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Abstract. Perception and control systems for autonomous vehicles are
an active area of scientific and industrial research. These solutions should
be characterised by both high efficiency in recognising obstacles and other
environmental elements in different road conditions, real-time capability,
and energy efficiency. Achieving such functionality requires an appropri-
ate algorithm and a suitable computing platform. In this paper, we have
used the MultiTaskV3 detection-segmentation network as the basis for a
perception system that can perform both functionalities within a single
architecture. It was appropriately trained, quantised, and implemented
on the AMD Xilinx Kria KV260 Vision AI embedded platform. By using
this device, it was possible to parallelise and accelerate the computa-
tions. Furthermore, the whole system consumes relatively little power
compared to a CPU-based implementation (an average of 5 watts, com-
pared to the minimum of 55 watts for weaker CPUs, and the small size
(119mm x 140mm x 36mm) of the platform allows it to be used in de-
vices where the amount of space available is limited. It also achieves
an accuracy higher than 97% of mAP (mean average precision) for ob-
ject detection and above 90% of mIoU (mean intersection over union)
score for image segmentation. The article also details the design of the
Mecanum wheel vehicle, which was used to test the proposed solution in
a mock-up city.

Keywords: detection-segmentation neural network, perception, embed-
ded AI, SoC FPGA, eGPU, Vitis AI, Mecanum wheel vehicle

1 Introduction

Today, we are witnessing the rapid development of advanced mobile robotics,
including autonomous cars and drones (unmanned aerial vehicles, UAV). This
would not be possible without advances in the implementation of perception and
control systems, including the use of deep neural networks (DNN). DNNs make
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it possible to achieve high accuracy, but memory and computational complexity
remain significant challenges. In order to meet the requirements of mobile plat-
forms, i.e. low latency and low energy consumption, it becomes necessary to use
specialised hardware platforms such as SoC FPGAs (System on Chip Field Pro-
grammable Gate Arrays) or eGPUs (embedded Graphic Processing Units). These
solutions also have the advantage of relatively small size and weight. It is also
worth noting that a major challenge is the reliability analysis of network-based
solutions, including their explainability [1]. This is of particular importance when
traffic safety, for example, depends on DNNs detections or control.

In perception systems, two basic tasks can be roughly distinguished: object
detection and segmentation (semantic and instance). Object detection is the
marking of objects belonging to the considered classes (e.g. cars, pedestrians,
cyclists, traffic signs, etc.) in the image with bounding boxes or sometimes binary
masks. Semantic segmentation involves assigning to each pixel a label that tells
what object it belongs to (e.g. drivable area, horizontal road sign, vegetation,
buildings, persistent, or sky). Instance segmentation, on the other hand, allows
different labels to be given to pixels belonging to two separate objects of the same
class (e.g. two pedestrians). It should be noted that object detection is a simpler
and thus computationally less complex task. A typical solution /changeusingthat
uses DNNs is the YOLO (You Only Look Once) family of algorithms [2]. In
contrast, segmentation, especially of instances to obtain similar information, is
much more complex – requiring both longer learning and inference. U-Nets [3] are
typically used for semantic segmentation and Mask R-CNN-based [4] solutions
for instances.

For autonomous vehicle perception systems, the tasks of detection and seg-
mentation appear together. For objects such as pedestrians, vehicles, bicycles,
vertical road signs, or traffic lights, the use of detection is sufficient. However, for
the detection of drivable area or horizontal road signs (including pedestrian cross-
ings), it is better to use segmentation. Hence, detection-segmentation networks
have been proposed in the literature, which combine the advantages of both ap-
proaches and, at the same time, thanks to a common backbone (encoder), are
characterised by lower computational complexity and an easier learning process
than instance segmentation approaches. A detection-segmentation network, in
addition to the aforementioned backbone, consists of a segmentation head and
several detection heads. Examples of such networks are YOLOP [5], HybridNets
[6] and MultiTask V3 [7] discussed in Section 2.

Taking into account the properties of the detection segmentation networks
discussed above, we decided to use this solution as the basis for the perception
system of our autonomous vehicle model. We used the MultiTask V3 network,
which we implemented and deployed on two embedded platforms: SoC FPGA
Kria KV260 and an eGPU (NVIDIA Jetson Nano and Xavier NX). The experi-
ments performed showed that detection-segmentation networks represent a good
compromise between accuracy, performance, and power consumption. We also
discussed the design of the Mecanum wheeled vehicle used. To the best of our
knowledge, this is the first paper that discusses the hardware implementation of
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a perception system based on a detection-segmentation network implemented in
an SoC FPGA, the results of which were applied to the control of an autonomous
vehicle model.

