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Abstract. In a recent paper, new theorems linking apparently unrelated
mathematical objects (event structures from concurrency theory and full
graphs arising in computational biology) were discovered by cross-site
data mining on huge databases, and building on existing Isabelle-verified
event structures enumeration algorithms. Given the origin and newness
of such theorems, their formal verification is particularly desirable. This
paper presents such a verification via Isabelle/HOL definitions and the-
orems, and exposes the technical challenges found in the process. The
introduced formalisation completes the verification of Isabelle-verified
event structure enumeration algorithms into a fully verified framework
to link event structures to full graphs.

1 Introduction

In [4], the first machine-verified contribution to the Online Encyclopedia of Inte-
ger Sequences (OEIS ) [22] was presented, through an Isabelle/HOL-verified al-
gorithm enumerating all labeled prime event structures (or just event structures,
or even only ES’s). In [7], a mining technique over massive sets of documents per-
mitted to unearth unforeseen connections between apparently unrelated math-
ematical domains. One particular connection was, in the same paper, explored,
linking event structures (via the algorithm from [4]) to full graphs (FGs). Event
structures are originated in the study of concurrent computational systems, while
full graphs arise in the field of computational biology [12]. In [7], the deeper mo-
tivation of this connection was found as being given rise by a new representation
theorem for event structures and a set of derived results, cross-fertilising be-
tween the two fields and permitting to obtain new theorems for both the related
objects (ES’s and FGs). The two papers [4] and [7], therefore, complement each
other to provide enumerating algorithms and new connections found using the
former. However, only the results from [4] have been mechanically checked. The
present paper completes the work by providing a Isabelle/HOL (from now on,
just Isabelle) [18] formalisation of the representation theorem, the theorem con-
necting ES’s and FGs, a number of related Isabelle definitions and tools, and
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a computable Isabelle isomorphism providing the connection between ES’s and
FGs.

Section 2 introduces the subjects of the discourse (e.g., event structures and
full graphs), Section 3 provides the pen-and-paper version of the theorems for-
malised, Section 4 illustrates the main formalised theorems and definitions, Sec-
tions 5 and 6, respectively, illustrate the formalisation of the two main theorems,
while Section 7 contains overall consideration about the formalisation process.
Section 8 concludes.

2 Event Structures and Full Graphs

This section formally introduces the objects of our theorems. To make this pa-
per self-contained, it summarises, together with the subsequent one, the main
elements of Sections IV and VI of [7].

2.1 Event Structures

A prime event structure (or simply event structure, ES) describes a concurrent
computation by identifying the computational events that are causally related
and those that exclude one another. According to the following definition, this
is achieved via two relations: ≤ (causality) and # (conflict).

Definition 1. An event structure is a pair of relations (≤,#) where ≤ is a
partial order, # is irreflexive and symmetric, (fie ≤) ⊇ (fie#) is called the set
of events, and for any three events x0, x1, y: x0#y ∧ x0 ≤ x1 → x1#y.

The last condition is referred to as conflict propagation. In Definition 1,
fie denotes the field of a relation: that is, the union of its domain (dom) and
range (ran). The usual infix notation for the relations in Definition 1 can become
inconvenient, therefore we also introduce an additional notation representing the
relations with letters, writing, e.g., (x, y) ∈ D instead of x ≤ y and (x, y) ∈ U
in lieu of x#y. We will typically use the letters D and U as above to suggest
the reader what they encode: D stands for “directed” and U for “undirected”.
Indeed, ≤, as a partial order, is naturally viewable as a directed graph and #,
being symmetric, as an undirected graph. See also the comment immediately
after Definition 2. Since any finite relation is a graph having its vertices (or
nodes) coinciding with the field of the relation, and since, for any finite partial
order, that graph can be naturally made a directed graph, it is easy to represent
any finite ES via diagrams such as the one in Fig. 1.

2.2 Full Graphs

Any family of sets can be used to build a graph where each vertex represents a
set of the family, an undirected edge connects overlapping sets, and a directed
edge connects a superset to a subset. Such a construction occurs when studying
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Fig. 1. An example event structure, with eight events related by causality (denoted by
an arrow standing for ≤) and conflict (denoted by a dashed line).

the following problem: given n subsets of a given set of m elements, is there
a way of labeling the elements with natural numbers such that the element
occur consecutively (with respect to this labeling) in each subset? One practical
application of this labeling problem arises in bioinformatics, where the elements
of subsets represent observed blemishes to parts of a gene, which are supposed
to be more likely to affect parts of the gene which are connected: therefore,
finding such a labeling can provide essential information about the topology
of a gene [2, 12]. The graphs that can be created in this way are specified by
Definition 2.

