
Multiple-inheritance hazards in
dependently-typed algebraic hierarchies

Eric Wieser1[0000−0003−0412−4978]

Cambridge University Engineering Department, efw27@cam.ac.uk

Abstract. Abstract algebra provides a large hierarchy of properties that
a collection of objects can satisfy, such as forming an abelian group or
a semiring. These classifications can arranged into a broad and typically
acyclic directed graph. This graph perspective encodes naturally in the
typeclass system of theorem provers such as Lean, where nodes can be
represented as structures (or records) containing the requisite axioms.
This design inevitably needs some form of multiple inheritance; a ring is
both a semiring and an abelian group.
In the presence of dependently-typed typeclasses that themselves con-
sume typeclasses as type-parameters, such as a vector space typeclass
which assumes the presence of an existing additive structure, the imple-
mentation details of structure multiple inheritance matter. The type of
the outer typeclass is influenced by the path taken to resolve the type-
classes it consumes. Unless all possible paths are considered judgmentally
equal, this is a recipe for disaster.
This paper provides a concrete explanation of how these situations arise
(reduced from real examples in mathlib), compares implementation ap-
proaches for multiple inheritance by whether judgmental equality is pre-
served, and outlines solutions (notably: kernel support for η-reduction of
structures) to the problems discovered.

Keywords: Dependent types·Multiple inheritance·Typeclasses·For-
malization·mathlib

1 Introduction

It becomes clear very early in the development of mathematical libraries that
a generalization over algebraic properties is essential; as soon as we are able to
speak about N and Z, we will want to have available that a+ b = b+ a whether
a, b : N or a, b : Z, and it would be strongly preferable that we can refer to this
property by a single name.

The generalization we seek is of course well-studied as the field of abstract
algebra, and the commutativity property above can be phrased as “N and Z are
both semirings”, or using language more precise to the specific property we care
about “N and Z are both abelian monoids”. At least when considering only those
which operate on a single carrier type, algebraic structures can be connected into
a directed graph; all rings are semirings and abelian groups, so we can draw a



2 Eric Wieser

pair of edges from “ring” to “semiring” and “abelian group”. An illustration of
the depth and breadth of such a graph can be seen in [19, fig. 1], while a reduced
example that we will use in this paper can be seen in fig. 1.

Encoding this directed graph into the machinery of a particular theorem
prover can be done in multiple ways, which are outlined in [3, §1] and presented
with example code across a variety of languages in [6, fig. 1]. This paper focuses
on the typeclass approach used by mathlib [19] in the Lean 3 theorem prover [14];
though the observations generalize to other implementations in dependent type
theory built upon “structure” types.

In this approach, the graph is pruned to be acyclic, and then a typeclass is
created for each node carrying its operators (data fields) and the properties they
satisfy (proof fields). The edges correspond to functions converting from stronger
structures to weaker structures, each registered as a typeclass instance. This
encodes naturally in “record” or “structure” types with multiple inheritance,
where we can write down the desired edges declaratively in the form of a list
of base structures, and have the language generate the necessary “forgetful”
instances automatically. A simple example of this can be found in [3, §4].

Unfortunately, the devil is in the details; in Lean, Coq, Agda, and Isabelle,
support for multiple inheritance is not part of the underlying type theory, so
types that use multiple inheritance have to be translated by the elaborator into
inductive types that do not. There are multiple ways to perform such a transla-
tion, and the choice is not inconsequential.

In section 2 we outline two such approaches, and show how they can each be
used to construct a much-reduced version of mathlib’s abstract algebra library.
Section 3 introduces a more complex use of a typeclass from mathlib, and demon-
strates how in the absence of special kernel support for η-reduction on structure
types, its design is incompatible with “nested” approach to structures. Section 4
outlines some workarounds that permit the “nested” approach to be used even
in the absence of this support. Section 5 explains how the problem is not unique
to typeclass-based approaches.

The problems explored here are far from hypothetical; the migration of math-
lib from Lean 3 to Lean 4 [15] forces a switch from the approach in section 2.1
to that in section 2.2, which has presented a significant stumbling block [5].

2 Types of structure inheritance

Lean 3 supports two types of structure inheritance: the default “new style”,
which we will refer to as “nested”, and does not support multiple inheritance;
and the legacy “old style” (enabled with set_option old_structure_cmd true) which
we will refer to as “flat”, and does support multiple inheritance. Lean 4 (as a
language) does away with the “flat” mode, but extends the “nested” mode to
support multiple inheritance.

