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Abstract. Automatic music transcription (AMT) is one of the most
challenging tasks in the music information retrieval domain. It is the
process of converting an audio recording of music into a symbolic repre-
sentation containing information about the notes, chords, and rhythm.
Current research in this domain focuses on developing new models based
on transformer architecture or using methods to perform semi-supervised
training, which gives outstanding results, but the computational cost of
training such models is enormous.
This work shows how to employ easily generated synthesized audio data
produced by software synthesizers to train a universal model. It is a good
base for further transfer learning to quickly adapt transcription model
for other instruments. Achieved results prove that using synthesized data
for training may be a good base for pretraining general-purpose models,
where the task of transcription is not focused on one instrument.

Keywords: automatic music transcription, transfer learning, music in-
formation retrieval, multi-instrumental music transcription

1 Introduction

Automatic music transcription (AMT) is a challenging task in the musical in-
formation retrieval domain. It is the process of converting music recordings into
symbolic representations such as music sheets or MIDI files. The problem is
especially visible for polyphonic music, where multiple frequencies affect each
other, giving a result which is hard to estimate using simple algorithms for time-
frequency analysis. Current works often use datasets, which are hard to obtain
and maintain. For instruments without any electronic interface, the possibility of
gathering an extensive dataset containing real-world recordings with transcrip-
tion is limited.

This work focuses on discovering the potential of using a model trained on
synthesized data for automatic music transcription. These data are easy to gen-
erate and could be produced on demand. The intuition behind this idea is related
to the possibility of universally recognizing pitch and rhythm by the human ear -
it performs similarly no matter the kind of audio source. Synthesized instruments
may contain fewer noises than the audio recorded via microphone. However, a
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model trained on such data may focus more on frequency analysis tasks, which
is a good base for fine-tuning it to real-world data.

During the presented research, we trained the U-net model with BiLinear
LSTM on software-synthesized samples containing timbre from different instru-
ments. We improved the model’s performance in the target domain based on
real-world recordings that prove that the model trained on synthesized instru-
ments could generalize transcription in note and frame metrics across different
datasets after zero-shot transfer. We may use it for quick adaptation to another
real-world recording dataset competing with models pre-trained on recordings
of the specific instrument.

2 Related Works

This chapter focuses on the description of currently used models for transcription
and audio processing methods. Later we describe data representation and met-
rics used in the existing literature. Current research often focuses on developing
other models [2], and methods [7] to improve standard automatic music tran-
scription metrics or find a way to perform unsupervised [13] or semi-supervised
[6] automatic transcription. It may result in analyzing different timbres and
instruments less underlined. The importance of timbre in automatic music tran-
scription was presented by Hernandez-Olivan et al. in [12], where they proved
that for different instruments, the estimation of source frequency f0 might be a
challenging task. In [4], authors demonstrated that neural network-based music
transcription depends on audio input representation because different spectro-
grams may pass different information. Modern deep learning models offer the
possibility to perform transcription for multiple instruments together with track
separation [9]. Multi-instrument AMT was considered in [18], and results proved
that model capable of performing transcription on one instrument is not work-
ing well for another instrument, especially when this knowledge is not passed a
priori.

After the significant development of machine learning models capable of re-
solving many problems and approximating complex solutions, it was clear that
it may be used for automatic music transcription. Most currently existing solu-
tions are based on image representation of audio recordings in a time-frequency
domain called spectrograms. Two kinds of spectrograms are used as input for
existing deep learning models to visualize traits of frequencies present in audio
recordings - Mel spectrogram and CQT.

Mel spectrogram is based on the result of time-frequency analysis of sound
using Short Time Fourier Transform (STFT) [1] and proper alignment using a
particular "mel scale", which makes the distance between two pitches equal as
the listener perceives it. It is mainly used to maximize transcription accuracy,
as frequencies are the essential input to train the model for AMT. Constant Q
Transform (CQT) [3] is another method to achieve images containing information
about played frequencies. Its properties fit well to analyze the music and expose
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musical information like timbre, which may be crucial for this research. We
decided to use CQT as the primary spectrogram function in our experiments.