Definition 2. A full graph (FG) is a mixed, unweighted, simple1 graph over
vertices V , of directed edges D, and undirected edges T such that there is an
injective function f on V yielding non-empty sets and with the property

∀x, y ∈ V. ((x, y) ∈ D ↔ f x ⊇ f y )∧ (1)

((x, y) ∈ T ↔ f x and f y overlap) ; (2)

here, we say that two sets A and B overlap (written A ≬ B) when A ∩ B /∈
{A,B, ∅}. We call f an fg-representation of the full graph (D,T ). Alterna-
tively, we will say that T makes a full graph of D (through f) when such an
fg-representation f exists.

Having insisted in Definition 2 in encoding T via ordered pairs, even though
is an undirected graph, makes that encoding redundant; however, this is conve-
nient because we can then regard T as a (symmetric) relation, as all the other
components in the definitions of ES’s and FGs, also thanks to the fact that all
these components are simple graphs, making the encoding as relations adequate.

1 Recall that a graph is simple when it has no self loops and no multi-edges; it is mixed
when it has both directed and undirected edges. See [13, Section 1.1].



3 Connecting ES’s and FGs

In [7], a systematic way of looking for matches between entries in the OEIS
and free text search results across Google and Google Scholar is introduced,
producing thousands of unexplored and potentially interesting matches. One of
them relates the enumerations of ES’s (introduced in OEIS by [4]) and of FGs
(in [9, Section 4]): the number of (labeled) ES’s and of FGs over a fixed number of
vertices n coincide for small n. In the same paper [7], this connection is explored,
motivated and proven by providing a one-to-one map between ES’s and FGs,
which is an isomorphism once framed as a mapping between representations of
ES’s and FGs.

To introduce the ideas in the latter paper, we start by looking at the evalu-
ation, through this isomorphism, of the ES in Fig. 1, giving the FG in Fig. 2.

{1,2,4,5,7,9}

{2,3,4,5,6,7,8,9} {2,4,5,7,9}

{3,8}

{3,6}

{2,7}{4,7}

{4,5,9}

Fig. 2. The full graph isomorphic to the event structure of Fig. 1. This is the full graph
example originally featured in Section 3 of [12]. Here, the arrows represent ⊇, and the
dashed lines the overlapping relation.

To make more precise the similarity between the figures, we must under-
stand how they are generated: in Fig. 2, the edges are determined by looking
at operations on sets associated to each node. In this sense, we have a repre-
sentation of the FG in terms of set-theoretical notions, indirectly dictating the
structure of the FG itself by definition. In the case of event structures, however,
such a representation is absent in the definition, which dictates the property of
the structure directly by imposing relationships between ≤ and #. To formally
link the connection we are looking at, we must find a representation for the ES
as well, through a suitable definition of ES-representation and a representation
theorem establishing that an equivalent definition of ES can be given in terms
of such a representation, as done with FGs. This is an interesting endeavour in
general, not limited to the specific task of finding connections between differ-
ent domains: see [7, Section III], which also discusses and details the notion of
representation.



The following definition will turn out to yield adequate representations for
ES’s.

Definition 3. Given two binary relations D and U , the set-valued function f
is a representation for (D,U) if

∀x y ∈ dom f. ((x, y) ∈ D ↔ f (x) ⊇ f (y)) ∧ (3)

∀x y ∈ dom f. ((x, y) ∈ U ↔ f (x) ∩ f (y) = ∅) . (4)

Here, we say that, given D and any U with fieU ⊆ fieD, any such a f (if it
exists) is called admissible.

And by adequate we mean that the following representation theorem holds.

Theorem 1 (Representation theorem). Consider two binary relations D
and U , with D finite and fieU ⊆ fieD. Then (D,U) is an event structure if and

only if there is an injective representation f : fieD → 2
N\ {∅} for (D,U),

where 2
X

denotes the finite subsets of X.
Our second representation theorem for event structures, Theorem 2, offers a

bijective construction connecting them to full graphs.

