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Abstract. An Operating System (OS) combines multiple interdepen-
dent software packages, which usually have their own independently de-
veloped architectures. When a multitude of independent packages are
placed together in an OS, an implicit inter-package architecture is formed.
For an evolutionary effort, designers/developers of OS can greatly ben-
efit from fully understanding the system-wide dependency focused on
individual files, specifically executable files, and dynamically loadable
libraries. We propose a framework, DepEx, aimed at discovering the de-
tailed package relations at the level of individual binary files and their
associated evolutionary changes. We demonstrate the utility of DepEx by
systematically investigating the evolution of a large-scale Open Source
OS, Ubuntu. DepEx enabled us to systematically acquire and analyze
the dependencies in different versions of Ubuntu released between 2005
(5.04) to 2023 (23.04). Our analysis revealed various evolutionary trends
in package management and their implications based on the analysis of
the 84 consecutive versions available for download (these include beta
versions). This study has enabled us to assert that DepEx can provide
researchers and practitioners with a better understanding of the implicit
software dependencies in order to improve the stability, performance,
and functionality of their software as well as to reduce the risk of issues
arising during maintenance, updating, or migration.

Keywords: Dependency extraction · Package architecture · Binary-to-
library dependencies · Package relation · Software coupling
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Software Architecture (ECSA 2023), Istanbul, Turkey.

1 Introduction

Combining multiple independent software packages together is commonly used to
form complex inter-connected ecosystems. A typical example of such large soft-
ware ecosystems is various Linux distributions. Such ecosystems tend to consist
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of hundreds or thousands of packages, libraries, binaries, and configuration files
with an order of magnitude more dependencies among them [12], [13].

Developers and researchers have expressed interest in software complexity
measurement in an attempt to reason about characteristics of large code bases
[31]. Software complexity is viewed as a result of different design decisions and
implementation specifics and is a crucial component of long-term effects like
the maintainability of software [14]. Although software complexity is a crucial
consideration for package managers, Linux distributors, and maintainers, we
currently have limited knowledge about the evolution of this complexity over the
software lifespan. While the complexity of individual packages is tamed by their
corresponding developers, combining thousands of packages materializes a new
emergent layer of complexity. It is also uncertain whether different metrics for
measuring software complexity exhibit similar or varying patterns of evolution.

A significant amount of research has extensively explored source-level soft-
ware complexity [2]. As a result, various complexity metrics have been defined,
such as cyclomatic, branching, or data flow complexity [1]. These metrics are
primarily used for software design, debugging, and optimization purposes [14].

These metrics are, however, not applicable when analyzing closed-source soft-
ware distributed only in binary form without access to the source code. In such
cases, binary dependency analysis is required to understand the interactions
and dependencies between compiled binary executables. Additionally, even when
source code is available, there may be situations where the compiled binary may
behave differently from what is expected due to specific environment config-
urations. Thus, binary dependency analysis can provide a more accurate and
complete understanding of run-time software behavior, which can be crucial for
identifying potential issues or vulnerabilities.

This work considers an OS as a whole rather than focusing on analyzing
individual software binaries. Considering an OS enables the identification of
cross-application relations, which make up an emergent inter-package rela-
tion architecture instead of just the intra-package software complexity. We
propose a framework that enables the extraction of binary-to-library dependen-
cies and constructs a full OS dependency graph to obtain insights on overall
OS complexity which we determine through inter-package dependency coupling.
By coupling we mean any type of dependency of one code fragment on another
(library inclusion, function call, etc).

Our study focused on Ubuntu as a case study to examine the evolution of
large software ecosystems over almost two decades. Through empirical research
and evidence-based findings, we aimed to assess the current state of package,
library, and binary dependencies and identify areas for improvement in manage-
ment tools, policies, and ecosystem analysis platforms. We believe that a deep
understanding of emergent inter-package architecture resulting from combining
a multitude of independently developed software subsystems would benefit soft-
ware developers and OS maintainers. The proposed techniques and tools are
expected to minimize manual labor associated with multi-package maintenance.

