
ar
X

iv
:2

30
5.

01
32

7v
1

 [
cs

.D
M

]
 2

 M
ay

 2
02

3

Attractor identification in asynchronous Boolean dynamics

with network reduction

Elisa Tonello1 and Löıc Paulevé2

1Freie Universität Berlin, Germany
2Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

May 3, 2023

Abstract

Identification of attractors, that is, stable states and sustained oscillations, is an important step

in the analysis of Boolean models and exploration of potential variants. We describe an approach to

the search for asynchronous cyclic attractors of Boolean networks that exploits, in a novel way, the

established technique of elimination of components. Computation of attractors of simplified networks

allows the identification of a limited number of candidate attractor states, which are then screened

with techniques of reachability analysis combined with trap space computation. An implementation

that brings together recently developed Boolean network analysis tools, tested on biological models

and random benchmark networks, shows the potential to significantly reduce running times.

1 Introduction

Boolean networks are adopted as modelling tools to organise knowledge and explore possible behaviours
emerging in biological processes [16, 23, 5]. From the logic describing the influence between species,
dynamics are defined to express the evolution of variables at play. Update schemes that implement
asynchrony are of particular interest, as they express one form of inherent stochasticity [18]. Attractors
are fundamental structures that ought to capture the fate or stable behaviours of modelled systems.
Recently, the topic of identification of attractors of asynchronous dynamics has seen renewed interest and
several developments. To look at the last two years alone, [15] suggested an algorithm that combines
different techniques such as motif detection and time reversal; [2] developed a symbolic approach that
can handle large transition systems, adopting binary decision diagrams to represent Boolean networks,
and supporting partially defined update functions [1]; [21, 20] described approaches based on feedback
vertex set identification and model checking reachability analysis. The new techniques have enabled the
handling of models of increasing complexity, as summarized in [20].

With this work we want to investigate the usefulness of network reduction in the investigation of
attractors of asynchronous state transition graphs. We refer specifically to the popular reduction method
that consists in the iterative elimination of non-autoregulated components, as described in [9, 10, 22].
When a variable is selected for elimination, the regulatory functions of its targets are changed to remove
the selected variable and replace it with its regulatory function. The asynchronous dynamics and regula-
tory structures of the original network and the network obtained with this reduction process are related
in a useful way; for instance, the networks have the same steady states, and the number of attractors
of the reduced network cannot be smaller than the original one. Properties of network reduction have
already been exploited for attractor identification, in particular in [15], where reduction is used in com-
bination with other methods under some specific cases. Here we show that a systematic use of variable
elimination, adopted as the first step of the network analysis, can be quite beneficial.

The standing of variable elimination as a useful tool for identification of asynchronous attractors
comes from the following property. For each attractor A of a Boolean network f , if f̃ is obtained from

1

http://arxiv.org/abs/2305.01327v1

f by iteratively eliminating some non-autoregulated components, there exists at least one state in an
attractor of f̃ from which a state in A can be reconstructed, by tracing the reduction process backwards.
This property allows us to identify, from the attractors of f̃ , a limited set of “candidate” states that cover
all the attractors of f (Section 2.2). Then, a screening of these candidate states is required for filtering
out those outside the attractors of f . By calculating the minimal trap spaces [19, 6] we can first check
if a candidate state is part of an attractor which is contained in a minimal trap space, and is the sole
attractor contained in that minimal trap space. If there is more than one candidate attractor in a minimal
trap space, or if there are candidate states outside of minimal trap spaces, other checks are required to
determine whether they are actually part of an attractor. More computationally demanding techniques,
for example from model checking, are useful for this step [12, 21] to check if a previously identified
attractor, or a trap space not containing the candidate state, can be reached from the candidate state.

We tested these ideas on both biological and random networks by implementing variable elimination
using colomoto’s minibn [8]. The reduced network were then studied using AEON [1] and mtsNFVS
[20], to identify candidate attractor states. We used trappist to find the minimal trap spaces [19] and
enable the first screening of the candidate states. For the check of the remaining candidate states we
used mtsNFVS’s reachability analysis software [20]. We found, in general, high potential for reduction
of computational times (Section 3.2). In addition, we observed that the reachability check, which is
the most computationally expensive task in the pipeline, needs to be invoked only occasionally. In fact,
although variable elimination can lead to an increased number of attractors, this appears to happen in
a quite limited number of cases, meaning that the number of candidate states is often very close, if not
equal, to the number of attractors. As a result, the amount of work necessary to handle such situations
is also contained. In the last section (Section 4) we comment on some avenues that could be explored for
possible further improvements of the techniques discussed.

2 Background

2.1 Boolean networks

We call V the set of variables or species of interest, and set n = |V |. A Boolean network is defined by
a map f = (f1, . . . , fn) : 2

n → 2n. The set 2n is called the set of states or configurations of the Boolean
network. For i = 1, . . . , n and x ∈ 2n, we denote by x̄i the state that coincides with x on all components
except i. A subspace is a subset of the state space consisting of all the states that share the same values
for a set of components, called the fixed variables of the subspace.