To compare these approaches, this section demonstrates how to build the
miniature algebraic hierarchy shown in fig. 1. If we permit ourselves to use the



Multiple-inheritance hazards in dependently-typed algebraic hierarchies 3

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

Fig. 1: A hierarchy of algebraic typeclasses, where arrows indicate a stronger
typeclass implying a weaker typeclass. Dotted arrows correspond to the “non-
preferred” typeclass paths which are relevant to section 2.2.

class add_monoid (α : Type) :=

(zero : α) (add : α → α → α)

class add_comm_monoid (α : Type) extends add_monoid α

class semiring (α : Type) extends add_comm_monoid α :=

(one : α) (mul : α → α → α)

class add_group (α : Type) extends add_monoid α :=

(neg : α → α)

class add_comm_group (α : Type) extends add_group α, add_comm_monoid α

class ring (α : Type) extends semiring α, add_comm_group α

Listing 1: The hierarchy in fig. 1 described using extends clauses.

builtin language support for multiple inheritance, we could write this as in list-
ing 1. As they are not going to be relevant to the discussion in this paper, the
proof fields such as one_mul : ∀ a : α, mul one a = a have all been omitted.

To avoid this paper being about a specific implementation of inheritance in
a specific version of Lean, we will avoid the extends keyword, instead emulating
it via different possible encodings of inheritance into regular structures. For
simplicity this paper is largely presented as about Lean, but the supplemental
repository referenced in section 7 demonstrates how the Lean 3 samples presented
here can be replicated in Coq1 and in Lean 42.

2.1 Flat structures

The “flat” approach to structure inheritance is to copy all of the fields from
the base classes into the derived class. If multiple base classes share a field
of the same name, then these fields are merged3. The forgetful instances are
then implemented by unpacking all the relevant fields of the derived class and
1 Albeit somewhat non-idiomatically.
2 At least, in old versions without pertinent fixes!
3 Unless they are of different types, which raises an error.



4 Eric Wieser

passing them to each base class constructor (which in Lean can be written as
{ ..derived }).

This can be seen for the toy example from listing 1 in listing 2a; ring ex-
tends both semiring and add_comm_group, so inherits the union of the four fields of
semiring (zero, add, one, mul) and the three fields of add_comm_group (zero, add, neg).
The ring.to_semiring and ring.to_add_comm_group instances generate constructor ap-
plications that reassemble the corresponding fields.

This approach is straightforward to implement in a theorem prover, and
is the one used (via set_option old_structure_cmd true) in the majority of mathlib’s
algebraic hierarchy in Lean 3. A downside to this approach is that it can produce
more work for unification (leading to poor performance) in long inheritance
chains [3, §10].

class add_monoid (α : Type) :=

(zero : α) (add : α → α → α)

class add_comm_monoid (α : Type) :=

(zero : α) (add : α → α → α)

instance add_comm_monoid.to_add_monoid

(α : Type) [i : add_comm_monoid α] : add_monoid α := { ..i }

class semiring (α : Type) :=

(zero : α) (add : α → α → α)

(one : α) (mul : α → α → α)

instance semiring.to_add_comm_monoid

(α : Type) [i : semiring α] : add_comm_monoid α := { ..i }

class add_group (α : Type) :=

(zero : α) (add : α → α → α)

(neg : α → α)

instance add_group.to_add_monoid

(α : Type) [i : add_group α] : add_monoid α := { ..i }

class add_comm_group (α : Type) :=

(zero : α) (add : α → α → α) (neg : α → α)

instance add_comm_group.to_add_group

(α : Type) [i : add_comm_group α] : add_group α := { ..i }

instance add_comm_group.to_add_comm_monoid

(α : Type) [i : add_comm_group α] : add_comm_monoid α := { ..i }

class ring (α : Type) :=

(zero one : α) (add mul : α → α → α) (neg : α → α)

instance ring.to_semiring

(α : Type) [i : ring α] : semiring α := { ..i }

instance ring.to_add_comm_group

(α : Type) [i : ring α] : add_comm_group α := { ..i }

(a) The flat approach (section 2.1), copy-
ing base fields to derived classes.

class add_monoid (α : Type) :=

(zero : α) (add : α → α → α)

class add_comm_monoid (α : Type) :=

(to_add_monoid : add_monoid α)

attribute [instance] add_comm_monoid.to_add_monoid

class semiring (α : Type) :=

(to_add_comm_monoid : add_comm_monoid α)

(one : α) (mul : α → α → α)

attribute [instance] semiring.to_add_comm_monoid

class add_group (α : Type) :=

(to_add_monoid : add_monoid α)

(neg : α → α)

attribute [instance] add_group.to_add_monoid

class add_comm_group (α : Type) :=

(to_add_group : add_group α)

attribute [instance] add_comm_group.to_add_group

@[priority 100] instance add_comm_group.to_add_comm_monoid

{α : Type} [i : add_comm_group α] : add_comm_monoid α :=

{ to_add_monoid := i.to_add_group.to_add_monoid, ..i }

class ring (α : Type) :=

(to_semiring : semiring α)

(neg : α → α)

attribute [instance] ring.to_semiring

@[priority 100] instance ring.to_add_comm_group

(α : Type) [i : ring α] : add_comm_group α :=

{ to_add_group :=

{ to_add_monoid :=

i.to_semiring.to_add_comm_monoid.to_add_monoid, ..i },

.. i }

(b) The nested approach (section 2.2), in-
serting the first parent as a field and
copying the remaining fields.