Theorem 2. Consider a finite relation D and a function FD mapping working
as follows on its argument R:

FD := R 7→ (fieD × fieD) \
(
D ∪D−1

)
\R.

A bijection between
X := {T |T makes a full graph of D} and
Y := {U |U is admissible for D}
is given by FD|X .

Fig. 3 attaches a representation (always existing, according to Theorem 1) to
the ES of Fig. 1. Using FD as in Theorem 3, one can now promptly relate that
ES to the FG of Fig. 2.

4 Formalisation and Verification: Introduction

We start from the top level, that is, the Isabelle renditions of the main theorems.
Theorem 1 is stated as

Listing 1.1. Isabelle rendition of Theorem 1

theorem representation: assumes "finite D"

"Field U ⊆ Field D" shows

"( isLes D U) = (∃ f. isInjection f & Domain f = Field D &

({}:: nat set)/∈Range f & finite (( Union o Range) f)

& isRepresentation f D U)",



{1,2,4,5,7,9}

{2,3,4,5,6,7,8,9} {2,4,5,7,9}

{3,8}

{3,6}

{2,7}{4,7}

{4,5,9}

Fig. 3. A representation for the event structure of Fig. 1. Now, the arrows represent ⊇
and the dashed lines the disjointness relation. Theorem 1 states that any set of events
is an event structure if and only if such a representation is constructible.

.

while Theorem 2 reads

Listing 1.2. Isabelle rendition of Theorem 2

theorem bijection: assumes "finite D"

"F=(λR. ((Field D × Field D) - (D ∪ D^-1)- R))"

"X={T|T. Field T ⊆ Field D & (∃ f. isInjection f &

({}:: nat set)/∈Range f & Domain f=Field D &

isFgRepr f D T)}"

"Y={U|U. Field U ⊆ Field D & (∃ f. isInjection f &

({}:: nat set)/∈Range f & Domain f=Field D &

isRepresentation f D U)}" shows

"F‘X=Y & F‘Y=X & inj_on F X & inj_on F Y & card X=card Y",

where inj_on F X returns true when the total function F is injective over the
set X, while the notation ^-1 denotes the converse of a relation.

The reader might have noticed a subtle difference between f occurring in
Listing 1.1 and F occurring in Listing 1.2: while both are functions, they are
implemented very differently within Isabelle/HOL. Indeed, F is a standard HOL
function, a primitive notion in higher order logic [16]; on the other hand, f is
implemented as a set of ordered pairs, in the way standard set theory (e.g.,
ZF, Zermelo-Fraenkel set theory [11]) represents functions. The verification pre-
sented here extensively exploits this duality, choosing one construct or the other
depending on the particular function at hand and on the theorem it appears in.
There are several reasons for this approach: one is that the totality of functions
imposed by HOL is sometimes an inconvenience [16] which can be worked around
by choosing the second construct; another one is that set theoretical operations
on functions, such as union, subtraction, conversion (^-1) are sometimes useful,
and are unavailable with the first construct; as an example of this usefulness,
let us take the +< infix operator, which grows a relation P with another one Q,
performing overriding if necessary, and is defined as



(P - (Domain Q × Range P)) ∪ Q.

One advantage of this definition is that it works for any pair of relations P and
Q, and at the same time preserves right-uniqueness if P and Q are right-unique
(that is, functions). Additionally, existing facts about the building blocks of +<
(-, ×, Domain, Range, ∪) typically makes proofs about +< easier, helped by the
simplicity of its definition. This operator can be conveniently overloaded to the
point-wise special case:

abbreviation singlepaste where "singlepaste f pair ==

f +< {(fst pair , snd pair )}"

notation singlepaste (infix "+<" 75)

Note that the type of g in f+<g avoids ambiguity for the overloaded +< operator.
On the other hand, set-theoretical functions are actually relations and, as

such, need to be shown to be right unique (by showing they satisfy a dedicated
Isabelle predicate runiq) before they can be treated as functions. Overall, keeping
both constructs has the upside of being able to take advantage of the best of
both worlds [8].