MIDI files often represent labels in datasets, which contain all information
needed for a musician or software musical instrument to reproduce a similar
sound. Usually, it may be represented as a table, where each row contains four
parameters:

– value of pitch - it is a general value used to distinguish between different
musical tones,

– value of velocity - this value refers to the speed or intensity with which a
note or sound is played; it may be often referred to as a measure of how hard
a musician strikes a key on a keyboard or plucks a string on a guitar,

– note start - it is the time when the tone is started to be played by an
instrument,

– note end - it is time the tone is ended to be played by an instrument.

Timbre is another essential trait of music recordings. The same pitch played
by different instruments may result in a different reception of the same tone.
It is determined by combining many factors, including a sound’s harmonic con-
tent, sustain, attack and decay, and how different frequencies are emphasized or
de-emphasized. It results in problems with transferring this knowledge because
models trained on spectrograms for guitar recordings will not learn the same
way of extracting pitch as the model trained on piano recordings.

Another problem with analyzing different timbres is related to available
datasets. Only a few datasets contain real recordings, especially for instruments
not available in electronic forms, like a piano. Audio data synthesis is present
in almost every currently used dataset for AMT [11], [8], [19] - not only for the
generation of new recordings but also for validation of real-world samples. The
enormous dataset containing partially generated data is MAESTRO [11], where
authors proposed the "Wave2Midi2Wave" approach and created a set of valuable
recordings containing traits of real-world ones. There is also some research where
authors try to use a semi-supervised approach for transcription to mitigate the
problem of small real-world datasets [6] and create the framework for continual
learning of different instruments.

Also, currently used metrics for AMT (defined in [15]) are not always enough
to measure all aspects of music transcription. Simonetta et al. in [17] proposed
another metric, which was correlated with perceptual measures in the outcome
of the automatic music transcription model. Due to the lack of timbre general-
ization capability in the currently existing model, we aim to find a way to create
a model which performs well in a new domain (which is related to different
instruments) after zero-shot [14] transfer of weights.

3 Proposed approach

As a base for our experiments, we used part of the model presented as a tran-
scriber in [7] by Cheuck et al. for investigating the spectrogram reconstruction
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Fig. 1. Architecture of base model used for experiments.

effect. It is composed of U-net [16], BiLSTM and a simple linear layer for classifi-
cation. We decided to use that model for transcription because of a small number
of parameters and relatively good results with the possibility to catch time-
series dependencies via bidirectional LSTM. Similar architecture was presented
by Hawthorne et al. in [10], but it contained convolutional networks instead of
U-net. The exact model configuration is presented in figure 1.

We proposed a pipeline presented in figure 2 to measure the usefulness of the
synthesized data. The data in experiments are randomly sampled during training
to extract fixed sequence length from larger tracks, so the original distribution of
data should not significantly impact training. For synthesized data generation we
used training labels from GuitarSet and MAPS datasets. After audio synthesis,
we performed training of the model (resulting in a model trained on Synthesized
Instruments - MTOSI) and later used it for fine-tuning to MAPS and GuitarSet
data. To compare transfer from MTOSI to transfer from the model trained on
each dataset a similar process was performed for the model trained on MAPS
dataset and fine-tuned on GuiterSet and vice-versa.

4 Experiment

The experiments were designed to answer the following research questions:

– RQ1: How does the U-net model trained on synthesized data perform on
real-world recordings?
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Fig. 2. Pipeline for training based on synthesized instruments and evaluation of results.

– RQ2: How does knowledge transfer from the U-net model trained on synthe-
sized data impact training on real-world recordings?

– RQ3: Is the U-net model trained on synthesized data a better candidate for
fine-tuning on other instruments than the U-net model trained on real-world
piano recordings?

4.1 Setup

Datasets This section describes types of datasets taken into account with de-
scriptions and conditions used in experiments.