Listing 2: Two approaches to implementing inheritance, by elaborating the
extends clauses in listing 1 as the highlighted lines.



Multiple-inheritance hazards in dependently-typed algebraic hierarchies 5

2.2 Nested structures

A naïve approach to multiple inheritance for ring would be simply to create a
structure containing a to_semiring field and a to_add_comm_group field. The problem
with this approach is that the resulting structure contains two separate add fields.
Compatibility of these fields could in principle be enforced with a proof field
along the lines of add_ok : to_semiring.add = to_add_comm_group.add, but this makes
the API very unpleasant to use as the user now has to rewrite between all the
different copies of add.

The way to modify this approach to avoid this pitfall is to add a field for
each base class that doesn’t overlap with any previous base classes, otherwise fall
back to the “flat” approach and add the non-overlapping fields directly. We call
these non-overlapping base-classes “preferred” instances, as the projections for
these fields can be registered directly with the typeclass system using attribute

[instance] derived.to_base. What remains are the “non-preferred” instances, which
can be constructed in a similar way to what was done in section 2.1, though
with somewhat messier expressions. Note that unlike section 2.1, this approach
is influenced by the order of the base classes.

This can be seen in listing 2b; ring contains a to_semiring field for its first base
class, but add_comm_group would overlap so its remaining non-overlapping field
(neg) is added separately. The “preferred” ring.to_semiring projection is then reg-
istered with the typeclass system, while the “non-preferred” ring.to_add_comm_group

is painstakingly assembled piece-by-piece. To encourage Lean to avoid the “non-
preferred” instance, we give it a low priority of 100 (the default is 1000).

This approach is more complicated to implement (and indeed, was not imple-
mented in Lean until Lean 4), but can have performance advantages for unifica-
tion as the “preferred” instance paths do not introduce a constructor application.

The result of listing 2b is that the graph in fig. 1 is imbued with an asym-
metry; the dotted edges are provided by “non-preferred” instances. These edges
can be chosen on any spanning tree4 of the overall graph, and indeed can be
optimized to fall on the paths most used by the library [11].

For the purpose of this paper, the opposite is true; their placement has been
pessimized to deliberately cause a failure, which we shall see in section 3.2!

3 Typeclasses depending on typeclasses

In section 2, we concerned ourselves with the typical examples of typeclasses
which depend on a single type. In Lean, it is possible for typeclasses to depend
not only on multiple types, but on typeclasses that constrain those types. A
simple typeclass of this form is module R M, which is used to declare that given a
semiring R and an abelian monoid M , there is an R-module structure on M . A
more complete explanation of this typeclass can be found in [20] and [3, §5]. For
the purpose of this paper, we can imagine the simpler definition as follows:

4 In general this is a spanning diamond-free directed acyclic graph, but for this paper
it suffices to consider a tree.



6 Eric Wieser

class module (R M : Type) [semiring R] [add_comm_monoid M] :=

(smul : R → M → M)

-- (one_smul : ∀ (x : M), smul 1 x = x)

-- (mul_smul : ∀ (r s : R) (x : M), smul (r * s) x = smul r (smul s x))

-- (add_smul : ∀ (r s : R) (x : M), smul (r + s) x = smul r x + smul s x)

-- (zero_smul : ∀ (x : M), smul 0 x = 0)

Here, the proof fields within the typeclass depend on the operators imbued upon
the types R and M . Just as in section 2, we shall ignore these proof fields as
they are not relevant to the discussion other than providing motivation for the
[semiring R] [add_comm_monoid M] parameters.

3.1 Equality of typeclass arguments

A natural use of this typeclass is to record the fact that any semiring is a module
over itself, where the scalar action smul is just multiplication [20, §2.1]. This can
be written in Lean as
instance semiring.to_module (R) [iS : semiring R] : module R R :=

{ smul := semiring.mul }

The type of this instance is misleading; while a human reader could be forgiven
for assuming that the type is just module R R, to Lean the type is
@module R R iS (@semiring.to_add_comm_monoid R iS)

where @ is syntax to tell Lean that even the automatically-populated typeclass
arguments should be spelled out explicitly5. The expressions for these implicit
arguments are visualized graphically in fig. 2a

Lean can now tell us that a ring is a module over itself, as after all every ring
is also a semiring. We can ask this question with:
example (R) [iR : ring R] : module R R := by apply_instance

Once again, the type is misleading; the true type can be seen in fig. 2b. Compar-
ing the types for fig. 2a and fig. 2b, we see that the former unifies with the latter
by setting iS = @ring.to_semiring R iR; for this reason, Lean finds our instance as
@semiring.to_module R (@ring.to_semiring R iR).