The Boolean function fi, i = 1, . . . , n, is sometimes called the update function of variable i. The
influence graph G(f) of f is the signed multi-digraph with set of nodes {1, . . . , n} and edges capturing
the dependence of update functions on each variable: there exist an edge (i, j) in G(f) with sign s if and
only if, for some x ∈ 2n, fj(x̄

i) 6= fj(x) and s = (fj(x̄
i)− fj(x))(x̄

i
i − xi).

A state transition graph or dynamics associated to f is a graph with set of vertices 2n and set of edges
(also called transitions) that depends on the chosen semantics. This work deals with the asynchronous
dynamics, a form of non-deterministic dynamics which includes only transitions between states differing
by one component. Specifically, an edge exists from a state x to a state x̄i if and only if fi(x) 6= xi. We
will write Γ(f) to denote the asynchronous state transition graph of f .

A trap set for the dynamics is a subset of the state space that does not admit any outgoing transition.
An attractor is a trap set that is minimal under inclusion. Attractors can consist of singleton states,
which are called steady states or fixed points, or can involve more than one state, in which case they are
referred to as cyclic or complex attractors.

Determining whether a given state belongs to an attractor is a PSPACE-complete problem with
asynchronous or synchronous dynamics [13]. In practice, computations usually rely on computing (partly
and symbolically) the state transition graph, which can be significantly more complex in the asynchronous
than in the synchronous case.

Trap spaces are subspaces that do not admit any outgoing transition. They can be viewed as gen-
eralizations of steady states, since they are fixed points for the restriction of the dynamics to some

2

01 11

00 10

011 111

001 101

000 100

010 110

01 11

00 10

Figure 1: Asynchronous state transition graphs of the Boolean networks f , g and h of Example 2.1.
Γ(f) has one minimal univocal attractor, Γ(g) has two minimal nonunivocal attractors, and Γ(h) has a
minimal univocal and a nonminimal attractor.

components. Compared to attractor identification, computation of trap spaces and related properties is
a much more tractable problem, due to a largely reduced theoretical complexity [6]. Minimal trap spaces
are particularly interesting, since each of them must contain at least one attractor. Often minimal trap
spaces of Boolean networks that serve as biological models contain only one attractor [3], meaning, for
instance, that they can replace the attractor they contain as reachability targets in reachability analysis.
Although some properties of the regulatory structure that can guarantee a “good” attractor landscape
(attractors only in minimal trap spaces, uniqueness of attractors in minimal trap spaces) have been
identified [14, 11], these have limited application. In general, establishing whether a Boolean network
admits multiple attractors in a minimal trap space, or attractors outside of minimal trap spaces (the
“motif-avoidant” attractors of [15]), remains a difficult task.

Based on these considerations, we can lay out the following classification of attractors of Boolean
asynchronous dynamics into four categories, which will be useful in our discussion later:

(A) steady states : these are “easy” to find. Since for our algorithm we calculate all minimal trap spaces,
we find the steady states as the minimal trap spaces where all variables are fixed variables.

(B) minimal univocal : we use the term that was introduced in [3] to refer to minimal trap spaces that
contain only one attractor. For convenience, we apply the term also to the attractors contained in
these minimal trap spaces.

(C) minimal nonunivocal : these are attractors that are contained in a minimal trap space but are
not the only attractor contained in that trap space. To investigate their existence we have the
convenience of being allowed to restrict the search space to the minimal trap space.

(D) nonminimal or motif-avoidant [15]: these are the most difficult to detect or exclude the existence
of.

Example 2.1. The asynchronous state transition graphs of the maps

f(x1, x2) = (x1x2 ∨ x̄1x̄2, 0),

g(x1, x2, x3) = (x2x̄1 ∨ x1x̄2, x1(x2x3 ∨ x̄2x̄3) ∨ x̄1(x2x̄3 ∨ x3x̄2), x2x3 ∨ x̄2x̄3),

h(x1, x2) = (x1x̄2 ∨ x̄1x2, x1x̄2 ∨ x̄1x2)

are represented in Fig. 1.
Γ(f) has a cyclic attractor and minimal trap space {00, 10}.
Γ(g) has two attractors that are nonunivocal, since they are found in the same minimal trap space

(the full space).
Γ(h) has two attractors, one steady state 00 and one nonminimal attractor {01, 10, 11}. The steady

state is the unique minimal trap space.

In the next section we review how the removal of components works in Boolean networks and discuss
how it can help with identification of attractors.

3

f : Bn → B
n

A

S(x)

variable
elimination

f̃ : Bn−1 → B
n−1

x

Figure 2: Idea behind the approach: states in attractors of reduced networks f̃ can be used to find
candidate states in attractors of f .

2.2 Reduction

A popular reduction method for asynchronous dynamics of Boolean networks iteratively eliminates vari-
ables that are not autoregulated [9, 10, 22]. The approach has been recently extended to negatively
autoregulated components [17]. Although all our observations here can be extended, mutatis mutandis,
to negatively autoregulated components, we only discuss the standard case for sake of simplicity.

Suppose that G(f) has a node that does not have a loop. Without loss of generality, we can assume
that the node is n. We write π : 2n → 2n−1 for the projection on the first n− 1 variables.