The remainder of this paper is structured as follows. In Section 2 we dis-
cuss the relevant prior works on detection-segmentation networks and DNNs
acceleration on SoC FPGA. Section 3 discusses the methods used, including the
hardware implementation of the considered DNNs, and the design of the au-
tonomous vehicle model. The results obtained are summarised in Section 4. The
paper ends with conclusions and a discussion of possible future research.

2 Previous work

Three types of deep neural networks can be distinguished in current vision sys-
tems: detection, segmentation, and detection-segmentation. As mentioned in the
introduction, detection-segmentation networks represent a compromise between
the accuracy of instance segmentation and the speed of simple detection and
are therefore an interesting solution for autonomous vehicle perception systems.
Several architectures of detection-segmentation networks have been proposed in
the literature.

The first is YOLOP [5]. It allows object detection and segmentation of driv-
able area and horizontal road markings. It consists of a common encoder and
3 separate decoders (one for detection and two for segmentation). It has been
trained and evaluated on the popular BDD100k dataset [8]. The second is Hy-
bridNets [6], which is very similar to YOLOP in terms of functionality. It consists
of 4 components: encoder (EfficientNet V2 architecture), neck, detection head
(inspired by YOLOv4), and segmentation head. The BDD100k dataset was also
used for training and evaluation. The third architecture, used in this work, is
the MultiTask V3 [7] proposed by AMD Xilinx. It is worth noting that it is
included in the Vitis AI library as a demonstrator of its capabilities, but to our
knowledge, it has not been described in a scientific publication. Details of its
construction are presented in Section 3.1. Unlike YOLOP and HybridNets, it
also includes a depth estimation module. However, it has not been evaluated on
a publicly available dataset.

The topic of hardware acceleration of deep neural networks, especially for
embedded computing, is the subject of intense academic and industrial research
due to its very high practical importance. A whole spectrum of solutions is
encountered, from dedicated chips for AI acceleration (e.g. Intel Neural Compute
Stick, Google Coral, Tesla FSD Chip), through programmable SoC FPGAs to
eGPU platforms. A detailed overview of the solutions is beyond the scope of
this article, and we refer interested readers, for example, to the review [9] or the
work [10].

In this work, we have chosen to use an SoC FPGA platform and also run the
selected network on an eGPU platform for comparison. Reprogrammable devices
have been a proven platform for implementing vision algorithms for years, which
was the main reason for our choice. In addition, they tend to have lower power
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(a) (b)

Fig. 1: The mock-up of a city made by us (a) and the model of an autonomous
vehicle (b) with Mecanum wheels and all equipment.

consumption than eGPUs. Of the available detection-segmentation networks,
we chose MultiTask V3 for two reasons. First, from our previous experiments, it
had the highest efficiency and relatively low computational complexity for our
scenario. Second, it was well-prepared by AMD Xilinx for acceleration in SoC
FPGAs, which facilitated its use in the target perception and control system.

3 Implementation of the perception and control system

The starting point for our research was the FPT’22 [11] competition, the aim
of which is to create a model of an autonomous vehicle capable of driving ac-
cording to the road traffic rules in a mock-up city. Figure 1a shows the used
mock-up city. It is equipped with horizontal markings (traffic lanes, pedestrian
crossings), traffic lights, figures imitating pedestrians, and various objects (ob-
stacles) to be avoided on the road. Thanks to this test environment, it is possible
to evaluate the perception and control system of an autonomous vehicle. The
research presented can be divided into four phases: the design and construc-
tion of an autonomous vehicle equipped with Mecanum wheels, the design of
electronics and assembly equipment, the implementation of the perception and
control algorithm on the AMD Xilinx Kria KV260 platform, and the program-
ming of a low-level algorithm to control the motors for the Mecanum wheels.
The most important part of the work is the implementation of the perception
and control system. It uses a detection-segmentation deep convolutional neural
network architecture that is parallelised, quantised, and accelerated on an em-
bedded SoC FPGA platform. On the other hand, the Mecanum wheels allow
for precise manoeuvring, and the detection-segmentation network provides the
necessary information about obstacles and other elements of the environment. In
addition, the PID controller implemented in the motor controllers ensures stable
driving, which is essential for the safety of the vehicle.
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Fig. 2: Scheme of the MultiTask V3 deep neural network, showing layers of neu-
rons grouped into sections. An input image is processed within successive layers
to extract features. The features are used to generate output data: detections,
segmentation, and also a depth map.