Following are the key contributions of our work
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– We have introduced a framework for dependency coupling analysis for multi-
package software to extract the inter-package relations architecture that is
applicable to a broader range of OS due to the binary-level analysis.

– We have defined four techniques to quantitatively measure software coupling
in terms of executable and dynamically loadable library dependencies at
different granularities.

– We have investigated the evolution of Ubuntu OS in terms of the proposed
library presence dependency type, which revealed the changes in OS-wide
inter-package relations over time.

2 Background and Motivation

2.1 Software Complexity

Throughout the lifetime of any software system, various code modifications must
be implemented in order to adapt to ever-changing user requirements and envi-
ronmental conditions. An intuitive expectation is that large and complex soft-
ware systems may be more difficult to update and maintain. Thus, in efforts
to gain a stricter definition of complexity, multiple code complexity measure-
ment techniques, such as straightforward line count or cyclomatic complexity,
have been proposed so far [1]. However, analyzing multiple diverse software sys-
tems as a whole is not trivial due to (i) lack of access to the source code of all
third-party components, (ii) lack of formal interoperability specification and (iii)
highly dynamic state of execution environment at run time.

Several techniques are typically employed to handle the growing complexity of
large software systems (such as a full OS). For instance, the system package man-
ager may track package dependency information at the OS level. This tracking
enables detecting incompatibilities between separate software subsystems and
repairing them if possible. Unfortunately, manual labor is commonly used in
determining and maintaining information on such version-level incompatibilities
[4]. Due to the large number of files in a typical OS, manual efforts typically
target only high-level dependency definitions, such as package level only [6]. As
each package may consist of multiple files containing executable code (i.e., exe-
cutable binaries and libraries), such package dependency understanding may not
represent the dependencies precisely.

Further challenges arise due to modern complex software systems commonly
developed in various programming languages. For instance, purely-binary com-
piled languages are intertwined with interpreted script languages leading to ex-
ecution flow frequently being transferred between them. The dependency chains
within such complex systems may propagate through a significant portion of files
in the file system through the indirect reliance of different code fragments on
each other. A typical example includes PHP web pages relying on the PHP in-
terpreter, web server, and third-party PHP libraries. Such immediately obvious
(direct) dependencies, in their turn, recursively rely on other system-provided
and third-party libraries. Therefore we argue that automated and precise depen-
dency tracking would benefit software system maintainers and administrators
and may provide useful insight to software developers.
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2.2 Code dependency types

One piece of code can depend on another in numerous ways. For instance, within
the source code analysis context, a function may call other functions. Similarly,
class methods may work by invoking other class methods. These types of de-
pendencies present in the same code base are well understood and routinely
used in modern IDEs (Integrated Development Environments) to aid software
developers. In contrast, cross-language code dependencies spanning across mul-
tiple independently developed software systems are less formal and challenging
to identify. For instance, a PHP-oriented IDE would not detect incompatible
changes in the libc library which is required by the PHP interpreter itself.

Focusing solely on software running within the same OS while not taking
network-based dependencies into consideration, we propose the following four
conceptual types of dependencies suitable in the executable code analysis con-
text. These four types include (i) the presence of third-party libraries, (ii) the
extent of library coverage, (iii) library function call occurrences, and (iv) the
run-time usage of functions (Figure 1).

Fig. 1: Executable code dependency measurement approaches

The third-party library presence dependency relates to file-level gran-
ularity. This type of dependency indicates a requirement for a dynamically load-
able library to be present in the system for an executable binary to be able to
load and start. In Windows-based systems, libraries and executables are denoted
by .dll and .exe file extensions, while on Linux-based these are .so and typically
extension-less ELF (Executable and Linkable File) correspondingly. While high-
level, this file granularity is crucial as a missing library file typically causes the
executable file loader to indicate an error and prevents any further file execution.

