
A Hybrid GNN approach for predicting node data for
3D meshes.∗

Shwetha Salimath † Francesca Bugiotti ‡ Frédéric Magoulès §

Abstract

Metal forging is used to manufacture dies. We require the best set of input param-
eters for the process to be efficient. Currently, we predict the best parameters using
the finite element method by generating simulations for the different initial conditions,
which is a time-consuming process. In this paper, introduce a hybrid approach that
helps in processing and generating new data simulations using a surrogate graph neu-
ral network model based on graph convolutions, having a cheaper time cost. We also
introduce a hybrid approach that helps in processing and generating new data sim-
ulations using the model. Given a dataset representing meshes, our focus is on the
conversion of the available information into a graph or point cloud structure. This new
representation enables deep learning. The predicted result is similar, with a low error
when compared to that produced using the finite element method. The new models
have outperformed existing PointNet and simple graph neural network models when
applied to produce the simulations.

Keywords: Neural Network ; Graph Neural Network ; Deep Learning ; Finite element
methods ; Metal forging simulations ; 3D Mesh Data

1 Introduction
Metal forging is the process used to shape metals using compressive forces, and multiple pa-
rameters influence this process. Hot forging seals minor cracks and redistributes impurities
leading it to be the most used in the industry. But this process has a high cost associated
with the manufacturing of the forging die. This is due to the need of setting the produc-
tion environment by tuning the important initial parameters by multiple iterations. In the
beginning, tuning was done by producing samples resulting in lots of energy, time, and ma-
terial wastage. This led to the use of simulation software to provide the best set of initial
parameters for product manufacturing.

The Finite Element Method (FEM) has been used as a significant part of designing fea-
sible metal forging processes [1]. The FEM calculates and gives us the simulation depending
on the set of feasible conditions to select the best set of input parameters. The objective of
FEM [2] is to solve partial differential equations resulting in a system of algebraic equations.
Large meshes require a lot of computational time and resources for optimizing and running
the process, attaching a very high time cost to the product.

Artificial neural networks [3] (ANN) are machine learning models used mostly for solving
problems on conventional regression and statistical models [4]. The graph neural network
(GNN) model [5] allows the processing of the data represented as a graph. They have two
main purposes, (i) graph-focused, or (ii) node-focused.

In this paper, we propose a hybrid approach that uses FEM and a deep learning model
together to create quicker simulations for finding the best set of input conditions. In this

∗GNN: graph neural network
†Université Paris-Saclay, CentraleSupelec, France
‡Université Paris-Saclay, CentraleSupelec, LISN, France
§Université Paris-Saclay, Centralesuplec, MICS, France

Preprint August 25, 2023

ar
X

iv
:2

31
0.

14
70

7v
1 

 [
cs

.L
G

] 
 2

3 
O

ct
 2

02
3



hybrid approach, we introduce a GNN model which is trained on a dataset of meshes.
These meshes are generated by using FEM simulations for a subset of initial conditions.
The trained model is then used to predict the simulations for the rest. Once trained, the
model can generate one simulation in 300 milliseconds, while the FEM would take about
45 minutes. The proposed model would thus be 99.9% faster than the FEM software. The
simulations generated from the trained model, though not completely accurate, are good.
We achieve an average mean absolute error of 10 Newton/meter at a mesh point, for which
the actual wear ranges from 0-2000 N/m.

The paper is organized as follows. In Section 2 we discuss the literature review. This is
followed by Section 3, which explains the whole process in detail. In Section 4 we compare
our models with baseline models and end with a conclusion and future work in Section 5.

2 Related Work
There has been a rapid development in using 3D data for deep learning as it has numerous
applications in different domains like robotics, autonomous driving, medical, and analyzing
3D objects in manufacturing industries. We can represent the 3D data as a point cloud,
meshes, depth images, or grids.

Point clouds have been the most popular form of 3D representation. PointNets [6] are
ANN used as a baseline for classification and segmentation tasks of 3D objects. The PointNet
model upscales and then downscales the point cloud features using 1D convolution layers
with activation function and max pooling.

Solving a FEM simulation is a difficult task. Attempts have been made to solve the
partial differential equations using deep learning models known for their powerful function-
fitting capabilities [7]. These are in the field of biomechanics to simulate phenomena in
anatomical structures [8].

For applications related to automated analysis of the generated meshes, PointNet, and
GNN like MeshNet and graph convolution networks are slowly being introduced, once
trained, are efficient and time-saving. MeshNet [9] is used to learn features from the mesh
data, which helps to solve the irregularity problems in representing the shape.

Graph convolution layers [10] use neighbor degree and node features and scale them
linearly in terms of the number of graph edges to learn hidden layer representation. The
graph features can be extracted without the need to perform extra transformations. The
Edge convolution layer [11] uses the k-nearest neighbor of patch centers for constructing
sequential embedding by extracting global features and pairwise operations for local neigh-
borhood information. The SAGE convolution layer [12] uses sampling and aggregation of
features from the neighborhood. Thus, with each iteration, more information is gained due
to the aggregation, which could be mean, pooling, or graph convolution function. All of
these methods were used for the classification of graphs or segmentation of graph nodes and
not in generating simulations for meshes or graphs.