The price to pay for this upside is that we have duplicated versions of most
operations on functions, one for each construct. For example, if F is a standard
HOL function and f is a set theoretical function, then the application operation
on an argument x is written F x for F and f,,x for f; the operation yielding the
image of a set X through the function is F‘X versus f‘‘X, the range operation is
range F versus Range f; the property of injectivity is inj_on versus isInjection,
etc. Other operations, such as union, intersection, domain, ^-1, restriction (de-
noted ||), and others, only make sense for set-theoretical functions, although a
restriction operating on HOL functions (and denoted |||) was also introduced.
In this case, naturally, the result is a set-theoretical functions, since in HOL all
functions are total and cannot therefore be restricted directly [16].

In practice, the reader needs not to worry about these subtle differences
deriving from the duality between HOL functions and set-theoretical functions,
which were nevertheless discussed in the digression above to prevent confusion.

The first theorem above, in Listing 1.1, equates the definition of being an
event structure (isLes) to the existence of a representation (whose definition
is contained in isRepresentation), while the second theorem shows that F (the
Isabelle rendition of FD occurring in Theorem 2) is indeed a bijection between
the set Y of admissible conflicts for D and the set X of undirected graphs making
D a full graph. Since this holds for all finite Ds, we have a verified proof of the
mined matches illustrated in Section 1 and in [7].

isLes, isRepresentation, isFgRepr are all straightforward from the pen-and-
paper definitions, with the first already used in previous formalisations regarding
event structures [4–6]:

definition "isLes causality conflict =

propagation conflict causality & sym conflict &

irrefl conflict & trans causality &

antisym causality & reflex causality",



definition "isRepresentation f D U = ∀x∈Domain f.

(∀y∈Domain f. ((((x, y)∈D)=(f,,x ⊇ f,,y)) &

(((x,y)∈U) = ((f,,x ∩ f,,y)={}))))"

definition "isFgRepr f D T = ∀x∈Domain f.

(∀y∈Domain f. ((((x, y)∈D)=(f,,x ⊇ f,,y)) &

(((x,y)∈T) = ((f,,x) overlaps (f,,y)))))" ,

with the definition of overlapping also very close to the paper version and
taking advantage of the infix notation definition capabilities of Isabelle:

definition "Overlap X Y = (X ∩ Y /∈ {X, Y, {}})"

notation "Overlap" ("_ overlaps ")

Moreover, propagation is a synonym for the following:

definition "isMonotonicOver conflict causality =

∀ x y. (x,y) ∈ causality → conflict ‘‘{x} ⊆ conflict ‘‘{y}",

while reflex was introduced as follows:

definition "reflex P = refl_on (Field P) P",

where refl_on A R returns true when the relation R is reflexive over a subset A

of its domain and range.
All the other Isabelle objects occurring above are part of Isabelle’s standard

library.

5 Formalisation and Verification: Proof Structure for
bijection

We start from the second theorem introduced above, which is the simpler of the
two, in that it relates full graphs to sets of admissible conflict relations for a given
partial order, while the link between ES representations and ES’s is provided by
representation.

The idea for the proof is simple: we just note that the definition of fg-
representation (Definition 2) and of event structure representation (Definition 3)
are very similar, mainly differing by the substitution of the overlapping relation
with that of disjointness; therefore, we introduce the following operator to map
between them:

λR. (unRel ’ D - R),

where the helper unRel’ takes the complement of a relation:

abbreviation "unRel ’ D==( Field D × Field D) - (D ∪ D^ -1)".

Now, the idea is to show that we can pass from event structures to full graphs
by applying the above operator to the conflict relation. To show that, it suffices
to show that the set of valid undirected edges for a given D can be obtained from
the set of valid conflict relations for D by applying the operator above: this is
exactly the thesis F‘X=Y & F‘Y=X appearing in the bijection theorem’s thesis.



By bijectivity, it suffices to show the weaker relations F‘X ⊆F‘Y and F‘Y ⊆F‘X,
which is done by l53a and l53b below, respectively:

lemma l53a: assumes "F=(λR. (unRel ’ D - R))" shows

"F‘{T|T. Field T ⊆ Field D & (∃ f. isInjection f

& ({}:: nat set)/∈Range f & Domain f=Field D

& isFgRepr f D T)} ⊆
{U|U. Field U ⊆ Field D & (∃ f. isInjection f &

({}:: nat set)/∈Range f & Domain f=Field D

& isRepresentation f D U)}"

lemma l53b: assumes "F=(λR. (unRel ’ D - R))" shows

"F‘{U|U. Field U ⊆ Field D & (∃ f. isInjection f &

({}:: nat set)/∈Range f & Domain f=Field D &

isRepresentation f D U)} ⊆
{T|T. Field T ⊆ Field D & (∃ f. isInjection f &

({}:: nat set)/∈Range f & Domain f=Field D &

isFgRepr f D T)}"

l53a and l53b are sufficient to draw the thesis of bijection thanks to the fol-
lowing general propositions (the latter provided by Isabelle’s standard library):

proposition l52a: assumes "finite (X ∪ Y)" "inj_on f X"