By definition of G(f), we have that fn(x, 0) = fn(x, 1) for all x ∈ 2n−1. In particular, the state
transition graph of f admits exactly one of the transitions from (x, 0) to (x, 1) or from (x, 1) to (x, 0).
We can therefore define a map Sn that associates to a “reduced” state a state in the larger space, as
follows:

Sn : 2n−1 → 2n

x 7→ (x, fn(x, 0)) = (x, fn(x, 1)).

The reduction f̃ of f obtained by elimination of component n is then defined as

f̃ = (f1 ◦ S
n, . . . , fn−1 ◦ S

n) : 2n−1 → 2n−1.

Given y ∈ 2n, the state Sn(π(y)) can be thought of as the “representative state” of the pair (π(y), 0),
(π(y), 1), or the state that “survives the reduction”, since all transitions leaving the state Sn(π(y)) have a

corresponding transition in Γ(f̃), whereas the transitions leaving the state Sn(π(y))
n
are not guaranteed

to be preserved [10].
It was shown in [9, 10] that f and f̃ admit the same number of steady states, and the number of

attractors of f̃ is greater or equal to the number of attractors of f . The following result, which forms the
basis for our method, is a simple consequence of properties proved in [10].

Theorem 2.2. If A is an attractor of f , then there exists at least one attractor for f̃ in π(A), and for
each x ∈ π(A) contained in an attractor of f̃ , Sn(x) ∈ A.

Proof. The first part is a consequence of the observation that, if B is a trap set for Γ(f), then π(B) is a
trap set for Γ(f̃).

Given a state x in an attractor for f̃ contained in π(A), by definition of π either Sn(x) or Sn(x)
n
is

in A, and since Sn(x) is reachable from Sn(x)
n
, Sn(x) must be in A.

The theorem gives us the following property: if there exists an attractor for f , then we are able to
identify one state of this attractor by finding the attractors of the reduced version f̃ , sampling a state
from each of these attractors, and “lifting” the states to the original space using Sn (Fig. 2).

Before we discuss more in detail how we can use the reduced network to identify attractors of the
original network, let us look at some examples, which can give an idea of what can happen to attractors
with variable elimination.

4

011 111

001 101

000 100

010 110

0110 1110 0111 1111

0010 1010 0011 1011

0000 1000 0001 1001

0100 1100 0101 1101

011 111

001 101

000 100

010 110

Figure 3: Asynchronous state transition graphs of the Boolean networks f̂ , ĝ, ĥ of Examples 2.4 to 2.6.

Example 2.3. Consider the map f from Example 2.1. Since the second variable is not autoregulated,
it can be removed using the elimination method described in this section. The constant value 0 replaces
x2 in the update function of x1, giving the reduced network f̃(x1) = x̄1. We have S2(0) = S2(00) and
S2(1) = S2(10). This simple example is sufficient to illustrate how, given a state x in the attractor of a
reduced network (say x = 0 here), to retrieve a state in an attractor of the original network we cannot
pick any state in the preimage π−1(x) (the state 01 does not work), but we need to apply the function
S2.

Example 2.4. If A is an attractor for a Boolean network and x is a state in A, does π(x) necessarily
belong to an attractor of the reduced network? The answer is negative. Take for instance

f̂(x1, x2, x3) = (x̄1x̄2 ∨ x̄1x̄3 ∨ x2x̄3, x1x̄2x̄3 ∨ x̄1x̄2x3, x1x̄2 ∨ x̄1x2).

By removing the third component, we obtain the function f of Example 2.1. The state 011 is in the
unique attractor of f̂ , while π(011) = 01 does not belong to any attractor of f .

In general, therefore, we are not able to retrieve all states of an attractor of a Boolean network by
lifting states in attractors of its reduction. We will only find some states, from which we can visit the
attractor if required.

Example 2.5. The Boolean network

ĝ(x1, x2, x3, x4) = (x2x̄4 ∨ x̄2x4, x4(x2x3 ∨ x̄2x̄3) ∨ x̄4(x2x̄3 ∨ x3x̄2), x2x3 ∨ x̄2x̄3, x1)

has one cyclic attractor, that fills the whole state space (see Fig. 3). By removing variable x4 we obtain
the network g in Example 2.1, which has two attractors.

Example 2.6. The Boolean network

ĥ(x1, x2, x3) = (x1x̄3 ∨ x2x̄3, x1x̄3 ∨ x2x̄3, x1x2)

has a unique attractor, the fixed point 000. By eliminating variable x3 we obtain the Boolean network h

in Example 2.1, which has two attractors.

Suppose that f̃ : 2m → 2m is obtained from f by iteratively eliminating variables n, n− 1, . . . ,m+ 1,
and that A1, . . . ,AM are attractors of f̃ . Take one state x1, . . . , xM ∈ 2m in each attractor. We can
reconstruct the corresponding states in 2n by applying the map S = Sn ◦ Sn−1 ◦ · · · ◦ Sm+1. How can we
establish whether each of these states is in an attractor of f , and how many attractors f has?

We can calculate the minimal trap spaces of f , and make the following observations. Given a set of
candidate states C = {S(x1), . . . ,S(xM)}:

(a) If x is a steady state of f̃ , then S(x) is a steady state of f (and all steady states of f can be
calculated in this fashion).