3.1 Detection-segmentation network in SoC FPGA

MultiTask V3 is a deep convolutional neural network, designed by the developers
of Vitis AI (AMD Xilinx) as part of an open source library made available for
the development process [7]1. Its architecture is shown in Figure 2 and allows
the simultaneous execution of five tasks: detection, three types of segmentation,
and depth estimation (not used in this work).

The segmentation part of the architecture is divided into three branches.
Each branch can focus on a different task, such as segmenting detected objects,
lanes (drivable area), or road markings. This approach makes it easier to prepare
training sets, as these can be separated from each other, allowing a pixel to be
classified in more than one class (e.g. a road marking should still be detected
as a lane). The additional use of detection means that an in-depth analysis
of detected objects (e.g. in terms of shape or occupied area in the image) is
optional and performed only in special cases. The MultiTask V3 network archi-
tecture consists of several elements. First, the input image is transferred to the
Backbone segment, which is used for feature extraction. This is based on the
ResNet-18 convolutional neural network. Then, thanks to the use of encoders
and convolutional layers, the Neck segment allows further feature extraction
and the combination of low-level and high-level features. The features obtained
are transferred to the appropriate branches: Detection, Depth, and Segmentation
heads. In them, again, thanks to the use of convolution, activation operations,
and normalisation, the corresponding result tensors are generated.

1 MultiTask V3 has not been described in a published scientific paper.
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Due to the specificity of the project and the high complexity of the training
set for depth estimation, the Depth head training was not considered. For the
remaining branches, three training sets were prepared, one common for object
detection and segmentation and two for drivable area segmentation and road
markings. The data for the training sets were obtained from recordings made on
a city mock-up, which made it possible to prepare them strictly for the assumed
task. 250 photos were obtained for the set containing the detected objects and
500 photos for the set showing the drivable area. The images were then manually
labelled using the LabelMe software. The generated datasets were converted
into a format compatible with the framework used to train the network. The
framework is open source, based on Python, uses the PyTorch libraries, and is
published in the Vitis AI libraries. As the software was written for older versions
of the libraries and Python, corrections had to be made in order for the code to
run properly. Once the modifications had been made, the software was launched
using the prepared datasets. The model was trained using the GTX 1060 M GPU
on sets split 80/20 between training and validation. The training was stopped
after 450 epochs if there was no improvement in network performance.

The next step was to quantise the network model so that it could be run on
an embedded SoC FPGA platform. This was done using the software described
above. The quantisation is based on the vai p pytorch API provided by AMD
Xilinx. Finally, the model was compiled into an architecture-compatible format
using the vai c xir program, also provided by AMD Xilinx.

The final detection-segmentation model has been launched on the Kria KV260
SoC FPGA platform [12]. Kria is designed for the development of advanced im-
age processing applications, allowing the acceleration of neural networks thanks
to the use of DPU(Deep Processing Unit). The platform’s operating system is
Ubuntu, with PYNQ software installed, which allows a program to be created
in Python on notebooks using the DPU overlay. In addition, by using the WiFi
USB adapter and modifying the operating system’s network settings, it is pos-
sible to communicate with the platform via SSH (Secure Shell) and through the
Jupyter Notebook server created, allowing the algorithm to be executed and its
operation to be analysed in real-time. This communication also makes it possible
to continuously monitor the consumption of resources and the performance of
the algorithm. Thanks to the libraries used, it is possible to collect image frames
from a connected USB camera with a resolution of 512 × 320 pixels, convert
them into the network input tensor, and then analyse the output tensors using
methods from the OpenCV library. The implemented algorithm imports the
necessary libraries and defines data pre-processing and processing functions.

3.2 Vehicle control algorithm

The algorithm captures the last frame from the USB camera, pre-processes it
(size, colour space), and converts it into tensors, which are then fed into the
MultiTaskv3 neural network. The network returns tensors which are then con-
verted into masks: segmentation of detected objects, segmentation of drivable
area, segmentation of road markings, and bounding boxes of detected objects.
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The received data is then analysed: first, it is checked that the pedestrian or
obstacle is not in the ROI, which is defined as a short distance in front of the
vehicle. In the case of a pedestrian, the vehicle should stop, and in the case of
an obstacle, the overtaking manoeuvre should be initiated. The lines are then
checked. The detection of a continuous cross-line marking triggers a vehicle stop.
Based on the sideline, it is possible to determine the trajectory of movement. If
the sideline is not in the ROI – on the left side of the image, the segmentation of
the drivable area allows checking if the vehicle is at an intersection or in a curve,
which means it needs to turn. Based on the results of the analysis, a trajectory
is determined and transmitted to the Arduino microcontroller, which controls
the motors. The loop then returns to the initial step and continues indefinitely.