"inj_on f Y" "f‘X ⊆ Y" "f‘Y ⊆ X" shows "f‘X=Y & f‘Y=X"

lemma card_image:

assumes "inj_on f A"

shows "card (f ‘ A) = card A"

Finally, the hypotheses inj_on f X and inj_on f Y can be deduced when X

and Y are, respectively, the sets appearing in l53b by another general result:

proposition l55: "inj_on (λX. Y-X) (Pow Y)"

(where Pow takes the power set), which applies when X and Y take the particular
values above thanks to

lemma l54bb: assumes "isFgRepr f D T" "Domain f = Field D"

"Field T ⊆ Field D" shows "T ⊆ (Field D × Field D)-(D∪D^-1)"

and

lemma l54aa: assumes "isRepresentation f D U"

"({}:: nat set)/∈Range f" "runiq f" "Domain f = Field D"

"Field U ⊆ Field D" shows "U ⊆ (Field D × Field D)-(D∪D^-1)",

where the runiq predicate was introduced in the discussion after Listing 1.2.

6 Formalisation and Verification: Proof Structure for
representation

The proof is in the two directions; that is, having a representation implies being
an event structure (theorem main1) and being an event structure implies having
a representation (theorem main2):



theorem main1: assumes "runiq f"

"Field D ∪ Field U ⊆ Domain f"

"isRepresentation ’ f D U"

shows

"isPreorder D & isMonotonicOver U D & sym U &

(luniq f → antisym D) & ({} /∈(Range f) → irrefl U)"

theorem main2: assumes "finite D" "isLes D U" obtains

f::"(’a × nat set)set" where "Domain f=Field D &

isInjection f & {} /∈Range f &

finite ((Union o Range) f) & isRepresentation f D U"

6.1 Proof of main2

The proof for main2 is arguably among the most complex in the project, since
it needs to provide a representation for any given ES. It is done by induction
on the cardinality of D, starting with the base case which can be proved by
Sledgehammer [3]:

proposition ll50a: assumes "f={}" "D={}" shows

"isRepresentation f D U & Domain f=Field D &

isInjection f & runiq f & {} /∈Range f"

The induction step now requires to somehow pass from a representation f

of a D’ smaller than a given D to a representation for D itself. This requires to
determine two things:

1. in which sense D’ is smaller than D;
2. how to construct the new representation from f.

For (1), we set D’ and D to differ by exactly one terminal event: that is, D’ is
obtained from D by removing one event s with no children in D.

For (2), we obtain the new representation for D by just growing f with one new
set RA representing s; this growth is done by the +< operator seen in Section 4.
Note that this growth does not affect the values f has on the old events. Theorem
extension2 below does exactly that, showing that the function resulting from the
+< operation is still a representation for D. However, for this thesis to hold, there
are three fundamental requirements on RA, the set representing the new event
s; these requirements must hold for any existing event x, and appear in the
hypotheses of extension2 labeled as hypOverlap, hypCausality and hypConflict.
The remaining hypotheses are merely technical, expressing obvious requirements
such as f needing to be a function, s having no children, s being fresh, etc.

theorem extension2: assumes "runiq f" "(s,s)∈D"
"D‘‘{s}⊆{s}" "s/∈Domain f" assumes

hypOverlap: "∀x∈Domain f. ¬(f,,,x ⊆ RA)" assumes

hypCausality: "∀x∈Domain f. RA ⊆ f,,,x = (x∈D^-1‘‘{s}-{s})"
assumes

hypConflict: "∀x∈Domain f. ((f,,,x)∩RA ={})=(x∈U^-1‘‘{s})"



"∀x∈Domain f. ((x,s)∈U) = ((s,x)∈U)"
"isRepresentation f (D---s s) (U---s s)"