3 Methodology
The main objective is to create simulations as produced by the FEM for a new set of initial
conditions in metal forging. The output parameter is wear at each node of the mesh, which
tells us about the damage caused in the forging die during the process.

We start with the set of initial conditions as parameters. A very small subset is used
to generate FEM simulations which will be used for training the GNN model. We need to
extract mesh node data to create a graph or point cloud [13], used in deep learning models.
Once the model is trained, we pass on the rest of the set to get the simulations . The process
is represented in Fig 1.

2



Figure 1: Block diagram of the process

3.1 Dataset
The die designs of the Yoke metal forging process are provided as data by Transvalor. Mesh is
composed of cells and points. We work with unstructured meshes, having sparse or arbitrary
cell numbering within the mesh. We use Transvalor packages to produce an unstructured
mesh from the FEM simulations. These meshes are then analysed and converted into graphs
or point clouds by extracting information using pyvista.

Each cell of the mesh has information such as temperature, pressure, displacement stress,
etc. stored in them. We only require the "wear" which is our output feature to be predicted.
Cells can be of two types, 2D or 3D. The meshes in our case are made of 3D tetrahedron
cells. We take the x,y, and z coordinates of each mesh point instead of the cell as they do
not have coordinates of their own. A point is a place of contact of cells with its neighbor.
Thus we need to convert the cell data into point data. This is done by averaging the values
of all cells attached at the point of contact.

The meshes were huge, about 40 Megabytes each, and are densely packed, having around
twenty-seven thousand nodes. To bring our computation time and cost further down, we
use just the nodes on the external surface as the "wear" of a particular area is an external
feature.

Figure 2: External surface of the mesh

It can be seen in Fig 2 that many nodes in the mesh have zero "wear". The yellow
color represents maximum wear and the purple zero wear. Having a sparse output vector
with a skewed dataset could affect our deep learning model. Thus, taking only the external
surface and also selecting the training initial conditions a bit far from one another helps
better fit the model. After considering just the surface points, the upper deformable die
now consists of around seven thousand points, and the lower deformable die is about nine
thousand points. We have a total of 40 meshes in our dataset.

G(V,E)← V,Elist (1)

We initialize the node vector V consisting of node features (nf1, nf2, nf3, nf4, nf5), such

3



as x,y, and z coordinates, with initial parameters as temperature, and friction coefficient
for which wear is needed to be calculated. The edges of the mesh are converted into an
adjacency list using cells [(n1, n3), (n4, n10), etc.] called Elist. We use them to create the
graph to be used as input to the model.

Similarly, we later tested for a new dataset of meshes, to check the network’s credibility
on new data. The new mesh is comparatively smaller, about 3 Megabytes each. There are
about two thousand nodes in the external surface of the mesh. There are a total of sixty-four
meshes in the new dataset.

3.2 Deep Learning Models
The GNN model designs are used as a surrogate model to predict the final mesh with wear
features. We have used PointNet and a GNN model with graph convolution layer [14] as a
baseline model.

There are two main network architectures used. We first have a model consisting of
five edge convolution layers, followed by Rectified Linear (ReLU) activation function to add
non-linearity to the layers. Since "wear" can only be positive or zero, thus using a ReLU
function helps us as it only allows values greater than or equal to zero to pass to the next
layer by deactivating the neuron with negative output, thus training the model faster. The
convolution is performed on the node features while also taking into account its neighboring
node features.

The graph and node feature vector are both given to the model. We first upscale the
features to fifty and then to a hundred, followed by a fully connected layer. We then
downscale these features back to fifty and, finally one. Thus at the end, we have a tensor
of size equal to the number of nodes. Each node is associated with a value, which is then
stored as a mesh feature "wear".

In the other model, we introduce a linear layer instead of the fully connected convolution
layer, as shown in Fig 3. As with only convolution layers, there is not much learning
happening in the model. Also by adding a linear layer, we try to optimize a system of linear
equations, similar to FEM.

Figure 3: GNN model using edge convolution and liner layers

On adding linear functions in between the convolutions with different positional combi-
nations, the best position was to replace it in the between instead of the fully connected
convolution layer. This not only increased the accuracy slightly but also did not require a
lot of additional training time, since the total number of layers is still the same. The linear
layer has input and output dimensions equal to nodes in the graph by taking a transpose
of the output vector of the convolution layer. We now have a linear equation for each node,
with all its convoluted features. An increase in the number of features in the liner layer did
not lead to any more increase in accuracy.

Dropout layers [15] are used in between the convolution and linear layers to regularise
the model, by preventing over-fitting. We are trying to create a generalized model, to make
sure we do not over-fit the model when trained on a different set of data. By adding a
dropout layer we randomly drop out or ignore some output node value, thus each layer is
now different. It also helps to make the model more is robust by making the network adapt
to correct mistakes from previous layers as each time there is a random dropout.