MAPS MAPS [8] is a commonly used dataset for AMT and contains audio
recordings with corresponding music notation in MIDI format or text file con-
taining note onset time, note offset time and value of pitch. It consists of 238
music recordings performed in a different environment and in another way. Part
of the data was gathered using Diskclavier piano by recording the automatically
playing instrument simultaneously by two omnidirectional Schoeps microphones.
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Some data was generated using a software-based solution (Steinberg’s Cubase
SX). It contains music pieces, usual chords, isolated sounds and random sound
combinations. For experiments, we used only whole music pieces, which were
split into training (80%), validation (10%) and testing (10%) sets. Each record-
ing in MAPS was sampled with a 16 kHz sample rate and transformed into the
CQT spectrogram.

GuitarSet GuitarSet [19] is the most popular dataset containing recordings of
guitar annotated semi-unsupervised via a hexaphonic pickup. Authors provide
annotations in a convenient JAMS format, which may be easily converted to the
pitch value with the corresponding onset and offset time. Additionally, pieces of
music were played by different musicians and gathered by different microphones,
resulting in seven audio channels. For the experiment, recordings with annota-
tions were split into training (80%), validation (10%), and testing (10%) sets.
Each recording was sampled with a 16 kHz sample rate and transformed into
the CQT spectrogram.

Synthesized Instruments This work introduces another type of dataset generated
from annotations from other datasets. To achieve the best variety of created sam-
ples, we took annotations from MAPS and GuitarSet datasets and created purely
synthesized datasets using FluidSynth1 software and popular soundfont - The
Fluid Release 3 General-MIDI Soundfont 2 - used to simulate real instruments.
Using this approach, we can generate recordings of many instruments based on
existing annotations. For this research, we decided to generate synthesized data
from "Acoustic Grand Piano" and "Acoustic Guitar (steel)" MIDI programs of
FluidR3_GM soundfont. Split for training, validation and testing was dataset-
wise, which means that data from the training set for MAPS and the training
set for GuitarSet were present in the training set for SynthesizedInstruments.
We are using only randomly chosen fixed-size sequences of each composition for
training, so it should not make this model overfit to traits specific to datasets
distributions. Achieved recordings contain the clean version of each instrument,
which is often not desired in analyzing noisy real-world data recorded by mod-
ern microphones. Each recording generated by the software synthesizer was later
sampled with a 16 kHz sample rate and transformed into the CQT spectrogram.

Data processing Each experiment was focused on training on a specific dataset.
We used CQT transform as a spectrogram function for all experiments. We used
nnAudio library [5] for spectrogram calculation. To avoid recalculating CQT
transform each time, we saved data on disk once it was calculated and loaded it
in the subsequent experiments to not perform it again.

Experimental protocol Datasets were split into training, validation, and test-
ing sets. We checked the model using the validation set after every ten learning
1 http://www.fluidsynth.org/
2 https://member.keymusician.com/Member/FluidR3_GM/index.html
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epochs. After training, all datasets were tested using corresponding testing sets
for all available datasets. In the discussion of results, only datasets containing
real-world recordings were considered (MAPS and GuitarSet).

Result analysis For model evaluation, we used metrics used by other automatic
music transcription works available in mir_eval library [15] for Python. Standard
metrics used for automatic music transcription are precision (P), recall (R), and
F1. They are usually measured in different ways described below:

– frame - it checks if all notes in the small frame (usually 10ms) are in the cor-
rect positions. It may favour models generating interrupted outputs, which
sounds undesirable, but it is correct in most frames, and recordings with
multiple breaks without sound.

– note - a basic metric that checks if the note onset is correct (with small
tolerance to start the note sooner or later).

– note with offset - it checks not only note onset but also offset, what makes this
metric one of the most challenging because many currently existing models
tend to recognize the pitch and the onset time correctly, but the note has
improper length or output contains interrupted sound.