Coverage dependency focuses on the library fragments (e.g., functions or
class methods) that a developer explicitly uses or relies on. This type of depen-
dency refers to specific function existence requirements. Thus, the library cover-
age aspect reflects the degree of reliance on a given library by the executable.
Depending on the OS, programming language, and execution environment, in-
dividual function-level requirements can be implemented in various ways. For
instance, in the context of the Windows PE executable, the list of required func-
tions is tied to a specific library. In contrast, the lists of required libraries and
functions are independent in the Linux ELF executable [30]. These implementa-
tion specific differences complicate coverage analysis in the general case.
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Function occurrence dependency type attempts to provide further insight
into the code dependency by observing that a single external function can be
referred to multiple times in the original code. For instance, some heavily used
functions can be mentioned all over the code, while some rarely used functions
may only appear once. Extracting this type of dependency is extremely com-
plicated and involves computationally-heavy disassembling of compiled code or
parsing of interpreted languages. Initial unoptimized attempts revealed a signifi-
cant time overhead for extracting such occurrence-level dependencies. While cer-
tain optimizations can be taken for production-ready usage, it can be concluded
that this type of analysis is currently unsuitable for real-time applications.

Lastly, dependency usage refers to the actual run-time external code flow
control transfers (i.e., the actual function calls). This level of detail may, for
example, reveal that one function call is contained within a high-count loop
while other function calls may be a part of a condition rarely satisfied at run
time. Run-time observation would reveal a deeper understanding of the level of
reliance on third-party libraries in both cases. Despite seemingly most accurate
and closest to reality, relying on this type of dependency suffers from a major
drawback. Different executions or instances of the same executable may exhibit
different behavior due to different run-time conditions. In other words, observing
a single execution does not guarantee to reveal all external code usage cases.

Note that a purposefully crafted executable may incorporate external depen-
dencies that would not be reflected using the proposed dependency measurement
techniques. For instance, if an executable downloads code over the network and
executes it in place, no third-party library references, function names, or function
calls related to the downloaded code may be present in the original executable.
Moreover, the downloaded code downloaded can be different on each program in-
vocation, making any dependency analysis futile in such a context. Based on the
identified dependency types, we propose an extensible plugin-based framework
suitable to extract code dependencies for various types of executable code.

3 Our Approach and Implementation

Analyzing the full file system enables a more complete and consistent under-
standing of the dependencies. Software developers only express a requirement
for dynamically loadable library presence, but do not have actual guarantees of
the library’s existence in a given system. We implement a Python-based proof
of concept solution to analyze system-wide dependencies.

On a conceptual level, our proposed approach for Dependency Extraction
(DepEx consists of a file system scanner, a plugin dispatcher, multiple user-
definable file-type-specific plugins, and the resulting database. The following
steps provide an overview of the DepEx operation:

– The existing dependency extraction plugins (also Python-based) are queried
to prepare the list of all supported file types

– The specified file system is iterated over and each file of a supported type is
passed to a corresponding plugin for dependency extraction
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– The dependencies extracted by the plugin are stored in an SQLite database

Having the knowledge of individual file type structures, each plugin is re-
sponsible for external dependency detection and extraction. Note that while the
current implementation assumes one-to-one relation between file types and plug-
ins, it is possible for multiple plugins to process the same files to extract different
types of dependencies. While we have implemented a proof of concept plugins for
PHP, Bash, and, to a lesser degree, Python scripts, in this research we primarily
focus on ELF executables and .so libraries with the library presence dependency.

Once the unattended phase of the dependency extraction is complete, sev-
eral interactive analysis and usage scenarios become accessible. These include
visualization, statistical reporting, and forward and reverse update impact esti-
mation. For instance, various system health characteristics, such as ”number of
missing libraries” or ”number of executables with unfulfilled dependencies” can
be queried and plotted if necessary. Similarly, update impact calculation enables
obtaining the list of executables and libraries that would be potentially affected
in case a given library is updated.