(b) if S(x) belongs to a minimal trap space t of f , and is the only state in C that belongs to t, then
S(x) belongs to an attractor of f that is minimal univocal. We call these univocal states.

5

1. Reduce

network

3. Find attractors

of reduced network

2. Calculate minimal trap spaces

4. Identify steady

and univocal states

5. Screen candidate

nonunivocal and

nonmaximal states

Figure 4: Main steps of the algorithm.

(c) if S(x) is contained in a minimal trap space t of f , and is not the only state in C that is contained in
this minimal trap space, then we need to study the dynamics in t to clarify whether each candidate
state contained in t belongs to an attractor, and whether the candidate states in t belong to different
attractors. We can call these states candidate nonunivocal. The number of states in C contained
in t gives an upper bound on the number of attractors contained in t.

(d) if S(x) is not contained in any minimal trap space, then S(x) might belong to a nonminimal attractor
of f . To establish whether this is the case, and to find the number of nonminimal attractors, we
need to do additional work. We refer to these states as candidate nonminimal.

Note that these observations would have to be slightly changed were one to consider the elimination
of negatively autoregulated components [17]. We can now give the description of the approach to the
identification of attractors based on elimination of components.

3 Method

Based on the analysis of the relationship between attractors of reduced versions of a Boolean network
and attractors of the original network, we propose the following pipeline (see Fig. 4).

First reduce the network f by eliminating variables (step 1), and, possibly in parallel, find the minimal
trap spaces of the Boolean network f (step 2). Then, identify one state for each attractor of the reduced
the network f̃ that is not a steady state (step 3), obtaining a set of candidate attractor states for f .

Step 4 and 5 deal with the screening of these candidate attractor states. Step 4 is the easy part: we
check whether each candidate state is contained in a minimal trap space. If a minimal trap space contains
only one candidate state, then this is a univocal state and we identified a univocal attractor for f (point
(b) of the last section).

Step 5 takes care of the remaining candidate states. These can be either multiple states contained
in the same minimal trap space (point (c) of the last section), or states that do not belong to any
minimal trap space (point (d) of the last section). In both scenarios, we have to study in some way
the state transition graph to understand whether the candidate states belong to an attractor, and how
many attractors exist (some candidate states might be part of the same attractor, which has been “split”
during the reduction process, like in Example 2.5, or part of an attractor that was created by the reduction
process Example 2.6). For this step one can use model checking approaches (see the next section), possibly
combined with other techniques (see the discussion in the last section).

3.1 Implementation

3.1.1 Software

For our implementation, we use the Python library colomoto’s minibn [8] to compute the network re-
duction (step 1 in Fig. 4). In minibn, the local functions of the Boolean network are represented in
propositional logic formula, with usual Boolean algebra. Given a component i to reduce, our implemen-
tation simply substitutes xi with the expression of fi in all its targets. Then, basic Boolean expression
simplifications are performed, which may result in variable elimination.

For step 2, we use trappist to calculate the minimal trap spaces [19]. Because trappist relies on a
Petri net representation of the Boolean network, this step involves a transformation of each local Boolean

6

function fi in two expressions in DNF form (one for fi(x) = 1 and one for fi(x) = 0), from which are
derived the Petri net transitions.

For step 3, the identification of attractors of the reduced network, we consider two recently developed
methods, AEON [1] and mtsNFVS [20]. In the analysis of [20], they have been shown to be the two fastest
methods available, while implementing two very different approaches. The outputs of the two methods
are also quite different: AEON, for instance, can give information on the attractors (cardinality, list of
states) that is not directly available with mtsNFVS, and can deal with families of networks at the same
time, do postprocessing control tasks, etc. Here we are only looking at the performance of the methods
in regard to the identification of the number of attractors and their nature (steady or cyclic), and we are
mostly concerned with understanding whether reduction might be useful in this respect.

The pieces are put together and step 4 performed in python. For step 5, we run the java tool
mtsNFVS.jar available as part of mtsNFVS. The tool uses Pint [12] for a first check via static analysis
followed by bounded and exact model checking [21]. We noticed however that mtsNFVS (without reduc-
tion) produces wrong results in several instances (some examples are provided in our project repository).
Hence, the results obtained with mtsNFVS should be taken with caution. For the biological networks we
considered, we checked that all methods found the same number of steady states and cyclic attractors.
As we will discuss in the Results section, the reachability analysis step has limited impact on the overall
process, since nonminimal candidates appear only rarely, and no nonunivocal candidates are found in any
of the biological or random tests.

3.1.2 Elimination order and other considerations

The choice of order for the variables to be eliminated has an influence on the reduced network as well as
on the running times. When a variable with r regulators and t targets is eliminated, the r+ t regulations
could be replaced, in the worst case scenario, by r · t regulations. We therefore pick for elimination, at
each step, one of the variables for which this product is minimum. A more systematic study of how the
elimination order influences the running time could lead to identification of better elimination orders.
For instance, one might try to favour elimination orders that have the least impact on the number of trap
spaces.

