFTs can be defined in two ways: by a list of forbidden patterns,
or by a first order formula (FO formula) that is compiled into an intermediate
circuit representation and then a SAT instance. The language of valid FO
formulae, at the time of writing, consists of the following elements (which we
will not define formally in this paper):

• Variables ranging over nodes of V , cells of Zd, symbols of A, or truth
values.

• Moving along edges: If x is a node variable whose value is of the form
n = (~m, r), and m is the name of a triple (r, s, ~n), then x.m is the node
(~m+ ~n, s). If x is a cell or node and s is the name of a node s, then x.s

instead denotes the node (~m, s) in the cell (of) x.

• Equality and proximality: If x and y are node variables, x @ y means
they are the same node, and x ~ y means they are adjacent in G. If x

is a node variable and y is a symbol variable (or a literal symbol), x = y

means that x has the symbol y. If y is a node variable, it means that the
nodes have the same symbol. These can be negated as x !@ y, x !~ y

and x != y.

• Logical connectives: Diddy has the prefix operator ! (negation), and
infix operators & (conjunction), | (disjunction), -> (implication) and <->

(equivalence) with the usual semantics.
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• Restricted quantification: Ey[x2] defines a new node variable y that is
existentially quantified over B2(x), the ball of radius 2 centered on the
existing node variable x with respect to the path distance of G. There can
be more than one restriction inside the brackets: for example, in Ez[x2y1]

the variable z ranges over the union B2(x)∪B1(y). Ay[x2] is the analogous
universal quantifier. EC and AC quantify cells instead of nodes.

• Local definitions: let func a b := a @ b | (a = 0 & b = 0) in de-
fines an auxiliary two-argument formula func, checking that its two ar-
guments are either the same node or both contain the symbol 0. In the
code that follows the definition, it can be invoked as func x y. Auxiliary
formulas can have any number of arguments, which can be node or symbol
variables.

An SFT can be defined with the command %SFT name formula. We illus-
trate the syntax with an example. A radius-r identifying code [8] on a graph
G = (V,E) is a subset C ⊂ V such that

• all v ∈ V satisfy Br(v) ∩ C 6= ∅, and

• all v 6= w ∈ V satisfy Br(v) ∩C 6= Br(w) ∩ C.

The idea is that the nodes in C are “sensors” that send an alert if some event
occurs at any node within distance r. In case an event occurs, we would like to
have at least one alert, and to be able to infer its position from the set of alerting
sensors. The SFT of radius-1 identifying codes can be defined as follows:

%SFT idcode Ao let cnbr u v := v=1 & u~v in

(Ed[o1] cnbr o d) &

(Ap[o2] p!@o -> Eq[o1p1] (cnbr o q & p!~q) | (cnbr p q & o!~q))

We first define an auxiliary formula cnbr u v, which is true if v is in C (modeled
as having the symbol 1) and adjacent to u. On the next line, we check that the
universally quantified o, representing an arbitrary node, has a neighbor d in C.
Finally, we check a condition on all nodes p within distance 2 of o: if p and o

are distinct, one of them should have a neighbor q in C which is not a neighbor
of the other. Note that this definition is independent of the topology G.

Currently, Diddy has no syntactic support for general block maps. The
syntax for defining a CA on a full shift is %CA name preimageswhere preimages
is a list of commands of the form node symbol formula. The formula describes
when the local rule F : AN → AR of the CA should write the symbol symbol
in the node node, which is an element of R. Similarly as when describing SFTs,
N is simply the set of nodes that the Boolean formula references.

We again omit a more precise description, and illustrate this with an example
instead. Consider three cellular automata L,R, F defined on a two-track binary
alphabet, i.e. A = {0, 1}2, where L and R shift the top track to the left and
right respectively, and F adds the top track to the bottom track modulo 2. All
three are reversible, and their compositions form a group that is isomorphic
to the lamplighter group L. It is the wreath product Z2 ≀ Z, i.e. semidirect
product of the groups

⊕

n∈Z
Z2 ⋊Z where Z acts on the infinite direct product

⊕

n∈Z
Z2 by shifting. An element of the lamplighter group can be thought of

as an instruction for shifting a bi-infinite tape of bits and flipping finitely many
tape cells.
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%alphabet 0 1