3.3 Hardware setup

The electronics project consisted of placing the Arduino Nano Every micro-
controller, based on the ATMega4809, on the breadboard, allowing the use of
hardware interrupts on any pin. The microcontroller is directly connected to the
motor encoders and four Pololu DRV8838 motor controllers, which allow control
using the PWM (Pulse-width Modulation) signal. The power section consists
of a LiPo package and step-down converters: 12V for the FPGA platform and
6V for the motors. The microcontroller communicates and is powered via a
USB connection to the FPGA platform. The motor control was programmed on
the microcontroller in the language provided by Arduino, based on C++. The
program receives the set values from the FPGA platform through the UART
protocol in the format Vx, Vy, ω, where Vx is the longitudinal velocity vector, Vy

is the transverse velocity vector, and ω is the given angular velocity of rotation
relative to the geometric centre of the vehicle. From the above values, the angular
velocities set values for each of the motors are determined. The rotation of each
wheel changes the signals on the encoder connected to it. Using hardware inter-
rupts, it is possible to determine the angle that each of the motors has turned,
which is counted in the counter assigned to it, and stored in the cache. The
interrupt timer has been implemented in the program, which calls the function
exactly every 0.1 seconds. This function retrieves the current counter reading
and compares it with the previous one. This is used to determine the angular
velocity, the previous values of which are also stored and differentiated for the
purposes of the PID (Proportional Integral Derivative) controller. Then, for each
motor, the control set for the given speed, the control error and its differential
are determined, which makes it possible to determine the P and D terms of
the PID controller. The values obtained are used to determine the filling of the
PWM signal sent to the motor controllers. The program runs in an infinite loop,
and in asynchronous mode, the microcontroller is constantly waiting for a new
reference to be sent.

In order to better adapt the vehicle to the dimensions of the city mock-up,
all its elements were made using 3D printing technology, such as adapters for
the motors to mount the wheels, USB camera holder, base platform adapted to
mount the motors, cameras, electronics, power supply, and the main computing
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platform. Four Pololu HP micromotors with 150:1 gears and encoders were at-
tached to the base platform, on which the shaft was mounted using Mecanum
80mm diameter wheels with adapters. On the underside of the platform is a
breadboard with electronics to control the motors and a 14.8V nominal LiPo
pack. At the top of the chassis is a computer platform and a USB camera
mount. Figure 1b shows the model of the autonomous vehicle described above.

4 Evaluation of the detection-segmentation network

The first experiment was to compare the quality (efficiency, accuracy) of net-
work model inference before and after quantisation. The tests were performed
using the libraries provided by AMD Xilinx, discussed earlier. Each branch was
evaluated on the test set and the results are summarised in Tabels 1, 2, 3 and 4.
As can be seen, quantisation resulted in a slight quality decrease (of the order of
less than one per cent). This means, therefore, that the model used by the SoC
FPGA platform will behave almost identically to the one run on a PC equipped
with a graphics card in the environment provided by AMD Xilinx. 3.1.

To test the efficiency and cost-effectiveness of the proposed solution, a series
of performance tests were carried out on the Kria KV260 platform. The input
to the algorithm was a pre-prepared dataset derived from footage recorded on
a mock-up of the city. During operation, the use of the quad-core Cortex-A53
processor clocked at 1.3 GHz used in the platform, the use of RAM (Random
Access Memory) and CMA (Contiguous Memory Allocator), and the power con-
sumption of the SOM (System on Module) platform were checked. The results
are shown in Table 5. It is worth noting that the platform makes full use of
one CPU core. According to the manufacturer’s documentation, it is possible
to run the algorithm using multithreading, but this would involve higher power
consumption. The results show that the platform consumes only around 5W of
power when running, which allows it to be considered energy efficient.

In order to compare the performance of the platform used, the inference
time of the MultiTask V3 network and the execution time of one iteration of
the algorithm was examined. The same algorithm was then run on the NVIDIA
Jetson Nano and NVIDIA Jetson Xavier NX eGPU platforms, using the pre-
quantisation model and the PyTorch library to run the network. The results of
the algorithm’s efficiency on the platforms are shown in Table 6.