Another crucial point when using variable elimination is deciding where to stop the iterative process.
Unfortunately, there does not seem to be a simple answer to this question. In some cases, at some
point in the elimination process reduction can introduce complicated update functions that can slow the
processing steps that follow. In addition, although reduction seems to be beneficial as a preliminary step
for the methods we tested, we will see that different levels of reduction might favour different methods
variably. In our implementation we considered two possible parameters to stop the reduction process.
One specifies the minimum size for the reduced network in terms of number of nodes (stop at). The other
looks at the minimum product of number of regulators and number of targets for each node (that is, the
parameter used to choose the variable to eliminate), and sets a maximum for this value (max product).

We also investigated the impact of the simplification of Boolean expressions on running times. We
found that, although simplification is expensive, it leads to faster elimination. In the next section we will
discuss the impact of the elimination step on running times for both biological and random networks.

3.2 Results

The experiments on the biological network models were run on a desktop computer with an Intel(R)
Core(TM) i7-8700 processor, 32GB of RAM, operating system Debian GNU/Linux 11. The experiments
on the random networks were run on an HPC cluster nodes with an AMD(R) Zen2 EPYC 7702 @
2 GHz, 1TB of RAM, operating system, operating system CentOS Linux. The code is available at
https://github.com/etonello/attractors-with-reduction.

3.2.1 Biological models

We run our implementation using AEON [1] and mtsNFVS [20] to find the attractors of the reduced
networks, and compared the running times to those of AEON and mtsNFVS applied on the networks

7

https://github.com/etonello/attractors-with-reduction

Model file name file source
n.

nodes

n.

edges

n. steady

states

n. cyclic

attractors

MAPK grieco mapk PyBoolNet 53 108 12 6
IL-6 IL 6 Signalling mtsNFVS 55 95 28672 4096
EMT selvaggio emt PyBoolNet 56 159 1452 0
T-LGL TLGLSurvival mtsNFVS 58 193 172 146
CACC Colitis associated . . . mtsNFVS 66 144 2 8
AD A model mtsNFVS 74 198 0 2
AGS id-148-AGS-CELL-FATE-. . . biodivine 83 193 1 0
CC cell cycle 2019 mtsNFVS 87 467 8 0
SP id-192-SEGMENT-POLA. . . biodivine 102 432 65 0
SIPC SIGNALING-IN-PROST. . . mtsNFVS 116 428 2460 300
DSP id-210-DRUG-SYNERGY-. . . biodivine 144 367 0 1
C3.0 CASCADE3 mtsNFVS 176 449 0 1
EP id-211-EPITHELIAL-DER. . . biodivine 183 602 0 1

Table 1: Information on the sourcing of the bnet models considered, their size and the number of steady
states and cyclic attractors.

(1) max product=20 (2) max product=50 (3) max product=100

Model n. nodes n. edges time n. nodes n. edges time n. nodes n. edges time

MAPK 10 41 0.1 10 41 0.0 10 41 0.1
IL-6 17 28 0.0 17 28 0.0 17 28 0.0
EMT 19 94 0.1 17 130 0.1 17 130 0.1
T-LGL 21 91 0.0 18 111 0.0 18 111 0.0
CACC 14 81 0.0 11 56 0.0 11 56 0.0
AD 11 93 0.0 10 97 0.0 10 97 0.0
AGS 2 4 0.0 2 4 0.0 2 4 0.0
CC 38 415 0.2 35 490 0.3 29 669 23.9
SP 35 234 0.0 33 273 0.1 32 357 0.1
SIPC 41 390 0.3 32 465 0.6 28 522 8.7
DSP 14 108 0.0 10 71 0.0 10 71 0.0
C3.0 23 191 0.0 14 175 0.1 13 193 0.1
EP 33 322 0.1 25 365 0.1 21 316 0.1

Table 2: Reduction scenarios considered for the biological models listed in Table 1. max product= k

indicates that the elimination ends when the product of number of regulators and number of targets is
above k for all nodes. The elimination is also set to stop when the number of nodes reaches 10.

without reduction. We consider the seven models examined in [20] as available in the tool repository, as
well as additional models extracted from the PyBoolNet repository [4] and the biodivine-boolean-models
repository (https://github.com/sybila/biodivine-boolean-models). Information on the source of
each model, as well as the size of the networks is given in Table 1. We refer the reader to the respective
sources for references detailing each model, which explain if and how the models have been modified from
their original sources.

As we mentioned in the previous section, different levels of reduction can have different impacts on
running times of both the elimination procedure and the remainder of the attractor identification process.
Here we report running times obtained in three scenarios, where we set the parameter max product

described in the previous section (maximum value accepted for the minimum product of in- and out-
regulations over all nodes) to three levels, 20 in scenario (1), 50 in scenario (2) and 100 in scenario
(3). In all three cases, we set the minimum size of the reduced network to 10. In some cases these
parameters lead to network with fewer than 10 nodes, because constants variables might be generated

8

https://github.com/sybila/biodivine-boolean-models

AEON running times mtsNFVS running times

Model No red. (1) (2) (3) No red. (1) (2) (3)

