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Abstract. Gene regulatory networks, as a powerful abstraction for
describing complex biological interactions between genes through their
expression products within a cell, are often regarded as virtually determin-
istic dynamical systems. However, this view is now being challenged by
the fundamentally stochastic, ‘bursty’ nature of gene expression revealed
at the single cell level. We present a Python package called Harissa which
is dedicated to simulation and inference of such networks, based upon
an underlying stochastic dynamical model driven by the transcriptional
bursting phenomenon. As part of this tool, network inference can be
interpreted as a calibration procedure for a mechanistic model: once cali-
brated, the model is able to capture the typical variability of single-cell
data without requiring ad hoc external noise, unlike ordinary or even
stochastic differential equations frequently used in this context. Therefore,
Harissa can be used both as an inference tool, to reconstruct biologically
relevant networks from time-course scRNA-seq data, and as a simulation
tool, to generate quantitative gene expression profiles in a non-trivial way
through gene interactions.
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1 Introduction
Inferring graphs of interactions between genes has become a standard task for
high-dimensional statistics, while mechanistic models describing gene expression
at the molecular level have come into their own with the advent of single-cell data.
Linking these two approaches seems crucial today, but the dialogue is far from
obvious: statistical models often suffer from a lack of biological interpretability,
and mechanistic models are known to be difficult to calibrate from real data.

Here, we present a Python package for both network simulation and infer-
ence from single-cell gene expression data (typically scRNA-seq), called Harissa
(‘HARtree approximation for Inference along with a Stochastic Simulation Algo-
rithm’). It was implemented in the context of a mechanistic approach to gene
regulatory network inference from single-cell data [5] and is based upon an underly-
ing stochastic dynamical model driven by the transcriptional bursting phenomenon.
In this tool paper, we introduce briefly the main concepts behind the package,
and detail its usage through some application examples.
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2 Theory
Consider a network of n genes. Our starting point is the well-known ‘two-state
model’ of gene expression [11], which corresponds to the following set of elementary
chemical reactions [5] for each gene i ∈ {1, . . . , n}:

Gi

kon,i−−−⇀↽−−−
koff,i

Gi
∗, Gi

∗ s0,i−−→ Gi
∗ + Xi, Xi

d0,i−−→ ∅,

Xi
s1,i−−→ Xi + Zi, Zi

d1,i−−→ ∅,

(1)

where Gi, Gi
∗, Xi and Zi respectively denote ‘inactive promoter’, ‘active promoter’,

mRNA and protein copy numbers for gene i. These reactions describe the main
two stages of gene expression, namely transcription (rate s0,i) and translation
(rate s1,i), along with degradation of mRNA (rate d0,i) and protein (rate d1,i)
molecules. Note that [Gi] + [Gi

∗] = 1 is a conserved quantity: the particularity
of the two-state model is that transcription of gene i can only occur when its
promoter is active, corresponding to [Gi

∗] = 1.
More specifically, experimental data consistently suggest a particular regime

for this model [13]: koff,i ≫ kon,i and s0,i ≫ d0,i with the ratio kon,is0,i/(koff,id0,i)
remaining fixed, corresponding to short active periods during which many mRNA
molecules are produced. In this regime, mRNA is transcribed by ‘bursts’ of tens
to hundreds of molecules. Moreover, mRNA and protein copy numbers are not
conserved quantities in the model and can be reasonably described in a continuous
way using standard ‘mass action’ kinetics. This leads to a hybrid dynamical model,
consisting of ordinary differential equations subject to random jumps (Fig. 1)
where the related quantities are denoted by X(t) = (X1(t), . . . , Xn(t)) ∈ Rn

+ and
Z(t) = (Z1(t), . . . , Zn(t)) ∈ Rn

+.
So far the genes are not interacting: the main point of our approach is to

consider the burst frequency kon,i as a function of proteins levels Z1, . . . , Zn [5].
In the current version of Harissa, this function takes the following form:

kon,j(z) =
k0,j + k1,j exp(βj +

∑n
i=1 θijzi)

1 + exp(βj +
∑n

i=1 θijzi)
∀j ∈ {1, . . . , n} (2)

with k0,j ≪ k1,j , so that (θij)1≤i,j≤n can be easily interpreted as the network
interaction matrix while βj encodes basal activity of gene j (see also Table 1).
The rate koff,i (inverse of mean burst duration) is kept constant.