"F=f+<(s,RA)" "RA̸={}" "(s,s)/∈U"
shows

"isRepresentation ’ F D U"

extension2 presents a couple of new constructs: first, the operator --- allows
to remove a pair from a relation, so that, in this case, D and U are extensions
of D---s s and U---s s. Secondly, the operator ,,, is very similar to ,, seen in
Section 4, but with a slightly more general definition which is technically more
convenient in some cases. Let us start with the definition of ---:

definition "bouthside P X Y =

P - ((X×Range P) ∪ (( Domain P)×Y))"
notation "bouthside" ("_\\")

definition "singlebouthside P x y = bouthside P {x} {y}"

notation "singlebouthside" ("_---")

This definition uses a special case of \\, which merely removes portions of
domain and range from any relation using elementary set-theoretical operations.

extension2 is what we need to obtain our representation theorem. However, as
we mentioned above, it dictates three conditions on RA (hypOverlap, hypCausality
and hypConflict) for its validity. We therefore need to build a set RA satisfying
them. The following result, one of the most technical, builds a suitable RA, by
transforming the representation f occurring in extension2 into an intermediate
representation g before inducting.

lemma l46: assumes "isRepresentation f (D---s s) (U---s s)"

"runiq f & D‘‘{s}={s} & sym U &

(let dm=Domain in let R=Range in {} /∈R f &

finite ((Union o R) f) & (Domain D)-{s} ⊆ dm f &

(let d=D---s s in dm f ⊆ Range d & trans d))"

"let d=D---s s in let sparents=d^-1‘‘(D^-1‘‘{s}) in

let sconfl=U^-1‘‘{s} in

let sconcurs=Range d-( sparents ∪ sconfl) in

finite sconcurs & sconcurs⊆fixPts D &

sparents=D^-1‘‘{s}-{s} &

irrefl (U||( sconcurs ∪ Domain f)) &

sconfl ∩ D^-1‘‘{s}={} &

d‘‘sconfl⊆sconfl &

isMonotonicOver U (D|^(D^-1‘‘{s} ∪ (Range d - sconfl )))"

shows

"∃ l. let N=Max ((Union o Range) f)+1+ size l in

let d=Domain in let R=Range in

let RA=( Union o set )(( map (Union o R) l)@[{N}]) in

let g=foldl pointUnion f (l@[(D^-1‘‘{s}-{s})×{{N}}]) in

let h=g+<(s,RA) in d g=d f & d h=d f∪{s} & {} /∈R g &

{} /∈R h & isRepresentation g (D---s s) (U---s s) &

isRepresentation h D U & runiq g & runiq h &

(Union o R) h ⊆ {0.. <1+N} &

(luniq f → (isInjection g & isInjection h))"



Although harder to read than extension2, l46 has the advantage of having
moved all the requirements on RA back to the given event structure (D,U). This
comes at the price of passing through g, which is obtained from f by repeatedly
applying the following operator pointUnion to the given f over a suitable list of
sets, through the standard functor foldl:

definition "pointUnion ff A =

ff +< ((λx. ff ,,,x ∪ A,,,x)|||( Domain A))".

Recall that ||| is the restriction operator, see Section 4.

6.2 Proof of main1

The proof of theorem main1 is less technical, and is nicely broken into sublem-
mas each providing a part of the thesis. The following lemma takes care of the
transitivity:

lemma l49a: assumes "runiq f" "Field D ⊆ Domain f"

"∀x0∈Domain f. (∀x1∈Domain f. (((x0, x1)∈D)=(f,,x0⊇f,,x1)))"
shows "Field D ⊆ fixPts D & trans D",

(where definition "fixPts P=Domain(Id∩P)"), while this other proposition takes
care of conflict propagation:

proposition l49bb: assumes "Field D ∪ Range U ⊆ Domain f"

"∀x∈Domain f. (∀y∈Domain f. ((((x, y)∈D)→(f,,x ⊇ f,,y)) &

(((x,y)∈U) = ((f,,x ∩ f,,y)={}))))"

shows "isMonotonicOver U D"

The reflexivity is then granted by combining l49a with this simple but useful
fact:

proposition l45e: "(∀x∈Field P. (x,x)∈P)= reflex P".

When writing the formalisation, a guiding principle was to always try to de-
rive particular results from weaker results (whether the latter already exist in
some library or not) applicable to more general objects, which can be strength-
ened to be applied to more particular objects needed in the specific formalisation
one is carrying out. This resulted in over 300 lemmas, propositions and theorems,
and around 50 new objects defined.