MAPK 5.7 0.3 0.3 0.3 28.9 ±5.7 (3 DNF) 0.7 0.7 0.7
IL-6 774.6 6.0 6.0 6.0 14.8 ±1.8 7.4 7.4 7.4
EMT 25.6 0.8 0.7 0.7 DNF 1.3 1.4 1.4
T-LGL 17.5 0.9 0.9 1.1 2.2 1.8 1.9 2.7
CACC 9.3 0.3 0.3 0.3 0.5 0.8 0.7 0.7
AD 361.9 0.3 0.4 0.4 0.7 1.0 0.8 0.8
AGS 1.7 0.3 0.3 0.3 0.6 0.7 0.7 0.7
CC DNF 27.0 11.1 26.9 8.2 ±3.5 2.2 6.0 39.4
SP DNF 0.9 0.8 0.8 DNF 1.0 1.1 1.4
SIPC DNF 28.2 6.9 14.4 1664.7 ±506.3 47.8 ±5.6 53.7 ±7.4 138.8
DSP DNF 0.4 0.4 0.4 2.3 0.8 0.7 0.7
C3.0 DNF 0.5 0.4 0.4 2.1 1.0 1.0 0.9
EP DNF 1.5 0.6 0.5 62.7 ±64.2 2.5 2.4 1.9

Table 3: Running times for AEON [1] and mtsNFVS [20] without reduction and for the three reduction
scenarios described in Table 2. The running times in the three reduction scenarios include the time for
network reduction. Running times for mtsNFVS are averaged over five iterations, and show the standard
deviation if this is higher than 1s. “DNF” indicates that the processing did not complete within one
hour.

by the elimination process, and these are always eliminated. In Table 2 we show the number of nodes
and signed regulations of the reduced network obtained in each of the three scenarios, as well as the time
required by the reduction process. The time for reduction is below one second except for two networks,
CC and SIPC, where it goes up to 24 and 9 seconds.

Table 3 shows the running times for the two methods and the different scenarios (no reduction,
reduction scenario (1), (2) and (3)). The algorithm of mtsNFVS relies on some random choices, which
cause its running times to vary, sometimes significantly. We report the minimum and maximum running
times obtained on five iterations. We set a timeout of one hour, and “DNF” indicates that the processing
did not complete within this time.

It is clear from the results that approaching the attractor identification problem by first reducing the
network can speed up the processing significantly. We can also observe that a more aggressive reduction
does not necessarily translate to faster attractor identification times. This can be observed for both
attractor identification methods for the networks CC and SIPC. Looking at the numbers for these two
networks, we can also see that the reduction levels giving the shortest processing times are not the same
for AEON and mtsNFVS. In particular, mtsNFVS seems to work better with more conservative reduction
levels, and in one case (network CC, scenario (3)) the time required for the reduction process was higher
than the running time for mtsNFVS without reduction.

Importantly, only for one of the networks (TLGL) nonminimal candidates were identified, and no
network presented non-univocal candidates, meaning that reduction had overall a limited impact on the
general attractor configuration. Looking at what happens on randomly-generated networks might help
to clarify whether these behaviours could be specific of biological models or more general.

3.2.2 Random benchmarks

As in [20], we generate random networks by invoking generateRandomNKNetwork from the R package
BoolNet ([7]), fixing K = 2 for the number of regulators for each variable. We consider networks with
n = 100k nodes, with k = 1, . . . , 5, and create 10 networks for each size.

We tested several stopping conditions for the reduction process, and did not identify a general rule
that would give optimal times in all cases. To give an idea of the range of possible results, we report
running times for three reduction scenarios, where we set the parameter max product to n

2 , n and 2n,

9

(1) max product=n/2 (2) max product=n (3) max product=2n

Model

size

average

n. nodes

average

n. edges

average

time

average

n. nodes

average

n. edges

average

time

average

n. nodes

average

n. edges

average

time

100 14.0 219.9 0.1 12.3 213.0 0.5 11.9 199.5 0.6
200 24.0 621.9 0.5 21.2 618.0 1.9 20.7 596.3 5.8
300 37.6 1418.5 2.1 34.4 1527.5 7.8 30.0 1240.0 19.7
400 49.4 2266.0 2.6 42.5 2471.0 23.1 41.1 2498.3 55.3
500 61.5 3489.8 18.4 55.3 3985.7 18.8 55.5 4683.5 286.5

Table 4: Statistics for three reduction scenarios on 10 random networks (generated with BoolNet [7],
setting K = 2). max product= k indicates that the elimination ends when the product of number of
regulators and number of targets is above k for all nodes. The elimination is also set to stop when
one-tenth of the number of nodes of the original network is reached.

while stop at is set to n
10 . The details of the three scenarios are shown in Table 4. In Table 5, we show

the average running times for networks that were processed within the timeout of one hour, and the
number of networks that were not processed in time.

We observe again that, by adopting the reduction approach, the number of networks that can be
successfully analysed within the timeout given increases significantly. AEON without reduction could
process 4 out of the 10 networks of size 100, and no network of larger size. With reduction and AEON, all
networks of size 200 and 8 out of the 10 networks of size 300 could be processed, as well as one network
of size 400. The running times are just a few seconds for networks of size 100, and vary significantly for
larger networks.

The tool mtsNFVS without reduction could process all networks of size 100 and some networks of
size 200 and 300. With reduction, networks of up to size 500 could be handled. However, as we pointed
out in Section 3.1, the results generated by mtsNFVS might require further validation, as several failures
were identified in test networks.