Mathematically speaking, the complete set of variables (X(t), Z(t))t≥0 ∈
Rn

+ × Rn
+ forms a piecewise-deterministic Markov process (PDMP) that is fully

characterized by its (continuous) master equation:

∂

∂t
p(x, z, t) =

n∑

i=1

[
d0,i

∂

∂xi
{xip(x, z, t)} + d1,i

∂

∂zi
{(zi − xi)p(x, z, t)}

+ kon,i(z)
(∫ xi

0
p(x − hei, z, t)bie

−bihdh − p(x, z, t)
)]

,

(3)
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



Xi
kon,i(Z)−−−−→ Xi + E(bi)

Ẋi = −d0,iXi

Żi = d1,i(Xi − Zi)





Zi
kon,i(Z)−−−−→ Zi + E(ci)

Żi = −d1,iZi
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Fig. 1. The stochastic dynamical model underlying Harissa. (A) Complete model with
mRNA levels X(t) and protein levels Z(t), used to perform simulations. Transcription of
gene i occurs in bursts at random times with rate kon,i(Z(t)) and the burst size follows
an exponential distribution E(bi) where bi corresponds to a scaling factor. (B) Reduced
model involving only protein levels Z(t). Without loss of generality, the parameter ci

is set to an arbitrary value as protein levels are not measured. This model serves as a
basis for deriving a pseudo-likelihood whose maximization is at the core of inference.

where p(x, z, t) is the probability distribution of (X(t), Z(t)). The master equation
describes the time evolution of this probability and is related to the trajectory
dynamics (see Fig. 1A). Notably, each Zi is rescaled so that parameters s1,i do
not appear anymore, and s0,i and koff,i aggregate in the bursty regime into the
‘burst size’ parameter 1/bi = s0,i/koff,i (Table 1).

This ‘complete’ model is simulated in Harissa using an efficient acceptance-
rejection method, similarly to the explicit construction given in [1]. A great
advantage of this method is that it is guaranteed to be exact without requiring
any numerical integration, contrary to the basic algorithm [6].

We also consider a ‘protein-only’ model (Fig. 1B), which can be seen as a
first-order approximation (Appendix A.1): this reduced model turns out to provide
a tractable inference procedure based on analytical results (Appendix A.2).

Table 1. Parameters of the dynamical model underlying Harissa. Here we consider an
instance model = NetworkModel(n) where n is the number of genes in the network.

Degradation kinetics

Bursting kinetics

Network parameters

Package variable Notation Interpretation (gene i)
model.d[0][i] d0,i mRNA degradation rate
model.d[1][i] d1,i protein degradation rate
model.a[0][i] k0,i minimal burst frequency
model.a[1][i] k1,i maximal burst frequency
model.a[2][i] bi inverse of mean burst size
model.basal[i] βi basal activity
model.inter[i,j] θij interaction i → j
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3 Usage
The Harissa package has two main functionalities: network inference interpreted as
calibration of the stochastic dynamical model defined by (3), and data simulation
from the same model (e.g., scRNA-seq counts [10] but also RT-qPCR levels [7, 12]).
Besides, the package also allows for basic network visualization (directed graphs
with positive or negative edge weights) as well as data binarization (using gene-
specific thresholds derived from the data-calibrated dynamical model).

The first step is to create an instance of the model:

model = NetworkModel(n)

where n is the number of genes. After setting the parameter values (see Table 1),
the model can be simulated using model.simulate(time), where time is either
a single time or a list of time points.