In order to aid comprehension of the large amounts of data collected, we
developed a visualization subsystem. Using DOT language for graph representa-
tion enables rendering the resulting graphs using existing tools as well (such as
GraphViz or Gephi). While the individual executable file graphs were readable,
the full-system dependency graph was too cluttered for human comprehension.
At this stage, interactive filtering was implemented to allow the hiding of popu-
lar libraries responsible for most of the visual noise (as shown in Figure 2b). We
are also planning to implement automated filtering based on various features,
such as node type, sub-string matching, and popularity.

Other auxiliary scripts for dependency graphs exploration include querying
all binaries and libraries that depend on a given library (who-uses) and individ-
ual binary/library dependency graph generation (get-deps and get-all-deps).
Individual library dependencies can also be visualized in a more detailed view.

4 Studying the Architectural Aspects of Ubuntu

We focus on the following Research Questions (RQs) to investigate the file-level
package relation architecture in Ubuntu systems using DepEx. We considered
the presence dependency in this case study. We collected and analyzed the de-
pendencies of 84 consecutive live Ubuntu Linux images that span over 18 years of
development and evolution. The research questions we primarily focus on revolve
around the emergent inter-package OS-wide architecture implicitly forming as a
result of combining multiple independent software packages as well as the related
architectural changes observed throughout longer time periods. In addition, we
investigate the complexity perception from the perspectives of individual software
package developers and whole system maintainers.

– RQ1. How do binary-to-library dependencies manifest in the Ubuntu OS in
terms of a system-wide dependency graph?
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– RQ2. What is the difference between individual library complexity directly
exposed to developers vs. overall internal system complexity that emerges
as a result of combining multiple subsystems together (direct vs. recursive
dependencies)?

– RQ3. How does the whole Ubuntu OS binary-to-library dependency graph
evolve over a longer period?

Having high popularity, rich history, and open-source nature, Ubuntu serves
as a comprehensive data source. Despite other Linux distributions, such as
Alpine, gaining popularity, we were unable to find another dataset compara-
ble in size and quality. Specifically, older Alpine versions were unavailable for
download and Debian produced fewer live images.

Throughout the development of our DepEx framework, we relied on well-
established existing open-source software, such as squashfs-tools4, binutils5 and
ldd6. SquashFS-related tools were used to expose compressed live Ubuntu images
for analysis. Note that different versions of SquashFS had to be used depending
on the age of the Ubuntu image. Binutils package, particularly the GNU nm tool,
was used to extract ELF-specific data such as imported library names. Lastly,
ldd was used to extract library search locations. Special precautions had to be
taken to lookup for the library paths inside the mounted image rather than
resolving paths within the host system that conducted the analysis. For this
purpose, we relied on standard Linux chroot functionality.

Solely mounting the Ubuntu ISO files directly does not provide access to the
live file system, as another layer of compression is typically present for disk space
optimization purposes. Thus, we implemented a two-step unpacking process to
gain visibility of the inner live file system.

Interestingly, extracting the images generated over 18 years revealed how live
image preparation changed over time. We noticed different compression tech-
niques used throughout the time period analyzed that ranged from compressed
loop files (cloop) to SquashFS versions 2.1-4.0. We also observed that modern
SquashFS kernel modules could not transparently mount images compressed by
older versions. Thus, we developed a supporting script to provide access to all
of the downloaded images in a uniform manner.

Using our DepEx framework, we recursively built the full library dependency
graph for each identified executable using readelf, nm and ldconfig tools. Ex-
tracting library dependencies requires analyzing RPATH and RUNPATH variables,
system library cache as well as the binary executable file path. Finally, we used
an SQLite database to store the collected dependency data for all the scanned
Ubuntu images. This data can be queried for further analysis and visualization.

4 https://github.com/plougher/squashfs-tools
5 https://www.gnu.org/software/binutils/
6 https://man7.org/linux/man-pages/man1/ldd.1.html

https://github.com/plougher/squashfs-tools
https://www.gnu.org/software/binutils/
https://man7.org/linux/man-pages/man1/ldd.1.html
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5 Findings and Results

The dependency data extracted from a typical OS is a rich source of information
on the high-level system architecture. In contrast to planned layer of architec-
ture, this layer refers to the unwritten architectural aspects that emerge as a
result of combining a multitude of independently-developed software packages.
Coupled with temporal updates, this data can serve as a basis for a deeper sys-
tem evolution trends analysis. For instance, long-term trends such as libraries
gaining or losing popularity or executable complexity inflation may be detected.
Predicting potential OS library or executable removal may help developers adjust
the development plans. In addition, determining and removing unused libraries
could be useful in optimizing disk space usage and reducing the attack surface.