3.2 Inequality of typeclass arguments

Let’s imagine now that we want to write a lemma that applies to a module
over a ring (as opposed to a semi-module over a semiring), and states that
(−r)m = −(rm). We write this as6

lemma neg_smul {R M} [ring R] [add_comm_group M] [module R M] (r : R) (m : M) :

module.smul (add_group.neg r) m = add_group.neg (module.smul r m) := sorry

5 This style of display can be enabled with set_option pp.implicit true in Lean 3 and
set_option pp.explicit true in Lean 4.

6 Omitting the usual - and • notation to keep listing 2 short.



Multiple-inheritance hazards in dependently-typed algebraic hierarchies 7

To complete our setup, let’s check that this lemma applies to the R-module
structure on R:
example {R} [iR : ring R] (r : R) (r' : R) :

module.smul (add_group.neg r) r' = add_group.neg (module.smul r r') :=

neg_smul r r'

If we use the “flat” design in listing 2a, then this continues to work as expected.
The same is not true of the “nested” design in listing 2b, which fails to synthesize
type class instance for

@module R R (@ring.to_semiring R iR)

(@add_comm_group.to_add_comm_monoid R (@ring.to_add_comm_group R iR))

which is shown graphically in fig. 2c. The neg_smul lemma is an example of how
typeclass resolution can be steered through a specific node of the graph in fig. 1.

In Lean 3, the reason this fails is nothing to do with typeclass search; the
problem is that the type in fig. 2c is not equal to type in fig. 2b, due to the
implicit add_comm_monoid M arguments (shown in red) not being considered equal.
Considerations of equality between the red paths in figs. 2b and 2c are often
referred to as a “typeclass diamonds” due to the shape they form when overlaid;
though this is a rather more subtle diamond problem that the ones described
in [20, §5] and [2, §3.1] as it is caused by code that would normally be invisible
to the user.

To mathematicians, this diagram obviously commutes; weakening a ring to an
abelian monoid via a semiring is the same as doing so via an abelian group. But
Lean doesn’t care about “obviously”: when determining equality of types, it’s
not enough for them to just be provably the same; they need to be definitionally
(sometimes called judgmentally) so. A proof of rfl can be used to determine if
two terms are judgmentally equal; under listing 2b, we get an error confirming
they are not:

example (R) [iR : ring R] :

(@semiring.to_add_comm_monoid R (@ring.to_semiring R iR)) =

(@add_comm_group.to_add_comm_monoid R (@ring.to_add_comm_group R iR)) :=

rfl -- fails in Lean 3 with listing 2b

3.3 Impact of the inheritance strategy

The rfl in section 3.2 that fails under listing 2b but not listing 2a tells us that
the nested inheritance is certainly to blame here. The underlying cause is the
difference between the “preferred” and “non-preferred” paths.

The “non-preferred” edges in listing 2b are implemented directly as a con-
structor application via the { } syntax; so by virtue of following “non-preferred”
edges, the red path in fig. 2c unfolds to an application of the add_comm_monoid

constructor. The “preferred” edges correspond to a projection; unless applied to
something that unifies against a constructor, these operations themselves do not
unify against a constructor. As the red path in fig. 2b consists of only “preferred”



8 Eric Wieser

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

@module R R

iS

(@semiring.to_add_comm_monoid R iS)

(a) Instance to match

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

@module R R

(@ring.to_semiring R iR)

(@semiring.to_add_comm_monoid R

(@ring.to_semiring R iR))

(b) Matching paths

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

@module R R

(@ring.to_semiring R iR)

(@add_comm_group.to_add_comm_monoid R

(@ring.to_add_comm_group R iR))

(c) Mismatching paths

Fig. 2: Paths taken through the graph in fig. 1 when filling the two implicit
arguments of the type of module R R. Dotted lines again refer to “non-preferred”
edges.

edges, it only unifies with this add_comm_monoid constructor if iR unifies with a ring

constructor.
If iR is a concrete instance such as instance int.ring : ring ℤ, then it will almost

certainly unify with a ring constructor, and the overall unification problem is
solvable. However if iR is a free variable, it will only unify with a constructor in
systems which support “η-reduction for structures”. Lean 3 is not such a system,
which makes unification impossible.

3.4 Other examples in mathlib

The module typeclass is far from the only typeclass in mathlib that follows the
pattern introduced in section 3; some others typeclasses (all of which fall afoul
of the issue in section 3.2) include

– algebra (R A : Type) [comm_semiring R] [semiring A], indicating that A is an R-
algebras.

– star_ring (R : Type) [non_unital_semiring R], indicating that there is a ? opera-
tor compatible with the existing ring structure on R.

– cstar_ring (R : Type) [non_unital_normed_ring R] [star_ring R], indicating that the
existing norm, ?, and ring structure are suitable to declare R a C?-ring.