Implementation and reproducibility Experiments were run on a modern
PC with Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz, Nvidia GeForce RTX
3090 and 64 GB of RAM. It is essential to mention that depending on the
capability of the target hardware user can adjust the sequence length of the
audio recording used for training (327680 in our experiments) and the size of
the batch (32 in our experiments). Each training was finished after 2000 epochs.
Github repository with code for all experiments is available online3

4.2 Results

We evaluated each model on different datasets containing real-world recordings.
Afterward, we checked the model’s behavior during finetuning on weights of Syn-
thesized Instruments and finetuning performed on the model containing weights
trained on corresponding datasets.

In metrics checking the entire frame of output piano roll, the best result
for precision and F1 for MAPS dataset was achieved similarly for the model
finetuned on MAPS dataset after transfer of weights from the model trained
on Synthesized Instruments. The model trained only on MAPS samples has
a greater recall value, suggesting that it generates too much output. For the
GuitarSet dataset, it appears that using Synthesized Instruments as a base did
not improve precision and recall for transcription, but F1 is greater than for any
other training. Detailed results for frame metrics are presented in table 1.

In metrics checking the onset of note, the best result for MAPS dataset was
achieved for the model finetuned on MAPS dataset after the weight transfer
3 https://github.com/w4k2/automatic_music_transcription
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Table 1. Results for frame metrics

Evaluated Datasets
MAPS GuitarSet

Model trained on P R F1 P R F1
MAPS 0.745 0.697 0.718 0.714 0.712 0.703
GuitarSet 0.535 0.375 0.434 0.900 0.832 0.863
Synthesized Instruments 0.673 0.362 0.439 0.732 0.394 0.489

Results after transfer from Synthesized Instruments
Synthesized Instruments -> MAPS 0.810 0.656 0.722 0.781 0.644 0.692
SynthesizedInstruments -> GuitarSet 0.533 0.412 0.460 0.876 0.873 0.873

Results after transfer from GuitarSet
GuitarSet -> MAPS 0.765 0.656 0.704 0.710 0.698 0.692

Results after transfer from MAPS
MAPS -> GuitarSet 0.528 0.424 0.466 0.860 0.884 0.870

Table 2. Results for note metrics

Evaluated Datasets
MAPS GuitarSet

Model trained on: P R F1 P R F1
MAPS 0.630 0.663 0.642 0.615 0.708 0.646
GuitarSet 0.232 0.234 0.229 0.795 0.733 0.754
Synthesized Instruments 0.494 0.414 0.423 0.589 0.534 0.537

Results after transfer from Synthesized Instruments
SynthesizedInstruments -> MAPS 0.655 0.690 0.669 0.678 0.754 0.701
SynthesizedInstruments -> GuitarSet 0.215 0.250 0.227 0.751 0.747 0.740

Results after transfer from GuitarSet
GuitarSet -> MAPS 0.624 0.682 0.648 0.588 0.741 0.642

Results after transfer from MAPS
MAPS -> GuitarSet 0.242 0.239 0.236 0.767 0.733 0.740

from the model trained on Synthesized Instruments. For GuitarSet dataset, it
appears, that using Synthesized Instruments as a base did not improve precision
and F1 for transcription, but recall is greater than for any other training. It may
suggest that the model creates more outputs based on spectrograms, but it does
not improve transcription results. Detailed results for note metrics are presented
in table 2.

In metrics checking notes with their corresponding offsets, the best result
for MAPS dataset was achieved by the model finetuned on MAPS dataset after
the weight transfer from the model trained on Synthesized Instruments. For the
GuitarSet dataset, using MAPS model as a base improved recall and F1 for
guitar transcription, but precision is a little bit better for the model trained on
GuitarSet. Detailed results for note-with-offset metrics are presented in table 3.
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Table 3. note-with-offset results

Evaluated Datasets
MAPS GuitarSet

Model trained on P R F1 P R F1
MAPS 0.406 0.428 0.414 0.246 0.298 0.265
GuitarSet 0.062 0.061 0.060 0.583 0.554 0.564
SynthesizedInstruments 0.236 0.191 0.198 0.102 0.104 0.100