Throughout the data collection conducted, we focused on three key aspects.
Firstly, we investigated the OS-level dependency graph as a whole (RQ1). Sec-
ondly, we examined various aspects of complexity in binary dependencies deter-
mined through coupling analysis (RQ2). Lastly, we analyzed evolutionary trends
in the OS dependency graph (RQ3).

5.1 OS-wide Dependency Graph

Analyzing the resulting SQLite database, which covers 84 Ubuntu images, re-
vealed the following number of binaries, libraries and dependencies per image.
We found that from Ubuntu 5.04 to 23.04 the number of binary executables
ranged from 1519 to 2753 and the number of libraries ranged from 1683 to 3673.
In terms of dependencies detected, the numbers ranged from 18 165 to 37 641 in
the images scanned. A total of 408 364 binary and library files were processed
to extract the dependencies, which returned almost 2 million dependencies. The
total SQLite database size generated is over 83MB of raw dependency data.

(a) Full system view (b) Filtered system view

Fig. 2: Dependency visualization filtering effects

We noticed that highly popular libraries such as (libc) make the graphs
unreadable. Thus we implemented filtering out libraries from the sorted (by
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popularity) list of all the involved libraries. We observe that hiding the top 10-
15 libraries increases the readability of the whole system graph. Notably, loosely
coupled subsystems, such as the networking subsystem, become apparent. The
libraries presented alongside the diagram also provide insight into the relative
popularity of individual libraries within a system.

We have observed that number of libraries imported but not present in the
system varied from 20 (v5.04) to 8 (v23.04) with the highest number being 92
(v21.10b). As a consequence, the number of other libraries directly impacted by
the missing dependencies varied from 4 (v17.10 and v17.10.1) to 27 (v13.04 and
v9.04). Similarly, we see that the number of unused libraries (i.e., not imported
by any other library or executable) ranged from 1301 (v5.04) to 1666 (v23.04).
These numbers constitute a significant proportion of the total number of libraries
included (around 77% and 62% respectively). Potential explanations for such a
high number of unused libraries could be a) plugin-based applications that do not
import libraries directly, b) ”forgotten” legacy libraries and c) libraries shipped
”just in case” for use by applications commonly installed at a later stage.

5.2 Dependencies Coupling Aspects

Software dependencies represent the reliance of a given piece of code on external
code. In practice, software developers only deal with a subset of the code required
for an application to run. A graphics-oriented library may expose a simpler set of
functions to developers, while relying on a multitude of other complex hardware-
specific libraries to implement the advertised functionality. Thus, a complex and
large code base is made to look simple from the developer’s perspective.

This perception difference opens the possibility of measuring code coupling
in direct and recursive ways. The direct coupling of an application reflects how
many specific libraries a developer deals with explicitly. In contrast, recursive
coupling takes all the underlying dependencies into consideration as well.

In addition, there is an inherent asymmetry in dependency tracking. Forward
tracking from a given binary to all the required libraries is trivial, as this in-
formation is contained within the binary. Reverse tracking from a given library
to determine all the binaries and libraries that require the specified library is
complicated, as this information is not stored explicitly. Reverse tracking essen-
tially reflects the popularity of a given library and requires scanning the whole
file system to be calculated. Thus we developed functionality to measure the (i)
direct coupling, (ii) total (recursive) coupling, and (iii) library popularity.