Like the module example, the design of the first of these is brought on by a
need to work with two separate carrier types, and the need to avoid “dangerous
instances” [3, §5.1].

The other two can be described as “mixin” typeclasses, and are motivated
by a desire to avoid a combinatorial explosion of typeclass variations: an at-
tempt at star_ring without mixins could easily end up needing all 16 variations
of unital/non-unital commutative/non-commutative normed? star rings/fields.
This motivation is largely a pragmatic one; the introduction of a tool like Coq’s
Hierarchy Builder [7] to mathlib would eliminate the cost of manually authoring
such an explosion of typeclasses.



Multiple-inheritance hazards in dependently-typed algebraic hierarchies 9

4 Mitigation strategies

4.1 Perform η-reduction of structures in the kernel

A key difference between the type theory of Lean 3 and Lean 4 is that Lean 4
adds a kernel reduction rule that η-reduces structures7, which is precisely what
we concluded we needed in section 3.3. The following example demonstrates
what this means:
structure point := (x y : ℤ)

-- fails in Lean 3, succeeds in Lean 4

example (p : point) : p = { x := p.x, y := p.y } := rfl

In essence, any value from a structure type is considered judgmentally equal to
its constructor applied to its projections.

This feature was motivated by various “convenience” definitional equalities
(as requested by [8]), such as wanting e.symm.symm = e for an equivalence e : α ≃ β;
but in a thankful coincidence happens to be precisely the tool needed to resolve
the trap in section 3.2 that Lean 4 dropping support for “flat” structures would
otherwise have ensnared us in. In particular, the Lean 4 version of the failing
example ... := rfl above succeeds.

Until 2023-02-22, the structure η-reduction rule was disabled in Lean 4 dur-
ing typeclass search; both due to performance concerns, and an absence of any
evidence that it was necessary in the first place. As evidence mounted [5], a
compromise was reached to unblock the Lean 4 version of mathlib that allowed it
to be temporary enabled8 in places where there was no other choice but taking
the performance hit. After some unification performance improvements which
are out of scope for this paper, this behavior was turned on globally on 2023-05-
16 [9].

Lean 4 is not the only language to have taken an experimental approach
to structural η; Coq supports it too, under the disabled-by-default Primitive

Projections option. In contrast, Agda enables it by default for inductive types9,
but allows it to be disabled via no-eta-equality.

4.2 Use “flat” inheritance

The obvious approach to avoiding problems with “nested” inheritance is to sim-
ply not use it. Unfortunately, in the absence of elaborator support for translating
a variation of listing 1 into listing 2a (such as in Lean 4) this would have to be
done by hand, which can be rather tedious and error-prone.

There is however a trick; since the elaborator can translate listing 1 into
listing 2b, we can construct a pathological graph such that all the edges we care
7 Strictly speaking, it η-reduces inductive types with one constructor; structures are not

native to the type theory of Lean, and instead just syntax for generating a suitable
inductive type.

8 Via set_option synthInstance.etaExperiment true.
9 Some motivating discussion can be found in [1].



10 Eric Wieser

flat_hack

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

(a) A hack to force the behavior of flat
inheritance when only nested inheri-
tance is available.

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

(b) A variant of fig. 1 formed by swapping
the two black arrows, that prevents
the problem in fig. 2c.

Fig. 3: Alternate placements of the “preferred” spanning tree, with the diamond
discussed in fig. 2 overlaid.

about are forced to be “non-preferred”. We do this by adding an empty flat_hack

structure as the first base class of every structure, which ensures that the base
classes always overlap (due to the to_flat_hack field), and so the only “preferred”
base class is the unused to_flat_hack projection. The spanning tree of “preferred”
base classes across all such typeclasses is a star with flat_hack at its center, as
shown in fig. 3a.

This forces all the typeclass resolution to go through the “non-preferred”
paths, which behave identically to their “flat” counterparts by unfolding to a
constructor application.

4.3 Carefully select “preferred” paths

In section 2.2, we mention that the choice of where to place the spanning tree
of “preferred” paths could be optimized for performance. In light of section 3.2,
we could instead attempt to optimize to ensure that the problematic diamonds
never arise. Indeed, there are many arrangements of the “preferred” paths in
fig. 1 that do not run into the specific example in fig. 2c, such as fig. 3b.

For our purposes, an adequate rule for why the red arrows of fig. 3 commute
but the ones of fig. 2 do not is that the paths commute only if their last segments
are either both “preferred” (as in fig. 3b) or both “non-preferred” (as in fig. 3a).

As discussed in [12] and visualized in fig. 4, it is not in general possible
to choose a spanning tree for a set of 8 typeclasses arranged in a cube, while
simultaneously making the pairs of paths around each face commute. This can
be adapted into a working solution by inserting extra nodes in the style of
section 4.2’s flat_hack to force some additional paths to be “non-preferred”, but
this is far from an elegant solution.