Experiments show that the Kria KV260 platform has demonstrated the best
performance in its power consumption class. In terms of processing speed, it
clearly outperforms the NVIDIA Jetson Nano platform, with the same power
consumption. It also runs faster than the NVIDIA Jetson Xavier NX platform
in 10W consumption mode. Only when using the 20W consumption mode does
the NX platform achieve approximately 0.5 fps (frames per second) more, but
at the cost of four times higher power consumption.

The achieved processing speed of almost 5 FPS is sufficient for the algorithm
to make a decision in a satisfactory time. However, the results show that the
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Table 1: Comparison of results for object detection (mAP – mean Average Pre-
cision).

Quantisation
mAP50 [%] mAP70 [%] mAP75 [%]

state

Before 99.4 99.4 97.2
After 99.3 99.3 97.0

Table 2: Comparison of results for drivable area segmentation (MIoU – Mean
IoU, IoU – Intersection over Union).

Quantisation
MIoU [%]

IoU [%]
state Background Drivable area

Before 97.31 97.88 96.75
After 97.29 97.86 96.72

Table 3: Comparison of results for lane segmentation (MIoU – Mean IoU, IoU –
Intersection over Union).

Quantisation
MIoU [%]

IoU [%]
state Background Lanes

Before 90.72 99.04 82.40
After 90.69 99.04 82.33

Table 4: Comparison of results for object segmentation (MIoU – Mean IoU, IoU
– Intersection over Union).

Quantisation
MIoU [%]

IoU [%]

state Background Pedestrian
Amber Red Green

Obstacle
Light Light Light

Before 96.52 99.85 88.69 93.90 95.13 94.66 94.88
After 92.08 99.81 88.69 92.56 90.49 89.45 91.46

application of deep neural networks on energy-efficient embedded platforms is
still a significant challenge.

To sum up. The best results were obtained on the Kria KV260 SoC FPGA
platform. The SoC FPGA platform allows us to obtain satisfactory results in
terms of accuracy, efficiency, and power consumption. It should be noted that
the currently implemented algorithm is still under development, and the results
show that it would be beneficial to focus more on code optimisation and system
reconfiguration to utilise all CPU cores. This could slightly increase power con-
sumption, but even 10W of consumption can be considered low for a platform
that would be the most important element of an autonomous car. The code used
in the experiments described is available at https://github.com/vision-agh/
mt_kria.

https://github.com/vision-agh/mt_kria
https://github.com/vision-agh/mt_kria
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Table 5: Comparison of resource consumption on the Kria KV260 platform.

Resource usage
CPU cores

RAM CMA Power
CPU0 CPU1 CPU2 CPU3

Used 85 % 22 % 3 % 3 % 38 % 6 % 4.95 W

Table 6: Comparison of algorithm’s performance on different computing plat-
forms.

Embedded platform
Power Speed Execution Model Inference
[W] [fps] time [s] time [s]

Kria KV260 5 4.85 0.206 0.073

Nvidia Jetson Nano 5 2.07 0.483 0.223

Nvidia Jetson Xavier NX
10 4.35 0.230 0.093
20 5.48 0.182 0.068

5 Conclusion

In this paper, we have discussed the implementation of a perception system for
autonomous vehicles using a detection-segmentation network deployed in an SoC
FPGA. We have presented the process of preparing a custom dataset according
to the requirements of the FPT’22 competition and the training of a neural
network model. We have also given a detailed description of the construction of
a Mecanum wheel-based autonomous vehicle model, focusing on mechanical and
electrical aspects. A fully autonomous control algorithm has been implemented
and run on the discussed platform, as well as on two eGPUs. Several experiments
have been performed, showing the efficiency and low power consumption of the
proposed solution, which supports our thesis that the FPGA Kria KV260 using
the MultiTask V3 neural network is a suitable solution for autonomous cars and
robots with limited space and resources.

In future work, we will first refactor the code to further improve its efficiency.
We also plan to test the vehicle model on the mock-up. Secondly, we will try to
use the weakly supervised learning and self-supervised learning methods, which,
in the case of an atypical, custom dataset, would allow a significant reduction
in the labelling process of the learning data. We would also like to consider
adding modules for depth estimation and optical flow, as these are often used in
autonomous vehicle perception systems.
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