
Towards Assessing Spread in Sets of Software
Architecture Designs

Vittorio Cortellessa1 , J. Andres Diaz-Pace2 , Daniele Di Pompeo1 , and
Michele Tucci1

1 University of L’Aquila, Italy
2 ISISTAN, CONICET-UNICEN, Buenos Aires, Argentina

{vittorio.cortellessa,daniele.dipompeo,michele.tucci}@univaq.it,
andres.diazpace@isistan.unicen.edu.ar

Abstract. Several approaches have recently used automated techniques
to generate architecture design alternatives by means of optimization
techniques. These approaches aim at improving an initial architecture
with respect to quality aspects, such as performance, reliability, or main-
tainability. In this context, each optimization experiment usually pro-
duces a different set of architecture alternatives that is characterized by
specific settings. As a consequence, the designer is left with the task of
comparing such sets to identify the settings that lead to better solution
sets for the problem. To assess the quality of solution sets, multi-objective
optimization commonly relies on quality indicators. Among these, the
quality indicator for the maximum spread estimates the diversity of the
generated alternatives, providing a measure of how much of the solu-
tion space has been explored. However, the maximum spread indicator
is computed only on the objective space and does not consider architec-
tural information (e.g., components structure, design decisions) from the
architectural space. In this paper, we propose a quality indicator for the
spread that assesses the diversity of alternatives by taking into account
architectural features. To compute the spread, we rely on a notion of
distance between alternatives according to the way they were generated
during the optimization. We demonstrate how our architectural quality
indicator can be applied to a dataset from the literature.

Keywords: Architecture alternatives · Multi-objective optimization ·
Diversity · Quality indicator.

1 Introduction

When designing or evolving software architectures, the improvement of quality
attributes like performance, reliability, or maintainability is a central concern
for the designer. This task has recently been the target of an increasing number
of automated approaches whose goal is to generate improved versions of an
initial architecture [1, 6]. The generated architectures are referred to as design
alternatives. These alternatives are automatically generated through refactoring,
which is the application of transformations for improving some quality attributes

ar
X

iv
:2

40
2.

19
17

1v
1 

 [
cs

.S
E

] 
 2

9 
Fe

b 
20

24

https://orcid.org/0000-0002-4507-464X
https://orcid.org/0000-0002-1765-7872
https://orcid.org/0000-0003-2041-7375
https://orcid.org/0000-0002-0329-1101


2 Cortellessa et al.

of interest while keeping the software functionalities unchanged. In practical
cases, the designer tackles multiple attributes at the same time. For example,
she could aim at improving performance while keeping reliability high and the
cost of refactoring low. This context is ideal for multi-objective optimization.

Multi-objective optimization normally needs a series of experiments to deter-
mine appropriate configuration parameters. Examples of these parameters can
be the choice of the optimization algorithm and its settings, such as the specific
genetic algorithm and its population size. A recurring problem is that of deciding
which configuration parameters are to be preferred on the basis of the obtained
solution sets. In multi-objective optimization, this issue has been traditionally
addressed by means of quality indicators for solution sets [5]. These indicators
seek to estimate desirable properties of solution sets and, consequently, can help
designers to choose parameters that improve such properties. Among these prop-
erties, the spread of a solution set plays a fundamental role in assessing how much
of the solution space was covered and how diverse the solutions are in the set.
The maximum spread (MS) [10] is a prominent indicator for such a property.
Higher MS values indicate that the optimization searched the solution space
enough to cover a wide area.

The spread is especially relevant when dealing with architectural alterna-
tives. It highlights that a sizeable number of alternatives were found, and the
obtained solution set covers tradeoffs that are dispersed enough to provide a
variety of design choices to the designer. Note that quality indicators are com-
puted on the problem objectives, which are the attributes being optimized (i.e.,
performance, reliability, and cost in the previous example). Although these in-
dicators are valuable for assessing the performance of optimization algorithms,
they do not provide insights on the architectural features of the solutions, i.e.,
the architectural space, which represent more closely the object of the software
engineering task we described.

In this paper, we propose an architectural quality indicator, called MAS
(Maximum Architecture Spread), for the estimation of the spread in sets of design
alternatives. MAS is based on the notion of maximum spread by Zitzler et al.
[10], but it operates in the architectural space rather than on the objective space.
To demonstrate our approach, we show how MAS can be applied to a dataset
that addresses an architecture optimization problem from the literature. To do
this, we calculate the differences among architectural alternatives on the basis
of their structure. This is achieved by first encoding the architectures in terms
of sequences of refactorings and then using distance metrics on such encodings.
Our preliminary results indicate that MAS provides an additional architectural
view of the optimization, and exhibits a correlation with the (MS) indicator.