Importantly, simulate() does not depend on time discretization and always
returns exact stochastic simulations: the resulting continuous-time trajectories
are simply extracted at user-specified time points. It is also possible to consider
a stimulus, represented by an additional protein Z0 that receives no feedback
and verifies Z0(t) = 0 for t ≤ 0 and Z0(t) = 1 for t > 0. In order to reach a
pre-stimulus steady state before perturbation, an optional burnin parameter sets
the time during which the model is simulated with Z0(t) = 0.

Example: Repressilator Network. As an example, we consider a ‘repressilator’
network made of 3 genes forming a directed cycle of negative interactions (Fig. 2).

1

2

3

Fig. 2. The repressilator
network used in Fig. 3.
This plot was made with
plot_network from the
harissa.utils module.

Some critical parameters of the dynamical model are
degradation rates d0,i and d1,i, which characterize the
‘responsiveness’ of mRNA and protein levels. Here we
set d0,i/d1,i = 10, meaning that proteins are ten times
more stable than mRNAs. This is biologically realistic,
but note that this ratio is known to span a very wide
range [9] so there is no single choice.

An example of simulated single-cell trajectory for
this network is shown in Fig. 3. It is worth noticing
that despite the strong level of stochasticity, a robust
periodic pattern is already emerging.

More stable proteins—with respect to mRNA—will
lead to less ‘intrinsic noise’ in the system. We increase
mRNA degradation rates and burst frequencies instead,
which is equivalent to a zoom-out regarding the time
scale. Since mRNA and protein scales are normalized,
the overall levels do not depend on degradation rates
(but the dynamics does).

The stochastic model converges as d0/d1 → ∞ to a slow-fast limit [2] which
turns out to be a nonlinear ODE system involving only proteins (bottom plot
of Fig. 3). It appears here that due to the deterministic dynamics, the initial
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Fig. 3. Simulation of a repressilator network using Harissa. The first two plots show an
example of single-cell trajectory of mRNA levels X(t) and protein levels Z(t) from the
full stochastic model (3). The bottom plot shows a trajectory of Z(t) from the related
deterministic model corresponding to the slow-fast limit (very stable proteins compared
to mRNA, i.e. d0/d1 → ∞). Importantly, the periodic pattern is emerging and robust
well before the limit is reached (here d0/d1 = 10). The burst parameters (Table 1) are
k0,i = 0, k1,i = 2 and bi = 0.02 for all i ∈ {1, 2, 3}, which are current default values. The
network parameters are given in Appendix A.3.

protein levels need to be perturbed so as not to stay in a trivial manifold. This
limit model can be simulated with model.simulate_ode(time) and is generally
useful to gain insight into the system attractors (note however that it is a rough
approximation of the stochastic model, see remark 1).

In this slow-fast limit, which is part of the rationale behind the reduced
model (Appendix A.1), mRNA levels become independent conditionally on protein
levels such that Xi(t) ∼ Gamma(kon,i(Z(t))/d0,i, bi) for i = 1, 2, 3. This quasi-
steady-state (QSS) behavior can be understood intuitively from the top plot of
Fig. 3. Regarding mRNA levels, simulate_ode only returns the mean of the QSS
distribution conditionally on protein levels (the true limit model would consist in
sampling from this distribution independently for every t > 0).

Network Inference. Here the main function is model.fit(), which takes as
input a time-course single-cell dataset (Fig. 4). Inference can be performed by
creating a new instance model = NetworkModel() without any size parameter,
then loading a dataset x and using model.fit(x). This will update all parameters
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Fig. 4. Typical structure of time-course scRNA-seq data, as required by the inference
module (here each row is a gene and each column is a cell). Each group of cells collected
at the same experimental time tk forms a snapshot of the biological heterogeneity at
time tk. Due to the destructive nature of the measurement process, snapshots are made
of different cells. This data is therefore different from so-called ‘pseudotime’ trajectories,
which attempt to reorder cells according to some smoothness hypotheses.

of the model (Table 1) except d0,i and d1,i, which need to be provided by the user
from external data—or left to their default values, see remark 1—as they cannot
be inferred without seriously compromising identifiability of other parameters.
As an important feature, the updated model instance is ready for simulation, to
assess reproducibility of the original data or to predict the outcome of network
modifications. From a network inference viewpoint, the only important parameter
is model.inter which is a non-symmetric signed weight matrix.