Multiple-inheritance hazards in dependently-typed algebraic hierarchies 11

nu_na_semiring

nu_na_ring

nu_semiring

nu_ring

na_semiring

na_ring

semiring

ring

Fig. 4: An algebraic hierarchy where no spanning tree placement can ensure all
squares commute, shown with one such inadequate spanning tree. The red paths
highight the one square that does not commute. na and nu are abbreviated from
mathlib’s non_unital and non_assoc(iative).

4.4 Ban non-root structures in dependent arguments

The problem in section 3.2 is caused by a typeclass argument to a typeclass
being inferable both via “preferred” and “non-preferred” routes. In section 4.2,
this can be worked around by ensuring every path is maximally “non-preferred”.
An alternative is to ensure that every path is “preferred”, by only accepting
typeclass arguments that appear as roots of the spanning subgraph. This could
look like
class module (R M : Type)

[has_zero R] [has_add R] [has_one R] [has_mul R]

[has_zero M] [has_add M] :=

(smul : R → M → M)

-- (one_smul : ∀ (x : M), smul 1 x = x)

-- (mul_smul : ∀ (r s : R) (x : M), smul (r * s) x = smul r (smul s x))

-- (add_smul : ∀ (r s : R) (x : M), smul (r + s) x = smul r x + smul s x)

-- (zero_smul : ∀ (x : M), smul 0 x = 0)

where each of the operators for R and M is taken as a separate typeclass argu-
ment.

This approach has two main downsides: it results in larger proof terms, be-
cause now it has 6 typeclass arguments instead of four, which have to be resolved
all the way down to the smallest typeclass instead of stopping part-way along
the graph; and it doesn’t extend to cases where not just the data fields carrying
the operators on the type arguments, but also the proof fields carrying their
properties, are needed to define the fields of the dependent typeclass.

5 Implications for packed structures

Up until this point we have focused only on typeclasses, as these are (at the
time of this paper) the idiomatic way to represent algebraic structure in Lean.



12 Eric Wieser

While Coq also supports typeclasses, and the previous examples can be faithfully
reproduced in it, this is not the idiomatic way to do things in MathComp.

Instead, Coq’s “Hierarchy builder” [7, §4] generates “packed” structures [10]
with a field for the type itself, rather than consuming the type as a parame-
ter. These structures are then ineligible for typeclass search, but can be located
automatically via “canonical structures” (or as they are known in Lean, “unifi-
cation hints”) instead. These can in fact be built on top of the typeclasses from
section 2.1 or section 2.2:

structure packed_semiring := (carrier : Type) [semiring carrier]

structure packed_add_comm_monoid := (carrier : Type) [add_comm_monoid carrier]

A naïve encoding of a module in this packed view would be:

structure packed_module :=

(R : packed_semiring) (M : packed_add_comm_monoid) [module R.carrier M.carrier]

As packed_module has no parameters and is therefore not dependently-typed, it
cannot fall afoul of the problem in section 3.2.

Unfortunately, this encoding is effectively useless mathematically [18, §3]; we
have no way to talk about two modules over the same ring without something
involving equality of types and operators10 like (V W : packed_module) (hVW : V.R =

W.R); a much worse version of the duplicate add fields described at the start of
section 2.2.

A more reasonable representation that avoids this problem is to only partially
pack the structure, as

structure packed_module (R : packed_semiring) :=

(M : packed_add_comm_monoid M) [module R.carrier M.carrier]

which allows (V W : packed_module R). This is roughly analogous to the approach
taken in Coq’s MathComp [13] and in mathlib’s category theory library.

While this representation avoids the specific problem in section 3.2 due to
its type not depending on the add_comm_monoid path (the red arrows in fig. 2), it is
nonetheless dependently-typed. This make it vulnerable to an analogous problem
where the diamond is instead formed by the semiring path (the blue arrows in
fig. 2) after adding two new comm_semiring and comm_ring nodes.

Fortunately for MathComp, the “Hierarchy builder” uses flat packed struc-
tures11, and so avoids these issues for the same reason that flat typeclasses do
in section 3.1.

10 Or alternatively, by packing the ring and both modules into a single structure, as
(VW : packed_module₂) (v : VW.1) (w : VW.2). This is a viable approach for a module over
two rings (as rarely are many rings needed), but doesn’t scale for n modules over
the same ring.

11 Presumably due to simplicity of implementation; there is no mention in [7] that
using nested inheritance instead would have run into the issues described here.



Multiple-inheritance hazards in dependently-typed algebraic hierarchies 13

6 Related work

While this work is of course directly related to the work of porting Lean 3’s
mathlib to Lean 4, the lessons here are transferable to Coq (where [7] seem-
ingly correctly chose to use flat structures by coincidence) and Agda (which has
adopted structure η-reduction globally due to other motivations [1]); even if only
to provide further understanding of why the respective choices that have already
been made in those systems are the correct ones. To the author’s awareness, no
previously demonstrated algebraic motivations have been given for η-reduction
in the kernel. Some in-depth analysis of “coherence” in algebraic typeclass paths
is provided by [17, definition 3.3] (another name for our comparison in fig. 2),
but it does not provide an example to show why η-reduction specifically should
be assumed.