Figures 3a and 3b illustrate the changes in the average and maximum num-
ber of dependencies correspondingly. As can be seen from Figure 3a, whereas the
average total number of dependencies largely stays the same, developer-facing
complexity tends to decrease over time. This indicates that developers tend to
re-arrange code within libraries to minimize the coupling they face directly. The
large spike in Figure 3b is caused by the introduction of Gnome Shell in Ubuntu
17.10. We, therefore can conclude that while maintaining roughly the same exter-
nal coupling, GNOME Shell has a complicated internal structure. Particularly,
we found that gnome-control-center binary has the largest amount of depen-
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dencies. This is explained by the fact that the configuration tool needs to interact
with most of the GNOME Shell subsystems.

(a) Average number of dependencies (b) Maximum number of dependencies

Fig. 3: Direct and recursive dependencies

A complementary aspect of dependency coupling is popularity. We define
library popularity through the number of other libraries or executables that de-
pend on it. In other words, damaging or removing more popular libraries would
impact a larger number of executables in a system. In terms of popularity, the
top 10 most used libraries (i.e. imported from other libraries and executables) in
Ubuntu are: libc (4397), libpthread (1438), libglib (1037), libgobject

(945), libm (836), librt (719), libgthread (660),

libgmodule (658), libgtk-x11 (656), libdl (601). The numbers alongside
the libraries refer to the number of uses (i.e., library importing) averaged across
all Ubuntu versions the library was present in.

We notice that 7 out of the top 10 directly-coupled libraries relate to various
GNOME subsystems while the other 3 relate to the Evolution mail client. Inter-
estingly, the most complex ximian-connector-setup executable with 100 direct
dependencies was only present in two Ubuntu versions. This likely indicates that
such high coupling was not tolerated, leading to the application removal.

Lastly, analyzing total coupling by taking recursive dependencies into ac-
count, we found the top 10 complex libraries and binaries:empathy-call(154),
evolution-alarm-notify(156), gnome-control-center(273), gnome-todo(155),
libvclplug gtk3lo (154), smbd.x86 64-linux-gnu (155), libiradio (158),
gnome-initial-setup(169), libgrilo (158), shotwell-publishing (164).

5.3 Dependency Graphs Evolutionary Trends

Running a large-scale analysis on a set of Linux distributions developed and
released over 18 years revealed a number of shifts occurring in the domain. In
constant efforts to attract users, Ubuntu is known for conducting experiments,
such as introducing new large software packages as a replacement for existing
ones. For instance, the significant dip in the number of dependencies on Figure
4b is explained by the replacement of GNOME 2 with Unity. On a longer scale it
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is also visible that despite limited local successes of such experiments, the overall
trend indicates a slow growth of the number of files and dependencies.

(a) Libraries vs. executables evolution (b) Dependencies vs. Files evolution

Fig. 4: Overview of file-level evolutionary trends

Interestingly, we also observed a significant amount of not explicitly required
.so files are present in the system (Figure 4a). In other words, up to 37% of
libraries physically located in the file systems were not mentioned in the import
tables of any of the binaries or libraries. This likely indicates that such libraries
are primarily used as plugins and could be loaded at run-time through dynamic
directory scanning if necessary. Note that these conditional dependencies may
be impossible to detect in advance due to the unpredictable nature of external
factors. For instance, a user controlled application configuration can determine
whether a given plugin library should be loaded at run time. The overall trend
also hints that such a dynamic plugin-based approach gains popularity as the
proportion of libraries not imported keeps steadily growing.

Another observation discovered throughout our analysis relate to the longevity
of the libraries and binaries in Ubuntu. Namely, while complex binaries are peri-
odically removed in search of better alternatives, highly popular libraries tend to
stay around. Once a popular library is introduced in a particular Ubuntu version,
it is unlikely to be removed as such removal would impact all libraries and exe-
cutables that rely on the library’s existence. Even internal code reorganizations
affecting highly popular libraries require extra care to maintain compatibility7.

6 Discussion

6.1 Threats to Validity

While we primarily focused on dependency-centric package management in Linux
OS, other factors may explain some of the observations. Despite high popularity,
packages might get removed from the system due to licensing, compatibility,
security, or maintainability issues. Dependency analysis should, therefore, be
coupled with change log analysis to verify and confirm the findings.