%nodes top bot -- two tracks, top and bottom

%dim 1

%topology

rt (0, top) (1, top); rt (0, bot) (1, bot);

lt (0, top) (-1, top); lt (0, bot) (-1, bot)

%CA R -- partial right shift on the top track

top 1 ACo o.top.lt=1

bot 1 ACo o.bot=1

%CA L -- partial left shift on the top track

top 1 ACo o.top.rt=1

bot 1 ACo o.bot=1

%CA F -- add top track to bottom track

top 1 ACo o.top=1

bot 1 ACo (o.bot=1 | o.top=1) & (o.bot=0 | o.top=0)

5 Comparing SFTs

Given two SFTs X,Y ⊂ AV on G, do we have X = Y ? This problem is in
general undecidable for d ≥ 2, even when Y = ∅ is fixed, as shown by Berger in
[2]. Thus we have no hope of implementing total algorithms for testing equality
of SFTs. However, the following is true:

1. If X ⊆ Y , then it can be verified computationally. This is due to a
compactness argument. Let F and F ′ be sets of forbidden patterns for X
and Y . If X ⊆ Y , there must exist a finite set N ⊂ Zd such that if x ∈ AV

satisfies (~n · x)|D(P ′) 6= P ′ for all P ′ ∈ F ′ and ~n ∈ N , then x|D(P ) 6= P for
all P ∈ F .

2. If there exists a totally periodic configuration x ∈ X \ Y , then it can be
found computationally, simply by enumerating totally periodic configura-
tions and checking whether they contain forbidden patterns of X and/or
Y . In particular, X ⊆ Y is decidable if X has dense totally periodic points
(as many natural examples do).

This gives rise to a partial algorithm for checking the containment X ⊆ Y . For
increasing k = 1, 2, . . ., check whether condition 1 holds with N = [−k, k]d,
returning “yes” if it does; otherwise check condition 2 for the periods ~ni =
(0, · · · , 0, k, 0, · · · , 0), returning “no” if such a periodic configuration is found.
This is essentially Wang’s semi-algorithm for checking whether a set of colored
square tiles can tile the infinite plane [18]. The command %equal performs the
checks with a SAT solver, using the representations of SFTs by formulas. Of
course, the algorithm never terminates if X \ Y is nonempty but contains no
totally periodic configurations.

6 Computing and comparing block maps

Given two G-SFTs X ⊆ AV and Y ⊆ BV and block maps f, g : X → Y , it is
undecidable whether f = g for the same reason as equality checking between
SFTs: if the local rules of f and g always give a different output, then f = g
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if and only if X = ∅. However, if X = AV is a full shift, the problem becomes
“merely” co-NP-complete, as we now have to check that there does not exist an
input that one of the circuits of f evaluates to True and that of g to False, or
vice versa. Diddy provides this functionality with the %equal_CA command.

In addition, one can compose cellular automata, either explicitly using the
command %compose_CA name CA_list, or by enumerating all compositions of
a given set of CAs up to a given length and reporting which of them are equal,
using %calculate_CA_ball bound filename CA_list. The latter command
writes its results into a log file. Its name refers to the fact that it essentially
analyzes the shape and size of a ball in the Cayley graph of the semigroup
generated by the given automata.

Continuing the lamplighter example, consider the cellular automata α =
FR3FL5FR2 and β = L2FR5FL3F . In both compositions, the top track is
added to the bottom track shifted by −2, 0 and 3 steps (in some order). Hence,
they should be equal. We can check this relation in Diddy:

%compose_CA alpha F R R R F L L L L L F R R

%compose_CA beta L L F R R R R R F L L L F

%equal_CA alpha beta

Diddy also allows us to compute the order of cellular automata, at least if
it is small. Consider the cellular automaton f on Z with alphabet {0, 1} and
neighborhood {0, 1, 2, 3, 4, 5, 6} which maps

f(x)0 = 1 ⇐⇒ x[0,6] ∈ {0111000, 1000100, 0111100, 1010110, 1111110, 0010001,

0101001, 1101001, 0000101, 0010101, 0011101, 0000011,

1110011, 0011011, 1011011, 0111011, 1111011, 1000111,

1100111, 0010111, 1110111, 0001111, 0111111}.