2 Motivating Example

Let us assume that the designer wants to explore design alternatives that im-
prove a performance objective (e.g., minimization of response time) for an initial
architecture (A0), while keeping the cost of changes low. For example, this is the



Towards Assessing Spread in Sets of Software Architecture Designs 3

case of the ST+ system [7], in which architectures are specified in the Palladio
Component Model (PCM) notation. An automated optimization tool progres-
sively applies refactorings via a heuristic search and generates a set of design
alternatives in the architectural space (i.e., the space of PCM architectures).
This set can be seen as a tree rooted at A0, in which the nodes correspond to
alternatives and the edges correspond to refactorings from one alternative to
another, as sketched in Figure 1 (left). Each alternative is evaluated to provide
quantifiable measures for the objectives. Measures for such objectives constitute
the objective space, in which the designer can analyze tradeoffs between the al-
ternatives, as depicted in Figure 1 (right). However, the objective space does
not reveal details about the structural characteristics or features of the design
alternatives. Likewise, the architectural space does not provide insights about
tradeoffs between the objectives.

Architectural space Objective space

EVALUATION

A0

A1

A2 A0

A1

A2

Re
sp

on
se

 ti
m

e 
(m

in
im

ize
)

Cost of changes (minimize)

Fig. 1: Relationship between the architectural and objective spaces. The archi-
tectural space is represented as search tree rooted at the initial architecture (A0).

To assess the quality of solution sets in the objective space, the designer can
rely on quality indicators, such as MS [10]. However, analyzing only the objective
space can be shortsighted, because it does not expose, for example, architectural
characteristics of the PCM alternatives in the solution sets.

We argue that insights from the architectural space are crucial for the de-
signer to understand and compare configuration parameters in order to make the
optimization process more useful and efficient. Unfortunately, quality indicators
for the architectural space have not been reported in the literature, partially
because they are not domain independent (as the traditional indicators for the
objective space) but depend on the kind of models populating the architectural
space. We refer to the quality indicators for this space as architectural quality
indicators.



4 Cortellessa et al.

3 Related Work

We highlight that none of the identified prior studies presented metrics to es-
timate sets of design alternatives in the architectural space, rather than in the
objective space. Esfahani et al. [2] introduced a quantitative framework to graph-
ically drive architects in selecting design alternatives by means of fuzzy math-
ematical methods to rank alternatives. Ranking alternatives helps designers to
find the optimal alternative (i.e., the best case) and the most critical one (i.e.,
the worst case). Sedaghatbaf and Azgomi [9] proposed a framework for modeling
and evaluating software architectures. They used a multi-criteria decision model
to extract the best and worst alternatives. To this extent, they introduced a dis-
tance metric that extracts the maximum and minimum values for the best and
worst alternatives, respectively. In addition, they support the designer in this
complex process by providing a tool named SQME. Rahmoun et al. [8] exploited
a genetic algorithm to generate model transformations and obtain design alterna-
tives defined through the Architecture Analysis and Design Language (AADL).
To compare the alternatives generated by their approach and the optimal one,
the authors introduced a distance metric based on Mixed-Integer Linear Pro-
gramming (MILP). The idea beyond the study by Rahmoun et al. is to find a
way to measure how far the generated alternatives are from the optimal ones.

4 Proposed Architectural Quality Indicator

In multi-objective optimization, the spread of a solution set is recognized as the
region of the objective space that is covered by the set. When the solution set
is a Pareto front, the spread is also known as the coverage of the set [5]. Higher
values of the spread are an indication that the optimization process has extended
the search enough to reach a wide area of the objective space.

The maximum spread (MS) is a well-known quality indicator [10] that mea-
sures the range of a solution set by considering, for any two solutions in the set,
the maximum extent of each objective. It is defined as:

MS (S) =

√√√√ o∑
i=1

max
s,s′∈S

(si − s′i)
2

where S is the solution set under consideration, s and s′ are solutions in that
set, and o is the number of objectives. Higher values of MS are to be preferred,
as they represent a better coverage of the solution space.

As it is evident, quality indicators like MS are defined on the objective space,
and they are considered a valuable mean to assess the performance of a search
algorithm in producing solution sets coverage. However, when these optimization
techniques are employed in the software architecture context, and specifically
for the generation of design alternatives, the quality of the resulting solution
sets should be assessed also in the architectural space. Indeed, the architectural
features of the solutions represent the final product of the optimization process,



Towards Assessing Spread in Sets of Software Architecture Designs 5

and the designer will make decisions on their basis. Therefore, we provide an
estimate of the coverage and diversity of solution sets in the architectural space.