Remark 1. Degradation rates d0,i and d1,i are in fact not required for the inference
part, but they are important for the simulation part. They are currently set by
default to d0,i = ln(2)/9 ≈ 0.077 h−1 and d1,i = ln(2)/46 ≈ 0.015 h−1 as median
values from thousands of genes [9]. This leads in particular to d0,i/d1,i ≈ 5.11.

4 Conclusions
While the development of Harissa started a few years ago, the tool has recently
become more mature and easy to use. Following early versions [5, 3], an alternative
method for the inference part called Cardamom was developed in [14], which in
turn influenced the current version of Harissa. The two inference methods remain
complementary at this stage and may be merged into the same package in future
development. They were evaluated in a recent benchmark [16], giving encouraging
results and showing, most importantly, that the stochastic dynamical model (3)
can indeed reproduce real time-course scRNA-seq data through gene interactions.
While the simulation part is quite well optimized and can be considered as stable,
the inference part is much more challenging. Future directions include a better
use of the dynamical information contained in time-course transcriptional profiles,
which has great potential for performance improvement.

Code Availability. The code of the package, a tutorial and some basic usage
scripts are available at https://github.com/ulysseherbach/harissa. In addition,
Harissa is indexed in the Python Package Index and can be installed via pip.
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A Appendices
A.1 Reduced Model
The inference procedure is based on analytical results which are not available for
the two-stage ‘mRNA-protein’ model (3). On the other hand, such results exist
for a one-stage ‘protein-only’ model that is a valid approximation of the former
when proteins are more stable than mRNA (i.e. d0,i/d1,i ≫ 1). The resulting
process (Z(t))t≥0 ∈ Rn

+ is also a PDMP, whose master equation can be interpreted
in terms of simplified trajectories (Fig. 1B):

∂

∂t
p(z, t) =

n∑

i=1

[
d1,i

∂

∂zi
{zip(z, t)}

+
∫ zi

0
kon,i(z − hei)p(z − hei, t)cie

−cihdh − kon,i(z)p(z, t)
]

.

(4)

Given Z(t), mRNA levels X(t) are obtained by sampling independently for
every i ∈ {1, . . . , n} and t > 0 from Xi(t) ∼ Gamma(kon,i(Z(t))/d0,i, bi), which is
the quasi-steady-state (QSS) distribution of the complete model [5, 6].

A.2 Inference Algorithm
Now consider mRNA counts measured in m cells, assumed independent, along a
time-course experiment following a stimulus. Each cell k = 1, . . . , m is associated
with an experimental time point tk. We introduce the following notation:

xk = (xki) ∈ {0, 1, 2, . . . }n : mRNA counts (cell k, gene i);
zk = (zki) ∈ (0, +∞)n : latent protein levels (cell k, gene i);
α = (αij(tk)) ∈ Rn×n : effective interaction i → j at time tk.

A stimulus is represented as gene i = 0 and we therefore add parameters α0j(tk)
for j = 1, . . . , n and k = 1, . . . , m. We further set zk0 = 0 if tk ≤ 0 (before
stimulus) and zk0 = 1 if tk > 0 (after stimulus). Then, writing ai = k1,i/d0,i, the
underlying statistical model of Harissa is defined by

p(zk) =
n∏

i=1
zki

ciσki−1e−cizki
ci

ciσki

Γ(ciσki)
, (5)

p(xk|zk) =
n∏

i=1

1
xki!