The first-named author suggested in an invited talk of the AUTOMATA 2017
conference that this CA might be nilpotent, and showed that its nildegree (first
power n such that fn maps everything to 0) is at least 7. The author has later
showed with an ad hoc proof that the nildegree is at most 9.

With Diddy we can compute the nildigree directly. The cellular automaton
can be translated quite directly into Diddy code (with some lines omitted):

%dim 1

%alphabet 0 1

%nodes 0

%topology rt (0,0) (1,0); lt (0,0) (-1,0)

%CA f

0 1 Ao let x a b c d e f g :=

o=a & o.rt=b & o.rt.rt=c & o.rt.rt.rt=d &

o.rt.rt.rt.rt=e & o.rt.rt.rt.rt.rt=f & o.rt.rt.rt.rt.rt.rt=g in

x 0 1 1 1 0 0 0 | x 1 0 0 0 1 0 0 | [...] | x 0 1 1 1 1 1 1

Here we define a predicate x that checks whether the origin has a particular word
in its neighborhood, and then take the disjunction over the set from above. Now
we define also the zero CA and calculate the ball that this pair generates:

%CA zero 0 1 0=1

%calculate_CA_ball 10 outfile f zero
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The output file contains several lines, but the most relevant one is zero = f f

f f f f f. It states that the seventh power of f is the zero CA. One can also
calculate this much quicker with %compose_CA seventh f f f f f f f and
%equal_CA seventh zero, if we already know (or correctly guess) the order.

7 Minimum density

In many applications, it is important to determine the minimum density W (X)
of an SFT X ⊂ AV with respect to some alphabet weights W : A → R. Diddy
includes two algorithms for approximating W (X), one for finding upper bounds
and another one for lower bounds. Neither of them is guaranteed to find the
true value, but in practice they can give good results.

7.1 Upper bounds by periodic configurations

We first describe the algorithm for finding upper bounds. Choose a set of d− 1
vectors K = {~n2, ~n3, . . . , ~nd} ⊂ Zd such that {~e1, ~n2, ~n3, . . . , ~nd} is a basis of
Rd, where ~e1 = (1, 0, . . . , 0) is the first standard basis vector. Let XK ⊂ X be
the set of configurations that are periodic along ni for each 2 ≤ i ≤ d. Then
XK is also an SFT and W (XK) ≥ W (X). Moreover, we claim that W (XK) is
computable in a reasonably effective and parallelizable way. In fact, we have
already announced a special case in [16]. To compute upper bounds for W (X)
one just needs to choose suitable sets of periods K and apply the algorithm.
Note that if X happens to be aperiodic, then this algorithm will never give a
result for any choice of K, and in any case its performance depends on how well
the density W (X) is approximated by periodic configurations.

In this algorithm we use the representation of X by a set F of forbidden
patterns. Let D ⊂ Zd be a fundamental domain of the vectors K ∪ {~e1}, and
denote U = {a2~n2 + · · · + ad~nd | a2, . . . , ad ∈ Z}. Let B =

⋃

~u∈U ~u + D be

the border, and call B+ = {(~b + p~e1) · r | p ≥ 0, r ∈ R} the right side and

B− = {(~b+p~e1) ·r | p ≤ 0, r ∈ R} the left side of the vertex set V , where R ⊂ V
is the set of representatives. The set XK is essentially a one-dimensional SFT
whose alphabet is AD·R, and the dynamics is translation by ~e1. We represent
it as a labeled digraph G′ = (V ′, E′) as follows. A vertex v ∈ V ′ is a set of
translated finite patterns Q = ~m · P where P ∈ F and ~m ∈ Zd that is invariant
under translation by U : if Q ∈ v and ~n ∈ U , then ~n ·Q ∈ v. We also require that
for each Q ∈ v, the domain D(Q) intersects both B+ and B−. Note that while
each v ∈ V ′ is technically an infinite set of finite sets, the U -invariance and the
intersection property ensures that it can be encoded by a bounded amount of
data. In particular, V ′ is a finite set.