We can nevertheless, by observing the results obtained with AEON, note that the number of candidate
states that need processing via reachability analysis remains very limited. Only five nonminimal candidate
states were identified for the networks that were processed with reduction and AEON, and no nonunivocal
candidate states. This suggests that nonminimal and nonunivocal attractors might be rare phenomena,
even for random networks.

Reduction allowed the size of networks to be drastically reduced, but the results shown in Table 4
illustrate how different number of reduction steps might affect networks in different ways. Some networks
could only be processed in time in scenario (3), with the highest number of eliminated variables; for
others, processing times were lower when a smaller number of variables was removed.

4 Discussion

We investigated how reduction can make the process of attractor identification faster. We observed that
reduction generally makes the process easier, but the impact can depend on the adopted attractor detec-
tion approach. Elimination of variables, while reducing the size of the network, increases the complexity
of the influence graph and update functions. This, on its turn, has a different impact on the two tools
we tested, AEON [1] and mtsNFVS [20], which implement very different approaches to identification of
attractors. Deeper investigations targeted on the specific tool might give some insights on why certain
levels of reduction work better than others. At the same time, we did limited analysis on the impact
of the order of elimination; we cannot exclude that specific orders of elimination might be devised to
better suit a specific method (for instance, for mtsNFVS, one might want to investigate orders that do
not increase the size of minimal feedback vertex sets).

Although candidate states that require reachability analysis are only rarely encountered, this step
might benefit from additional developments. One improvement would come from the screening of nonuni-
vocal candidate states, as the technique of mtsNFVS currently can fail to detect the existence of multiple

10

AEON running times

Model

size
No red. (1) (2) (3)

100 1104.6 ±676.0 (6) 2.3 ±1.3 3.0 ±1.5 3.2 ±1.5

200 (10) 83.7 ±205.7 48.9 ±113.7 146.1 ±402.4

300 (10) 1331.3 ±1394.7 (5) 696.0 ±684.1 (3) 888.9 ±1185.0 (2)
400 (10) (10) 2994.6 (9) 3033.2 (9)
500 (10) (10) (10) (10)

mtsNFVS running times

Model

size
No red. (1) (2) (3)

100 3.3 6.9 ±2.0 7.6 ±2.1 7.7 ±2.0

200 106.8 ±476.8 (11) 378.4 ±592.9 (5) 314.5 ±629.4 (7) 379.8 ±654.0 (5)
300 71.7 ±90.5 (25) 1440.8 (49) 2298.6 ±653.3 (44) 3305.8 ±432.1 (46)
400 (50) 2059.3 ±644.0 (26) 2639.5 ±718.3 (43) 2239.0 ±482.2 (41)
500 (50) 1672.3 ±562.8 (44) (50) 1276.6 ±418.3 (46)

Table 5: Average running times for AEON [1] and mtsNFVS [20], on random networks without reduction
and in the three reduction scenarios of Table 4. In parentheses is the number of processes that did not
terminate within one hour. Since running times for mtsNFVS have a high variability, we run each test
five times. The mean and standard deviation shown are over all successful tests for the given size.

attractors contained in the same minimal trap space. In addition, other techniques could be incorporated
for the exclusion of existence of nonmaximal attractors. For instance, at the moment only minimal trap
spaces are used. Larger trap spaces (the maximal trap spaces that do not contain the candidate state)
could provide bigger targets for reachability analysis, while still being easily identifiable with a small
modification to the approach of trappist [19].

Finally, attractor detection tools are capable of other tasks, for instance, AEON can perform detection
of bifurcations and source-target control. There is the potential that reduction could be used sensibly to
speed up these activities too. Each task needs to be studied individually and carefully for the implications
of variable elimination.

Acknowledgements

ET was supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strat-
egy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID 390685689). LP
was supported by the French Agence Nationale pour la Recherche (ANR) in the scope of the project
“BNeDiction” (grant number ANR-20-CE45-0001). Experiments presented in this paper were carried
out using the PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB), Université
de Bordeaux, Bordeaux INP and Conseil Régional d’Aquitaine (see https://www.plafrim.fr).

References

[1] Nikola Beneš, Luboš Brim, Ondřej Huvar, Samuel Pastva, David Šafránek, and Eva Šmijáková.
AEON.py: Python library for attractor analysis in asynchronous Boolean networks. Bioinformatics,
38(21):4978–4980, 2022.

[2] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Computing bottom SCCs sym-
bolically using transition guided reduction. In Computer Aided Verification: 33rd International
Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I 33, pages 505–528.
Springer, 2021.

11

[3] Hannes Klarner and Heike Siebert. Approximating attractors of Boolean networks by iterative CTL
model checking. Frontiers in bioengineering and biotechnology, 3:130, 2015.

[4] Hannes Klarner, Adam Streck, and Heike Siebert. PyBoolNet: a python package for the generation,
analysis and visualization of boolean networks. Bioinformatics, 33(5):770–772, 2017.

[5] Arnau Montagud, Jonas Béal, Luis Tobalina, Pauline Traynard, Vigneshwari Subramanian, Bence
Szalai, Róbert Alföldi, László Puskás, Alfonso Valencia, Emmanuel Barillot, Julio Saez-Rodriguez,
and Laurence Calzone. Patient-specific Boolean models of signalling networks guide personalised
treatments. eLife, 11, 2022.