Γ(aizki + xki)
Γ(aizki)

bi
aizki

(bi + 1)aizki+xki
, (6)

with
σki =

[
1 + exp(−{βi + α0i(tk)zk0 +

∑n
j=1 αji(tk)zkj})

]−1
. (7)

Details of this derivation can be found in [5, 14, 4, 8]. Roughly, (5) comes from a
‘Hartree’ approximation of (4), while (6) corresponds to a Poisson distribution
with random parameter sampled from the QSS distribution of X(t) given Z(t).
Note that p(zk) is in general only a pseudo-likelihood as σki depends on zk.
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Since the preliminary version of Harissa [5], the global inference procedure has
been heavily improved using important identifiability results from [14, 15]. The
final algorithm consists of three steps:

1. Model calibration: estimate ai and bi for each gene individually from (6);

2. Bursting mode inference: estimate the frequency mode (k0,i or k1,i) for each
gene in each cell (can be seen as a binarization step with specific thresholds);

3. Network inference: consider zk as observed from step 2 and maximize (5)
with respect to α after adding an appropriate penalization term [14]. Each
parameter θij is then set to αij(tk) with tk that maximizes |αij(tk)|.

A.3 Repressilator Network
Considering an instance model = NetworkModel(3), the repressilator network
simulated in Fig. 3 is defined as follows:

model.d[0] = 1 # mRNA degradation rates
model.d[1] = 0.1 # Protein degradation rates
model.basal[1] = 5 # Basal activity of gene 1
model.basal[2] = 5 # Basal activity of gene 2
model.basal[3] = 5 # Basal activity of gene 3
model.inter[1,2] = -10 # Interaction 1 -> 2
model.inter[2,3] = -10 # Interaction 2 -> 3
model.inter[3,1] = -10 # Interaction 3 -> 1

Acknowledgements. The author is very grateful to Elias Ventre and Olivier
Gandrillon for fruitful discussions which led to improve the Harissa package.

References
[1] M. Benaïm, S. Le Borgne, F. Malrieu, and P.-A. Zitt. Qualitative properties

of certain piecewise deterministic Markov processes. Annales de l’Institut Henri
Poincaré - Probabilités et Statistiques, 51(3):1040–1075, 2015. https://doi.org/10.
1214/14-AIHP619.

[2] A. Faggionato, D. Gabrielli, and M. Crivellari. Averaging and large deviation
principles for fully-coupled piecewise deterministic Markov processes and applications
to molecular motors. Markov Processes and Related Fields, 16(3):497–548, 2010.
https://doi.org/10.48550/arXiv.0808.1910.

[3] U. Herbach. Modélisation stochastique de l’expression des gènes et inférence de
réseaux de régulation. PhD thesis, Université de Lyon, 2018.

[4] U. Herbach. Stochastic gene expression with a multistate promoter: breaking down
exact distributions. SIAM Journal on Applied Mathematics, 79(3):1007–1029, 2019.
https://doi.org/10.1137/18M1181006.

8

https://doi.org/10.1214/14-AIHP619
https://doi.org/10.1214/14-AIHP619
https://doi.org/10.48550/arXiv.0808.1910
https://doi.org/10.1137/18M1181006


[5] U. Herbach, A. Bonnaffoux, T. Espinasse, and O. Gandrillon. Inferring gene
regulatory networks from single-cell data: a mechanistic approach. BMC Systems
Biology, 11(1):105, 2017. https://doi.org/10.1186/s12918-017-0487-0.

[6] F. Malrieu. Some simple but challenging Markov processes. Annales de la Faculté
de Sciences de Toulouse, 24(4):857–883, 2015. https://doi.org/10.5802/afst.1468.

[7] A. Richard, L. Boullu, U. Herbach, A. Bonnafoux, V. Morin, E. Vallin, A. Guillemin,
N. Papili Gao, R. Gunawan, J. Cosette, O. Arnaud, J.-J. Kupiec, T. Espinasse,
S. Gonin-Giraud, and O. Gandrillon. Single-cell-based analysis highlights a surge
in cell-to-cell molecular variability preceding irreversible commitment in a differ-
entiation process. PLOS Biology, 14(12):e1002585, 2016. https://doi.org/10.1371/
journal.pbio.1002585.