7 https://developers.redhat.com/articles/2021/12/17/why-glibc-234-removed-
libpthread
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To enhance the external validity of our dependency analysis, we selected a
highly popular Linux distribution. By including all of the available versions we
expect our approach to be generalizable and applicable to a broader range of
OSs. Widening the input data set on the time axis enabled the discovery of un-
common cases and long-term trends. Being well-maintained, Ubuntu served as
a high-quality dataset. Legacy Ubuntu versions and their corresponding change
logs were still available for download8. In contrast, Alpine (another popular
Linux distribution) archives did not go far back in time. Moreover, the Alpine
archives contained broken links for older versions, preventing image download-
ing. Similarly, while considering Debian systems, we discovered different and
incompatible system image layouts which would complicate the analysis.

Primary threats to external validity are abrupt changes causing significant
paradigm shifts, lower granularities skewing the results, and implicit dependen-
cies. Abrupt changes may be introduced throughout evolution. Such changes
introduce incompatibilities, forcing to amend the scanning process accordingly.
Notable examples we observed include compression algorithm changes, folder
hierarchy alterations, and transition from RPATH to RUNPATH. We noticed a dif-
ferent layout of binary files in the file system that required consideration due to
the changes introduced in Ubuntu 19.04. Specifically, /bin and /sbin directories
were converted to symbolic links to /usr/bin and /usr/sbin correspondingly9.
Depending on whether 19.04 is being installed from scratch or on top of the pre-
viously installed version, the number of binaries may look like being suddenly
doubled in version 19.04. We alleviated this problem by resolving symbolic links.

In addition to library dependencies stored in executable binary file import
tables, other types of coupling occur in practice. For instance, network commu-
nication, special files like Unix domain sockets, Inter-Process Communication
(IPC) calls, message-oriented buses, and pipes provide various means of code
interactions. Discovering such code coupling instances may not be possible in
practice (e.g., new code fragments might be downloaded over a network). Tak-
ing into account these code coupling types may significantly skew our findings.

6.2 Challenges and Limitations

The two primary technical challenges we encountered throughout our data col-
lection and analysis are the large data set sizes and performance issues related
to extracting dependencies at lower granularities.

As the distributed Ubuntu images are growing in size, so do the number of
executable files and their individual sizes. This steady growth is observed over
all Ubuntu versions analyzed. For example, within 18 years analyzed, the live
Ubuntu image size grew from 600MB (version 5.04) to 3.7GB (version 23.04).
Likewise, the number of executable files experienced a 70% increase in size (1605
in 5.04, 2753 in 23.04).

8 Ubuntu wiki: Releases - https://wiki.ubuntu.com/Releases
9 https://lists.ubuntu.com/archives/ubuntu-devel-announce/2018-November/

001253.html

https://lists.ubuntu.com/archives/ubuntu-devel-announce/2018-November/001253.html
https://lists.ubuntu.com/archives/ubuntu-devel-announce/2018-November/001253.html
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Through practical experiments, we established that restricting the depen-
dency granularity is crucial to achieving acceptable processing speed as lower
granularity dependency extraction incurs large overheads. Disassembling exe-
cutable binaries to identify individual third-party library function calls slows the
dependency extraction and incurs significant memory overheads. For instance,
we have observed cases of over-disassembly and analysis of a single executable
taking 40 minutes on an average laptop-class CPU. Thus, while technically pos-
sible and potentially interesting to gain further insights, lower-level granularity
analysis is out of reach for real-time applications we initially aimed for. At this
stage, we restricted the analysis to the file level only.

7 Related Work

The prior work primarily revolves around two aspects, (i) diverse conceptual
complexity metrics definitions and (ii) dependency extraction and analysis.