The analysis in sections 3 and 4 is only relevant to systems that use dependent
type theory, as concerns of equalities between the values of type parameters
cannot arise in a language that does not permit those parameters in the first
place. The Isabelle proof assistant which uses simple type theory is therefore
immune to this class of problem; and at any rate [4, §5.4] advocates avoiding its
record types entirely for algebraic structure, in favor of using locales.

Algebraic hierarchies certainly do not only exist in proof assistants; they
are an essential part of computer algebra systems too. However, most computer
algebra systems do not make use of dependent types [16, §1], with a notable
exception being the Axiom Library Compiler, Aldor. Despite supporting depen-
dent types, the type system of Aldor is too restrictive for sections 3 and 4 to
be relevant. Aldor does not implement definitional equality of types (referred to
as “value-equality” by [16, §2.4]), and so falls at a much earlier hurdle than the
one in section 3; it does not consider Vector(2+3) and Vector(5) to be the same
type [16, §2.3], meaning that even fig. 2b would be considered a mismatch, and
every square in fig. 4 would not commute.

This work focuses on how a seemingly innocuous implementation detail can
be crucial to ensuring the success of existing approaches to algebraic hierarchies
in dependently-typed proof assistants. The broader analysis of these hierarchies,
and possible alternative designs (for which computer algebra systems can provide
inspiration), is left to [3, 6, 7, 18].

7 Conclusion

In this paper we have shown that for the “nested” approach to multiple inher-
itance to be viable in the context of dependently-typed typeclasses or packed
structures, either we have to severely restrict how such inheritance is used (sec-
tions 4.2 to 4.4), or the kernel of the theorem prover must implement η-reduction
for structures (section 4.1).

This scenario was a major stumbling block for mathlib’s transition from
Lean 3 to Lean 4, as typeclasses of this form are used extensively in linear algebra.
This paper provides a clear explanation of exactly what was going wrong, and a



14 Eric Wieser

selection of various solutions that were considered before ultimately settling on
the kernel change.

The code examples throughout this paper, along with translations into Lean 4
and Coq, and the version information needed to run them, can be found at
https://github.com/eric-wieser/lean-multiple-inheritance.

Acknowledgments The author is grateful to: Gabriel Ebner, for campaigning
for η-reduction support in Lean 4; Kazuhiko Sakaguchi, for providing insight into
analogous situations in Coq; the anonymous referees, as well as Yaël Dillies and
Filippo A. E. Nuccio, for valuable feedback on the manuscript; and the wider
Lean community for collaboratively diagnosing [5] that the diamond problems
discussed in section 3.2 existed. The author is funded by a scholarship from the
Cambridge Trust.

References

1. Abel, A.: On Extensions to Definitional Equality in Agda (Sep 2009), https://www.
cse.chalmers.se/~abela/talkAIM09.pdf

2. Affeldt, R., Cohen, C., Kerjean, M., Mahboubi, A., Rouhling, D., Sakaguchi,
K.: Competing Inheritance Paths in Dependent Type Theory: A Case Study
in Functional Analysis. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Auto-
mated Reasoning, vol. 12167, pp. 3–20. Springer International Publishing, Cham
(2020). https://doi.org/10.1007/978-3-030-51054-1_1, series Title: Lecture Notes
in Computer Science

3. Baanen, A.: Use and abuse of instance parameters in the Lean mathematical li-
brary. In: ITP 2022. Haifa, Israel (May 2022), http://arxiv.org/abs/2202.01629

4. Ballarin, C.: Exploring the Structure of an Algebra Text with Locales. Journal
of Automated Reasoning 64(6), 1093–1121 (Aug 2020). https://doi.org/10.1007/
s10817-019-09537-9

5. Buzzard, K.: leanprover/lean4#2074: typeclass inference failure (Jan 2023), https:
//github.com/leanprover/lean4/issues/2074

6. Carette, J., Farmer, W.M., Sharoda, Y.: Leveraging the Information Contained
in Theory Presentations. In: Benzmüller, C., Miller, B. (eds.) Intelligent Com-
puter Mathematics, vol. 12236, pp. 55–70. Springer International Publishing, Cham
(2020). https://doi.org/10.1007/978-3-030-53518-6_4

7. Cohen, C., Sakaguchi, K., Tassi, E.: Hierarchy Builder: Algebraic hierarchies Made
Easy in Coq with Elpi (System Description). In: Ariola, Z.M. (ed.) 5th Interna-
tional Conference on Formal Structures for Computation and Deduction (FSCD
2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 167, pp.
34:1–34:21. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.34, iSSN: 1868-8969