Denote by v0 the set of patterns Q = ~m · P for P ∈ F and ~m ∈ Zd with
D(Q) ⊂ B+ and D(Q) ∩ B− 6= ∅. For v1, v2 ∈ V ′ and S ∈ AD·R, there is an
edge from v1 to v2 with label S if and only if

v2 = {−~e1 ·Q | Q ∈ v1 ∪ v0, ∄n ∈ D(Q) ∩D(S) : Qn 6= Sn}.

The intuition behind these definitions is the following. A node v1 ∈ V ′

represents a partially defined configuration of XK where we have specified the
contents of V \B+. An edge to v2 with label S represents the action of shifting
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the configuration “to the left” by ~e1 and specifying the contents of the infinite
strip B+ ∩ B− in the shifted version. Since the configuration is K-periodic,
it is enough to specify the contents of D · R, which is exactly the domain of
S. Thus, a two-way infinite walk in the graph G′ determines a full K-periodic
configuration. Since X is an SFT defined by F , it suffices to keep track of
translates of P ∈ F whose domain intersects B+∩B−. The patterns are shifted
to the left with the entire configuration. They are not allowed to leave B+

before being “handled” by disagreeing with the configuration on some element
of B+ ∩B−, since then they would occur in the completely specified part of the
configuration.

All in all, we have computed a finite digraph G′ = (V ′, E′) whose edges
are labeled by patterns in AD·R. If we replace each label S by its density
∑

v∈D(S)W (v)/|D(S)| ∈ R, then the minimum weight W (XK) equals the min-

imum weight of a bi-infinite walk on G′. The latter, in turn, is achieved by a
simple cycle [16, Lemma 4.1], so it suffices to compute the minimum density of
a simple cycle in G′. For that, we use Karp’s minimum mean cycle algorithm
[7], which is readily parallelizable.

We perform some additional optimizations to reduce the size of the graph G′

labeled by R before applying Karp’s algorithm. Namely, we iterate the following
operations until the graph no longer changes:

1. Simplify the graph using a modified version of Hopcroft’s algorithm for
DFA minimization [5], resulting in a potentially smaller graph that has
the same set of labels of finite (and thus bi-infinite) walks.1

2. For each pair of vertices v, v′ ∈ V ′, remove all edges from v to v′ except
the one with the smallest weight.

Minimization does not change the set of labels of bi-infinite walks on a graph,
and the second operation does not change the minimum density of such walks,
so they are safe for our purposes.

We have already used this functionality to find a new identifying code on the
infinite hexagonal grid with density 53/126 [16], down from the previous record
of 3/7 [3]. To reproduce the code, define the hexagonal grid and the SFT of
identifying codes as in Section 4, and run the commands

%compute_forbidden_patterns idcode 3

%minimum_density idcode threads=3 (5,1)

Here, threads=3 is an optional argument specifying the number of threads
(several commands accept some optional aruments, but %minimum_density is
currently the only one to use parallel computation). The computation takes
about 17 minutes on a laptop computer.

7.2 Lower bounds by discharging

We then describe the algorithm for computing lower bounds for W (X). This
algorithm does not depend on the existence of periodic points. Given enough

1Note that our graph is not right resolving in the sense of [9, Definition 3.3.1], which
corresponds to being a DFA instead of an NFA. Thus the result may not be minimal in the
sense of having the absolute smallest number of vertices of any graph with the same set of
labels of walks. Nevertheless, the algorithm never increases the number of vertices, and in
practice can substantially decrease it.
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computational resources, it will give arbitrarily good approximations to W (X).
The theoretical background is the discharging argument used widely in graph

theory [4]. We describe it in our context. The idea is to re-distribute the weights
of the nodes using deterministic local rules, and prove by a finitary argument
that the resulting configuration of weights is always at least some constant α
everywhere, implying W (X) ≥ α. The initial charge of a configuration x ∈ AV

is the function Cx : Zd → R defined as Cx(~n) =
∑

r∈RW (x~n·r)/|R|. Given
a topology G = (V,E) with representative set R ⊂ V and an alphabet A, a
discharging rule is a triple (P, ~m, c) where P ∈ AD is a finite pattern, ~m ∈ Zd

and c ∈ R. A finite set D of discharging rules defines a new charge D(Cx) by

D(Cx)(~n) = Cx(~n) +







∑

(P,~m,c)∈D
((~n−~m)·x)|D(P)=P

c







−







∑

(P,~m,c)∈D
(~n·x)|D(P )=P

c







. (1)

If X ⊂ AV is a G-subshift and D(Cx)(~n) ≥ α for all x ∈ X and ~n ∈ Zd, then
W (X) ≥ α. The prove that D(Cx)(~n) ≥ α always holds, it suffices to consider
every pattern Q ∈ AN that occurs in X , where N ⊂ V is finite but large enough
to contain the domain of P and −~m ·P for all (P, ~m, c) ∈ D, and show that each
of them satisfies D(Cx)(~0) ≥ α whenever x|N = Q. This is a finite computation.