Isabelle was also used to work out minimal requirements for particular re-
sults. For example, in main1, no finiteness is required over D, and the particular
irreflexivity property is explicitly bound to the additional requirement of f not
yielding the empty set as a representation. Similarly, in theorem main1 the anti-
symmetry property of event structures is linked to the representation being an
injection. These details add proof-theoretical information to any development,
and are usually hard to keep track of manually with a pen-and-paper proof.



7 The Formalisation Process

The code is available at2 https://gitlab.com/users/mbc8/contributed. The
formalisation of the mathematical objects and results introduced above is roughly
2.7kSLOC and 151Kb (36Kb gzipped) of Isabelle code; a bit more due to spawned
additions to the theories created for event structures for previous papers such
as [4–6]. To quantitatively assess the formalisation, the length of the mathe-
matical parts appearing in [7] was computed by converting the relevant pdf to
text, obtaining 21502 bytes (8229 gzipped) as a result. This gives an apparent de
Bruijn factor of 7, and an intrinsic one of 4.3. There are about 4 pages of mathe-
matical content in [7], whereas the time spent to formalise it has been estimated
in around two weeks of work, giving a formalisation cost of 0.5 weeks per page.
All these numerical parameters are approximate, but help giving an idea of the
process itself [1,17]. It should also be noted that, although Isabelle/HOL imple-
mentations of graph theory abound ( [15,19–21]), the present formalisation used
none of them, for two reasons: first, although the theorems relate event struc-
tures and full graphs, they don’t really need much graph theory. Not even basic
notions as walks, paths, etc. are even mentioned. Secondly, our formalisation
deals with mixed graphs (i.e., having both directed and undirected edges), thus
restricting the available libraries. The theorem representation uses 141 facts
(including lemmas, propositions, theorems and definitions) included in the file
fullGraph.thy. The proofs can be divided into automatically generated ones and
one with an explicit Isar proof (starting with the proof keyword). A minority of
those explicit proofs were generated by Sledgehammer’s isar_proof feature, but
most of them were manually written. In general, the preference is to have small
general facts with simple, usually automatic proofs, which are then put together
for the more complex, manual proofs. This yields a proliferation of lemmas which
are hopefully reusable. This approach goes hand-in-hand with the one provid-
ing definitions built in blocks on top of more general definitions. For example,
pointUnion is defined in terms of ||| and +<, which are in turn defined in terms
of elementary set theoretical operations (cartesian product, union, intersection,
set difference, etc.). One of the longest proof is that of l46 (see Section 6.1),
which is 139 lines and about 10Kb. About 10 results have proof longer than 20
lines, usually substantially longer, and a number of them has to do with the
problem of suitably constructing RA using a reiterated (via foldl) pointUnion

operation (see Section 6.1). Most proofs are non-constructive; for example, they
do not provide an algorithm to build representations. However, the operator F

appearing in theorem bijection and allowing to pass from representations to
fg-representations and vice-versa is computable.

8 Conclusions

This paper has presented a rare instance of original theorems having been for-
malised natively: they were born formalised. More than that, they were discov-

2 The link requires a reasonably recent browser.

https://gitlab.com/users/mbc8/contributed


ered thanks to existing formalisations. Such theorems provide new representa-
tions for event structures and unexpectedly link the latter to the unrelated field
of computational biology through the notion of full graphs. This permits to apply
results from one domain to another to immediately obtain new theorems (some
such examples are reported in [7]) Therefore, an obvious idea for future work
is to formally verify these new theorems, which would imply a formalisation for
the domain which is currently not formalised: that of full graphs. Indeed, while
event structures have now a reasonable amount of results formalised, no formal-
isation exists for more advanced results applicable to full graphs, for example
those in [9, 14].

Looking at automated theorem proving, the origin of the presented results
(obtained via data mining, as explained in [7]), can provide avenues to both de-
velop new techniques and test existing ones: thousands of potentially interesting
matches similar to the one giving rise to the results presented here were found.

Another future work direction will seek the generalisation of the original the-
orems presented here: one natural idea is the extension of Theorem 1 to infinite
event structures, which is comparable to how Priestley’s representation theorem
generalises (in a by no means trivial manner!) Birkhoff’s [10, Theorem 11.23].
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