8. Ebner, G.: leanprover/lean4#777: Definitional eta for structures (Nov 2021),
https://github.com/leanprover/lean4/issues/777

9. Ebner, G.: leanprover/lean4#2210: Skip proof arguments during unification, and
try structure eta last (May 2023), https://github.com/leanprover/lean4/pull/2210

10. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging Mathematical
Structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem

https://github.com/eric-wieser/lean-multiple-inheritance
https://www.cse.chalmers.se/~abela/talkAIM09.pdf
https://www.cse.chalmers.se/~abela/talkAIM09.pdf
https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1007/978-3-030-51054-1_1
http://arxiv.org/abs/2202.01629
https://doi.org/10.1007/s10817-019-09537-9
https://doi.org/10.1007/s10817-019-09537-9
https://doi.org/10.1007/s10817-019-09537-9
https://doi.org/10.1007/s10817-019-09537-9
https://github.com/leanprover/lean4/issues/2074
https://github.com/leanprover/lean4/issues/2074
https://doi.org/10.1007/978-3-030-53518-6_4
https://doi.org/10.1007/978-3-030-53518-6_4
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://github.com/leanprover/lean4/issues/777
https://github.com/leanprover/lean4/pull/2210


Multiple-inheritance hazards in dependently-typed algebraic hierarchies 15

Proving in Higher Order Logics, vol. 5674, pp. 327–342. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_23, series
Title: Lecture Notes in Computer Science

11. Gouëzel, S.: leanprover-community/mathlib4#3840: tweak priorities for linear al-
gebra (May 2023), https://github.com/leanprover-community/mathlib4/pull/3840

12. Gouëzel, S.: #mathlib4 > Some observations on eta experiment (May 2023),
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.

20observations.20on.20eta.20experiment/near/355336941

13. Mahboubi, A., Tassi, E.: Mathematical Components (Sep 2022), https://zenodo.
org/record/7118596, publisher: Zenodo Version Number: 1.0.2

14. Moura, L.d., Kong, S., Avigad, J., Doorn, F.v., Raumer, J.v.: The Lean Theorem
Prover (System Description). In: Automated Deduction - CADE-25. pp. 378–388.
Springer, Cham (Aug 2015). https://doi.org/10.1007/978-3-319-21401-6_26

15. Moura, L.d., Ullrich, S.: The Lean 4 Theorem Prover and Programming Language.
In: Platzer, A., Sutcliffe, G. (eds.) Automated Deduction – CADE 28, vol. 12699,
pp. 625–635. Springer International Publishing, Cham (2021). https://doi.org/

10.1007/978-3-030-79876-5_37, series Title: Lecture Notes in Computer Science
16. Poll, E., Thompson, S.: Integrating Computer Algebra and Reasoning through

the Type System of Aldor. In: Kirchner, H., Ringeissen, C. (eds.) Frontiers of
Combining Systems. pp. 136–150. Springer Berlin Heidelberg, Berlin, Heidelberg
(2000)

17. Sakaguchi, K.: Validating Mathematical Structures. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Automated Reasoning, vol. 12167, pp. 138–157.
Springer International Publishing, Cham (2020). https://doi.org/10.1007/

978-3-030-51054-1_8

18. Spitters, B., Van Der Weegen, E.: Type classes for mathematics in type theory.
Mathematical Structures in Computer Science 21(4), 795–825 (Aug 2011). https:
//doi.org/10.1017/S0960129511000119

19. The mathlib Community: The lean mathematical library. In: Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and Proofs.
pp. 367–381. ACM, New Orleans LA USA (Jan 2020). https://doi.org/10.1145/
3372885.3373824

20. Wieser, E.: Scalar actions in Lean’s mathlib. In: CICM 2021. Timisoara, Romania
(Aug 2021), http://arxiv.org/abs/2108.10700

https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://github.com/leanprover-community/mathlib4/pull/3840
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/355336941
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/355336941
https://zenodo.org/record/7118596
https://zenodo.org/record/7118596
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-51054-1_8
https://doi.org/10.1007/978-3-030-51054-1_8
https://doi.org/10.1007/978-3-030-51054-1_8
https://doi.org/10.1007/978-3-030-51054-1_8
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1017/S0960129511000119
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
http://arxiv.org/abs/2108.10700

	Multiple-inheritance hazards in dependently-typed algebraic hierarchies
	Introduction
	Types of structure inheritance
	Flat structures
	Nested structures

	Typeclasses depending on typeclasses
	Equality of typeclass arguments
	Inequality of typeclass arguments
	Impact of the inheritance strategy
	Other examples in mathlib

	Mitigation strategies
	Perform η-reduction of structures in the kernel
	Use "flat" inheritance
	Carefully select "preferred" paths
	Ban non-root structures in dependent arguments

	Implications for packed structures
	Related work
	Conclusion
	Acknowledgments
	References