We introduce the maximum architectural spread (MAS) by following the same
principles behind the original MS. It is defined as:

MAS (S) =

√∑N
n=1 maxs,s′∈S(d(sn, s

′
n))

2

N max(d)2

where S is the considered set, N is its cardinality, while s and s′ are solutions in
that set. Moreover, d(s, s′) is a distance metric that is relevant for the problem,
and that can be plugged in the formula to quantify the distance between two
architectures. max(d) is the maximum possible value for the distance metric.
MAS can be interpreted as the square root of the ratio of two quantities: (i)
the sum of the maximum distance of any two solutions in the set, divided by
(ii) the maximum achievable spread, that is the maximum value for the distance
metric multiplied by the number of solutions in the set. The MAS denominator
is used to normalize its value between 0 and 1. When MAS is 0, it represents the
limit case in which the set consists of a single solution. Instead, 1 represents the
maximum achievable spread, which occurs when every solution is at maximum
distance from another. The intent is to provide, numerically, an intuition of
how far we are from the maximum diversity of solutions we could theoretically
achieve. In addition, the normalization is aimed at enabling the comparison of
MAS obtained with different distance metrics.

4.1 Architectural Distance as Sequence Distance

The MAS computation depends on having a notion of distance d(s, s′) between
architecture solutions. Since architectures are usually complex objects, simpli-
fying their representations can help to define intuitive distance metrics. In this
work, we rely on the sequences of transformations applied to the initial archi-
tecture, and use those sequences as proxies for architectural representations. A
sequence is actually a path in the search tree, as illustrated in Figure 1 (left).
More formally, an architecture Ai is modeled by a sequence of transformations
Ti =< t1i, t2i, ..., tLi > of length L, which comes from the shortest path between
the initial node A0 and the node for Ai in the tree. For each tki, the architectural
elements targeted by the transformation are parameters in the representation.

Once architectures are encoded as sequences, the distance d(Ai, Aj) is de-
fined in terms of the delta of changes between the elements of their respective
sequences. If two transformations tik and tjk share the same name and param-
eters, then d(tik, tjk) = 0; and conversely, if they have different names and
completely different parameters, then their distance is equal to 1. The problem
becomes one of matching sequences, and well-known distances such as Leven-
shtein [4] can be used to compute the sequence distances. To distinguish between
the transformation names and their parameters, when matching sequences, we
use a separate distance function for each part of the transformation, and com-
bine the results via a weighted sum. For a pair of sequences of length L, the



6 Cortellessa et al.

distance computation is defined as:

d(Ai, Aj) =

L∑
k=1

simpred(tik, tjk) ∗ wpred + simargs(tik, tjk) ∗ wargs

Functions simpred() and simargs() extract the transformation name and ar-
guments from tik and tjk, respectively, and then calculate the Levenshtein for-
mula. We perform a label encoding of the vocabulary of transformation names
and arguments used in the architectural space, before evaluating simpred() and
simargs(). This encoding maps each transformation name or argument to a
unique symbol. The maximum possible values of simpred() and simargs() is L.
The contributions of these functions are weighted by wpred and wargs, with the
constraint wpred + wargs = 1 to keep d(Ai, Aj) bound to the interval [0..L].

4.2 Application of MAS

We computed MAS on the ST+ dataset3, which comprises nine component types
for instantiating an architecture alternative, and four quality-attribute scenarios
as the optimization objectives. Two objectives (referred to as p1 and p2 ) involve
minimizing response time and CPU utilization [3], while the other two (referred
to as m1 and m2 ) involve minimizing the cost of changes via a complexity
metric. The architectural space contains 554 candidate architectures. Graphical

(a) Architectural space (b) Objective space

Fig. 2: Comparison of the architectural and objective spaces for the two search
algorithms in ST+, along with computed MAS and MS.

3 https://github.com/SQuAT-Team/paper-supplementary

https://github.com/SQuAT-Team/paper-supplementary


Towards Assessing Spread in Sets of Software Architecture Designs 7

representations of the architectural and quality-attribute spaces are shown in
Figure 2. The colors refer to the two search strategies (standard search and
negotiation) exercised for ST+. The architectural space (Figure 2a) is visualized
using a multi-dimensional scaling (MDS) projection that is derived from the
distances d(Ai, Aj) between the PCM architectures. In our MDS chart, each
color-coded circle encloses the alternatives returned by an algorithm, and gives
a notional view of the spread it achieved.

In the objective space (Figure 2b), the solutions computed by the standard
search lie in the Pareto front, while the negotiated solutions set apart, particu-
larly for p1 with respect to m1 and m2. This would mean that the negotiation
algorithm tries to balance the utilities for that tradeoff. The MS values for the
two sets show a larger spread in favor of the standard search algorithm.

In the architectural space (Figure 2a), we observe that the negotiation algo-
rithm achieved a slightly lower MAS than the standard search algorithm, whose
spread was maximal. It seems that the space covered by the negotiation algo-
rithm concentrates on a well-defined region. In contrast, the other set is more
diverse. Interestingly, some solutions in the negotiation set are at a very close
distance of the solutions in the other set. This close distance among the two types
of solutions is not evident when looking at the objective space (Figure 2b).