Various types of software complexity metrics have been widely studied in the
literature [19]. Some studies have focused on metrics that are useful in source
code analysis but are not easily applicable in binary code analysis [1] [2] [16].
Others have discussed the deficiency of methods to obtain global dependency
knowledge and the difficulty in visualizing the resulting graphs [10]. The use of
software complexity metrics to detect vulnerabilities has also been investigated,
with some studies proposing dependency-oriented and execution-time complex-
ities [3]. Dependency extraction aspects and challenges have also been explored,
with some studies focusing on specific languages or ecosystems [17] [27].

Package management and dependency validation have been popular research
topics, with a set of studies proposing methods to address issues arising from
package evolution (e.g., splitting into multiple different packages) [4] [5] [6]. User
questions related to package management, such as calculating the consequences
of removing or modifying a package, have also been explored [7] [23]. Efficient
package management tools and query languages have been proposed, including
tools for efficient package management and relations lookup [8]. However, similar
to software complexity metrics research efforts, multiple studies have focused
only on source-level rather than binary dependencies [9] [20].

In efforts to resolve binary compatibility issues, some works have investigated
relying on version ranges rather than minimum version requirements [11]. Un-
fortunately, the large downside of the proposed approach is the requirement of
debug symbols availability, which is rare in commercial software. An interesting
use of dependency extraction has been proposed for Windows executables for
malware detection [25]. Taking the notion of the extent of a dependency into
account enables detecting and eliminating insignificant dependencies [18].

Overall, it should be noted that dependency related studies primarily focus on
source code dependency analysis and package-level relations[22] [26] and do not
typically examine software package evolution over time. We, therefore, conclude
that a more precise file-based dependency extraction is an under researched
area that might benefit from providing better structural visibility for large-scale
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systems comprising multiple independently developed packages. We also see that
understanding software evolution is essential for maintaining software, ensuring
compatibility, and improving security. Having this understanding aids developers
in making informed decisions about updates and maintenance, ensures software
remains compatible with other systems, and reduces the risk of security issues.
Additionally, understanding software evolution can lead to new innovations and
improvements in software design and development.

8 Conclusion and Future Work

In this study, we introduce automated extraction of dependency graphs for a
whole system at the executable files level (as opposed to manually maintained
traditional package-level dependency graphs). The resulting system-wide depen-
dency graph provides a high-level view of the OS architecture emerging from
interactions between the different subsystems and user packages. In addition,
this study enabled the discovery of general high-level trends/common patterns
in Ubuntu Linux architecture evolution over time.

We also differentiate between developer-facing complexity (defined through
direct dependency coupling) and overall system complexity (defined through
recursive dependency coupling). The motivation behind such a separation is that
developers typically deal with third-party libraries without having full visibility
of the back-end side of the libraries. In other words, a developer may include one
library, while the library itself can have a complicated graph of dependencies not
directly visible to the developer. These invisible dependencies may cause software
bloating and increase the attack surface. We believe the findings of this study
will provide useful insights for software developers and OS maintainers in terms
of gaining a holistic quantitative understanding of inter-package architecture
management that would be useful, for example, in optimizing disk space and
improving system maintainability.

We have identified two main directions for future research lines. Specifically,
expanding the dependency extraction approach to a wider set of platforms to
support and more types of dependencies to extract. For future research, we aim
to perform Windows-based analysis and implement support for other levels of
granularity, such as individual function dependencies. Also, in contrast to the
convenient, holistic file system structure used in live editions, non-live distribu-
tion variants are composed of multiple compressed packages, complicating the
dependency extraction and analysis. Implementing analysis for such non-live
distributions could be a potential future research line.

As opposed to fixed library imports, code fragments interacting through var-
ious communication channels are loosely coupled. Such non-obvious dependen-
cies are not trivial to detect. For instance, changing code on one side of a UNIX
pipe may negatively affect the results of the next program in the pipeline. Fur-
thermore, such dependencies may not be predefined in advance and are only
required intermittently while being completely unnoticeable most of the time.
We believe that comprehensive and accurate detection of such concealed depen-
dencies would greatly enhance the overall system architecture, evolution, and
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run-time operation understanding and visibility and enable early detection of
potential compatibility breaks caused by code modifications.
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