[6] Kyungduk Moon, Kangbok Lee, and Löıc Paulevé. Computational Complexity of Minimal Trap
Spaces in Boolean Networks. arXiv preprint arXiv:2212.12756, 2022.

[7] Christoph Müssel, Martin Hopfensitz, and Hans A Kestler. BoolNet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics, 26(10):1378–1380, 2010.

[8] Aurélien Naldi, Céline Hernandez, Nicolas Levy, Gautier Stoll, Pedro T Monteiro, Claudine
Chaouiya, Tomáš Helikar, Andrei Zinovyev, Laurence Calzone, Sarah Cohen-Boulakia, et al. The
CoLoMoTo interactive notebook: accessible and reproducible computational analyses for qualitative
biological networks. Frontiers in physiology, 9:680, 2018.

[9] Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. A reduction of logical
regulatory graphs preserving essential dynamical properties. In International Conference on Com-
putational Methods in Systems Biology, pages 266–280. Springer, 2009.

[10] Aurélien Naldi, Elisabeth Remy, Denis Thieffry, and Claudine Chaouiya. Dynamically consistent
reduction of logical regulatory graphs. Theoretical Computer Science, 412(21):2207–2218, 2011.

[11] Aurélien Naldi, Adrien Richard, and Elisa Tonello. Linear cuts in Boolean networks. arXiv preprint
arXiv:2203.01620, 2022.

[12] Löıc Paulevé. Pint: A Static Analyzer for Transient Dynamics of Qualitative Networks with IPython
Interface. In CMSB 2017 - 15th conference on Computational Methods for Systems Biology, volume
10545 of Lecture Notes in Computer Science, pages 370 – 316. Springer, 2017.

[13] Löıc Paulevé and Sylvain Sené. Boolean networks and their dynamics: the impact of updates. In
Systems Biology Modelling and Analysis: Formal Bioinformatics Methods and Tools. Wiley, 2022.

[14] Adrien Richard and Elisa Tonello. Attractor separation and signed cycles in asynchronous Boolean
networks. Theoretical Computer Science, page 113706, 2023.

[15] Jordan C Rozum, Jorge Gómez Tejeda Zañudo, Xiao Gan, Dávid Deritei, and Réka Albert. Parity
and time reversal elucidate both decision-making in empirical models and attractor scaling in critical
Boolean networks. Science Advances, 7(29), 2021.

[16] Julian D. Schwab, Nensi Ikonomi, Silke D. Werle, Felix M. Weidner, Hartmut Geiger, and Hans A.
Kestler. Reconstructing boolean network ensembles from single-cell data for unraveling dynamics in
the aging of human hematopoietic stem cells. Computational and Structural Biotechnology Journal,
19:5321–5332, 2021.

[17] Robert Schwieger and Elisa Tonello. Reduction for asynchronous Boolean networks: elimination of
negatively autoregulated components. arXiv preprint arXiv:2302.03108, 2023.

[18] Gautier Stoll, Barthélémy Caron, Eric Viara, Aurélien Dugourd, Andrei Zinovyev, Aurélien Naldi,
Guido Kroemer, Emmanuel Barillot, and Laurence Calzone. MaBoSS 2.0: an environment for
stochastic boolean modeling. Bioinformatics, 33(14):2226–2228, 2017.

12

[19] Van-Giang Trinh, Belaid Benhamou, Kunihiko Hiraishi, and Sylvain Soliman. Minimal trap spaces
of Logical models are maximal siphons of their Petri net encoding. In Computational Methods
in Systems Biology: 20th International Conference, CMSB 2022, Bucharest, Romania, September
14–16, 2022, Proceedings, pages 158–176. Springer, 2022.

[20] Van-Giang Trinh, Kunihiko Hiraishi, and Belaid Benhamou. Computing attractors of large-scale
asynchronous boolean networks using minimal trap spaces. In Proceedings of the 13th ACM Inter-
national Conference on Bioinformatics, Computational Biology and Health Informatics, pages 1–10,
2022.

[21] Trinh Van Giang and Kunihiko Hiraishi. An Improved Method for Finding Attractors of Large-
Scale Asynchronous Boolean Networks. In 2021 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology (CIBCB), pages 1–9. IEEE, 2021.

[22] Alan Veliz-Cuba. Reduction of Boolean network models. Journal of Theoretical Biology, 289:167–172,
2011.

[23] Jorge Gómez Tejeda Zañudo, Pingping Mao, Clara Alcon, Kailey Kowalski, Gabriela N. Johnson,
Guotai Xu, Jose Baselga, Maurizio Scaltriti, Anthony Letai, Joan Montero, Réka Albert, and Nikhil
Wagle. Cell line-specific network models of ER+ breast cancer identify potential PI3ka inhibitor
resistance mechanisms and drug combinations. Cancer Research, 81(17):4603–4617, 2021.

13

	1 Introduction
	2 Background
	2.1 Boolean networks
	2.2 Reduction

	3 Method
	3.1 Implementation
	3.1.1 Software
	3.1.2 Elimination order and other considerations

	3.2 Results
	3.2.1 Biological models
	3.2.2 Random benchmarks

	4 Discussion