We use the idea of Stolee [17], and employ a linear program to find a good
set of discharging rules automatically. First, fix a finite domain D ⊂ V and a
finite set of vectors T ⊂ Zd. Generate a set of patterns P ⊂ AD that includes
all patterns of shape D that occur in X , by enumerating all locally allowed
patterns over some larger finite domain. Our triples will be (P, ~m, c(P, ~m)) for
all P ∈ P and ~m ∈ T , with c(P, ~m) ∈ R being unconstrained variables in our
linear program. We also add another variable α ∈ R.

Next, generate another set of patterns Q ⊂ AD
′

over the domain D′ =
⋃

~m∈T∪{~0} −~m · D that contains all D′-shaped patterns occurring in X . Each

pattern Q ∈ Q defines a constraint for the linear program, similarly to (1): the
value of α must be less than or equal to the sum of CQ(~0), each c(P, ~m) for which
(−~m ·Q)|D = P , and each −c(P, ~m) for which Q|D = P . Any set of values for α
and the c(P, ~m) that satisfy the constraints gives a valid lower bound for W (X).
Hence, we should maximize the value of α under the constraints.

A solution of the linear program is a best possible discharging strategy that
transfers charge along the vectors T based on occurrences of the patterns P ,
given that the SFT X may contain any of the patterns Q. Adding more nodes to
the domain D or more vectors to T , or refining the sets P or Q, generally results
in a better bound, but the computational cost will increase accordingly. The as-
sociated Diddy command is %density_lower_bound radius domain vectors.
As an example, we can compute a lower bound for the density of an identify-
ing code on the hexagonal grid by %density_lower_bound idcode 0 (0,0,0)

(0,0,1) (-1,0,1) (0,1,1) (0,-1,0) (1,0,0); (0,-1) (0,1) (1,0). In about
65 seconds, Diddy produces the bound 0.4, same as in the article [8] that intro-
duced the problem. It has since been greatly improved, most recently to 23/55
[17].
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8 Visualization

Diddy also allows one to interactively generate and display locally valid finite
patches of SFTs on Z2-like graphs. The command %tiler name opens a new
window containing a finite grid-shaped subgraph of the topology G. The user
can zoom and pan the camera, set the values of any nodes, and ask Diddy to
assign values to the remaining nodes so that the patch is locally valid in the
SFT name, if possible. We use the Pygame library [10] for the visualization.

9 Future directions

Below is a partial list of features that the authors plan to implement.

• Support for general block maps between distinct SFTs.

• Condition 2 of the SFT comparison algorithm could be extended to e.g.
eventually periodic, semilinear or automatic configurations.

• Better support for the interplay between block maps, patterns and SFTs.
For example, one might want to search for invariant SFTs, temporally
periodic points or attractors of a CA using a SAT solver.

• The syntax could be expanded to make various SFTs and CAs easier to
implement. These include distance calculations in graphs (for e.g. iden-
tifying codes of arbitrary radii), multi-layer SFTs and cellular automata
(e.g. the Robinson tile set [11]), and definitions that involve counting or
arithmetic (e.g. linear cellular automata over Zp, or Conway’s Life).

• Many problems that are undecidable for two- and higher-dimensional SFTs
can be solved effectively in the one-dimensional case, using finite automata
theory and linear algebra. See e.g. [9, Sections 3.4 and 4.3]. Diddy should
include total algorithms for this special case.

• The trace of a 2D SFT is set of infinite columns occurring in its configu-
rations. It can be seen as a 1D subshift that can be approximated from
the above (sometimes exactly) by sofic shifts. Diddy should include func-
tionality for extracting and analyzing traces of multidimensional SFTs.
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