[8] A. Sarkar and M. Stephens. Separating measurement and expression models clarifies
confusion in single-cell RNA sequencing analysis. Nature Genetics, 53(6):770–777,
2021. https://doi.org/10.1038/s41588-021-00873-4.

[9] B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt, J. Wolf, W. Chen,
and M. Selbach. Global quantification of mammalian gene expression control. Nature,
473(7347):337–342, 2011. https://doi.org/10.1038/nature10098.

[10] S. Semrau, J. E. Goldmann, M. Soumillon, T. S. Mikkelsen, R. Jaenisch, and
A. van Oudenaarden. Dynamics of lineage commitment revealed by single-cell
transcriptomics of differentiating embryonic stem cells. Nature Communications, 8
(1):1096, 2017. https://doi.org/10.1038/s41467-017-01076-4.

[11] V. Shahrezaei and P. S. Swain. The stochastic nature of biochemical networks.
Current Opinion in Biotechnology, 19(4):369–374, 2008. https://doi.org/10.1016/j.
copbio.2008.06.011.

[12] P. S. Stumpf, R. C. G. Smith, M. Lenz, A. Schuppert, F.-J. Müller, A. Babtie, T. E.
Chan, M. P. H. Stumpf, C. P. Please, S. D. Howison, F. Arai, and B. D. MacArthur.
Stem cell differentiation as a non-Markov stochastic process. Cell Systems, 5(3):
268–282, 2017. https://doi.org/10.1016/j.cels.2017.08.009.

[13] E. Tunnacliffe and J. R. Chubb. What is a transcriptional burst? Trends in
Genetics, 36(4):288–297, 2020. https://doi.org/10.1016/j.tig.2020.01.003.

[14] E. Ventre. Reverse engineering of a mechanistic model of gene expression using
metastability and temporal dynamics. In Silico Biology, 14(3-4):89–113, 2021.
https://doi.org/10.3233/ISB-210226.

[15] E. Ventre, T. Espinasse, C.-E. Bréhier, V. Calvez, T. Lepoutre, and O. Gandrillon.
Reduction of a stochastic model of gene expression: Lagrangian dynamics gives
access to basins of attraction as cell types and metastabilty. Journal of Mathematical
Biology, 83(5):59, 2021. https://doi.org/10.1007/s00285-021-01684-1.

[16] E. Ventre, U. Herbach, T. Espinasse, G. Benoit, and O. Gandrillon. One model
fits all: Combining inference and simulation of gene regulatory networks. PLOS
Computational Biology, 19(3):e1010962, 2023. https://doi.org/10.1371/journal.pcbi.
1010962.

9

https://doi.org/10.1186/s12918-017-0487-0
https://doi.org/10.5802/afst.1468
https://doi.org/10.1371/journal.pbio.1002585
https://doi.org/10.1371/journal.pbio.1002585
https://doi.org/10.1038/s41588-021-00873-4
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/s41467-017-01076-4
https://doi.org/10.1016/j.copbio.2008.06.011
https://doi.org/10.1016/j.copbio.2008.06.011
https://doi.org/10.1016/j.cels.2017.08.009
https://doi.org/10.1016/j.tig.2020.01.003
https://doi.org/10.3233/ISB-210226
https://doi.org/10.1007/s00285-021-01684-1
https://doi.org/10.1371/journal.pcbi.1010962
https://doi.org/10.1371/journal.pcbi.1010962

	1 Introduction
	2 Theory
	3 Usage
	4 Conclusions
	Code Availability
	A Appendices
	A.1 Reduced Model
	A.2 Inference Algorithm
	A.3 Repressilator Network

	Acknowledgements
	References