One of the main findings from this experiment is the relationship between the
MAS and MS indicators. Although they operate on different spaces and assess
different objects (i.e., architectures and quality values, respectively), there is an
apparent correlation between their spreads. The observed correlation, however,
might have been influenced by the search algorithms used by SQuAT.

If the relationship between MAS and MS proves to hold, it might help the
designer to make assumptions about the spread on the objective space while
looking at the architectural space, and vice versa. Another observation refers to
the architectural distance being used in our evaluation. The assessment of archi-
tectural similarities (or dissimilarities) based on their transformation sequences
works in the context of an initial architecture and a neighborhood of alternatives
that are reachable only via transformation sequences applied to the initial archi-
tecture. Therefore, the underlying assumption is that all the sequences have the
same starting point. The proposed Levenshtein metric, however, is not intended
to be a global metric for arbitrary architectures. Furthermore, the metric can be
affected by the transformation encoding and by the sequence length.

5 Conclusion

In this work, we proposed a quality indicator for estimating the spread in sets
of software architectures, namely the maximum architectural spread (MAS). We
showed, through a lightweight literature review, that these sets of architectures
represent design alternatives and arise in a variety of contexts, especially when
multi-objective optimization techniques are employed to generate them. Differ-
ently from existing quality indicators in multi-objective optimization, ours aims
at computing an estimate of the solutions spread from an architectural point of



8 Cortellessa et al.

view. This was achieved by encoding the sequences of modifications being ap-
plied to generate each architecture, and then using distance metrics to calculate
how far apart the architectures are from each other. Moreover, we showed how
our MAS indicator can be applied on practical cases to gain insights on the
diversity of architectures and compare optimization settings (e.g., algorithms).

The maximum spread provides an idea of the extent of the solution set, but
says nothing about the inner shape of the set or the distribution of its solu-
tions. We intend to overcome this limitation in future work by exploring corner
cases in which we obtain similar values of MAS on sets that exhibit contrasting
distributions. Furthermore, we will explore complementary indicators to assess
properties such as uniformity or convergence within the architectural space.

Acknowledgments Daniele Di Pompeo and Michele Tucci are supported by
European Union – NextGenerationEU – National Recovery and Resilience Plan
(Piano Nazionale di Ripresa e Resilienza, PNRR) – Project: “SoBigData.it –
Strengthening the Italian RI for Social Mining and Big Data Analytics” – Prot.
IR0000013 – Avviso n. 3264 del 28/12/2021. J. Andres Diaz-Pace is supported
by the PICT-2021-00757 project, Argentina.

References
1. Cortellessa, V., Di Pompeo, D., Stoico, V., Tucci, M.: Many-objective optimization

of non-functional attributes based on refactoring of software models. Information
and Software Technology 157, 107159 (2023)

2. Esfahani, N., Malek, S., Razavi, K.: Guidearch: Guiding the exploration of archi-
tectural solution space under uncertainty. In: 35th International Conference on
Software Engineering (ICSE), p. 43–52 (2013)

3. Koziolek, H., Reussner, R.H.: A model transformation from the palladio component
model to layered queueing networks. In: Proceedings of the SPEC International
Performance Evaluation Workshop (SIPEW 2008), LNCS, vol. 5119, pp. 58–78,
Springer (2008)

4. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics. Doklady 10, 707–710 (1965)

5. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation:
A survey. ACM Comput. Surv. 52(2), 26:1–26:38 (2019)

6. Ni, Y., Du, X., Ye, P., Minku, L.L., Yao, X., Harman, M., Xiao, R.: Multi-
objective software performance optimisation at the architecture level using ran-
domised search rules. Information and Software Technology 135, 106565 (2021)

7. Rago, A., Vidal, S.A., Diaz-Pace, J.A., Frank, S., van Hoorn, A.: Distributed
quality-attribute optimization of software architectures. In: 11th Brazilian Sym-
posium on Software Components, Architectures and Reuse, pp. 7:1–7:10 (2017)

8. Rahmoun, S., Mehiaoui-Hamitou, A., Borde, E., Pautet, L., Soubiran, E.: Multi-
objective exploration of architectural designs by composition of model transforma-
tions. Software & Systems Modeling 18(1), 107–127 (Feb 2019), ISSN 1619-1366,
1619-1374

9. Sedaghatbaf, A., Azgomi, M.A.: Sqme: a framework for modeling and evaluation
of software architecture quality attributes. Software & Systems Modeling 18(4),
2609–2632 (2019)

10. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)


	Towards Assessing Spread in Sets of Software Architecture Designs