Results after transfer from Synthesized Instruments
Synthesized Instruments -> MAPS 0.423 0.445 0.432 0.221 0.260 0.236
SynthesizedInstruments -> GuitarSet 0.063 0.072 0.066 0.547 0.556 0.548

Results after transfer from GuitarSet
GuitarSet -> MAPS 0.392 0.428 0.407 0.236 0.312 0.264
MAPS -> GuitarSet 0.071 0.070 0.069 0.574 0.566 0.566

Fig. 3. Validation on target datasets during training of models.

4.3 Time to achieve model convergence

During experiments we noticed, that for finetuning on model trained on Syn-
thesizedInstruments metrics achieved satisfying results significantly faster than
on finetuning of piano on weights trained for guitar-only recordings or learning
model from random weights. This interesting capability may be used to quickly
adapt existing automatic music transcription models for another type of instru-
ments. It is visualized on figure 3. It is especially visible for finetuning to MAPS
dataset. Learning from randomly initialized weights needed about 600 epochs
to achieve good results in measured metrics. When we tried to finetune model
trained on Guitarset it needed a similar time to achieve the same results for
MAPS metrics as the model trained on Synthesized Instruments. For GuitarSet
data we can see, that both pretraining on MAPS and Synthesized Instruments
gave similar results from the first epoch. It indicates that model trained on syn-
thesized data is very good candidate to perform transfer and quickly achieve
well results for different timbres.
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4.4 Lessons learned

We may claim from the results that the model trained on Synthesized Instru-
ments performed well for MAPS and GuitarSet even after zero-shot transfer.
It can perform transcription on real-world recordings without seeing any real-
world sample (RQ1 answered). After transfer from Synthesized Instruments, we
showed that both GuitarSet and MAPS datasets are easily adjustable to the
target domain. The time to achieve satisfying results in MAPS evaluation is
significantly better for Synthesized Instruments than for GuitarSet, which gives
hope for such a model’s usefulness to create adjustable submodels quickly fo-
cused on specific instruments (RQ2 answered). Finetuning after initialization
with weights trained for Synthesized Instruments on the MAPS achieved the
best result for this dataset. Finetunning on GuitarSet real-world recordings of
the model learned on MAPS seems to perform better in most cases. It may
be related to the fact that the model trained on the MAPS dataset learned to
handle microphone-originated noises better. From the results of experiments, a
model well-trained on real-world piano recordings may be a better candidate to
transfer knowledge to a model focused on other instruments (RQ3 answered).
However, GuitarSet is a small dataset, and more experiments with different real-
world instrument recordings and samples may be needed to assess the usefulness
of the training in the Synthesized Instruments domain.

5 Conclusion

We presented that the synthesized audio data may be a valuable possible source
of knowledge to train models for real-world music data. Artificially created dif-
ferent timbres of instruments allow the model to generalize other instrument
outputs and perform well on real-world data after zero-shot training. This model
cannot directly compete with a model trained on diverse real-world data con-
taining many features related to environmental conditions like different sounds
in recording and microphone-specific noises. Transfer of knowledge at the begin-
ning of training allows us to quickly create models with satisfying metrics values,
which may be especially useful for problems where the different distributions oc-
cur over time. After a long training session, applying knowledge from the model
trained on synthesized data may improve existing metrics for more complicated
datasets. It may be a good reason for making prototypes for another kind of
models focused on resolving automatic music transcription.

Further research may focus on the impact of adding further synthesized in-
struments to experiment on automatic music transcription generalization and to
check the influence of input modification realized by special audio filtering on
output. It may be worth reviewing domain-specific spectrogram changes related
to different timbres, which could extract special traits specific to each timbre.
Finding accurate solutions for spectrogram representation for different instru-
ments is essential to ensure that further research will overcome problems with
music transcription generalization.
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