Different gradient descent algorithms are used to optimize the objective function con-
sisting of model parameters by minimizing the error. The parameters are updated in the

4



opposite direction of the gradient to reach a local or global minimum [16]. Adam opti-
mization [17] gives better results than with just stochastic gradient [16] as it has a different
learning rate associated with each parameter unlike in stochastic gradient. It is important
to have a low learning rate and weight decay to not over-fit the model too early in the
iteration, and to allow it to reach its correct minimum. For backpropagation, the Mean
Absolute Error (MAE) [18] and the Mean Square Error (MSE) [18] are calculated over an
iteration over a single node.

The other two models tested were of the same architecture as shown in Fig 3, but we
replace the edge convolution layer with the SAGE convolution layer. The model is built and
trained using the deep graph library [19] with PyTorch [20] backend.

4 Results and Discussions
In this section, we discuss the criteria used to compare the models and analyze the results
of our main models for both the upper and lower deformable die. In Table 1, the error
percentage is represented to check the performance of the models. The error percentage is
calculated as

Error% =
MAE

Meanwear
(2)

Table 1: Error percentage on the old and new dataset

Model Dataset 1 Dataset 2
M lower DD upper DD lower DD upper DD

Mean 90.82 48.34 305 265
Maximum 1100 857 4105 4162

Graph Convolution 39 % 65 % 21.3 % 11.3 %
PointNet 34 % 32.2 % 8.1 % 1.8 %

Edge Convolution(L) 9.3 % 13 % 6.5 % 1.8 %
SAGE convolution(L) 8.8 % 13 % 2.5 % 1.5 %

The error percentage may seem high, but it is because the mean is very low compared to
higher points. This is due to the sparsity of the output vector nodes with zero wear. Table
1 also shows that even though the error was low for the upper deformable die compared to
the lower one, the error percentage lets us know that is due to the overall values and the
mean, in general being low. Both the SAGE and edge convolution model with the linear
layer have performed very well.

For the new dataset, although both the edge and SAGE models have the best perfor-
mance, PointNet has also performed quite well compared to the graph convolution. This
could mean that the graph convolution network is less susceptible to changes, that is the net-
work parameters need to be optimized again for the new dataset, which is a time-consuming
process. The PointNet trains the fastest followed by GNN, SAGE, and EDGE models, which
have a similar training time. Calculating the error percentage helps to better understand
the results in terms of the value for the company.

The learning curve is plotted over the logarithm of average MSE error over all the training
models. The learning rate for the upper deformable die is more smooth than that for the
lower die shown in Fig 4. The loss decreases quickly at the start except for the point cloud
model and then after 700 epochs, the curve is still decreasing but at a very low pace. We
could get a smoother curve with a smaller learning rate. The SAGE overall is smoother
compared to the edge convolution model. We have run the model for about a thousand

5



Figure 4: Learning curve for our main models

epochs to test for model stability. This also allows us to understand if there is a possibility
of attaining a global minimum or local minimum.

The model created can be used for any similar kind of mesh data structure, without
having to change the code. The number of neurons in the linear layer depends on the input
dimension of nodes in the graph, which is automatically adjusted. The optimization and
the model initialization parameters are the same for all four types of meshes studied. The
only drawback is that sometimes the learning curve may not be smooth and very rarely it
would get stuck at local minima.

4.1 Results for EDGE and SAGE model convolution with linear
layer

Figure 5: Comparison of actual and predicted meshes for both old and new dataset

From the 3D figure representation of wear values at each node shown in Fig 5, we see
that the prediction is quite similar to the actual value. The pattern of the node values
has been matched, with slight over-predictions at some points. We were mostly able to
correctly detect the nodes with zero "wear" and the area of maximum wear. Though the
values are not perfectly matched, the results are good and we are able to understand the
"wear" distribution correctly over the die. Since the new die is a cylindrical sector instead
of a cylinder, the mesh seen from different sides, is different, unlike the previous case when
all the meshes were cylindrical. We can thus conclude the model is robust.

6



4.2 Time Cost Analysis for the hybrid process
Generating a thousand simulations with FEM would take around twenty days, can now be
reduced to two to three days using the hybrid approach. We only need FEM simulations for
around twenty to thirty initial conditions and the rest can be generated using the trained
model. Thus, a cheaper time cost of about 85 % could be achieved. The trained model
takes only 300 milliseconds to predict a new set of initial conditions. We could thus check
for more initial conditions.

The time required by the neural network is proportional to the number of nodes in the
mesh, as that would mean more features and parameters to be optimized. For training the
upper die, the same network would take around three hours but for the lower die, it would
be around five hours. It is similar for the completely new dataset as well. Since the new
meshes are comparatively small, the network requires around one and a half hours to train.

5 Conclusion and future work
The main conclusion is that adding a linear layer to the model has increased the final
accuracy. This might be due to trying to replicate a system of linear equations which is
similar to the output of a FEM. For a neural network, accuracy increases with depth, but
this would only be valid provided we have a large data source. In our case increasing layers
increases the loss, as there are many new parameters to be calculated for the new layers, but
with fewer data which leads to more complexity. If initially we had a large number of unique
features then maybe increasing the number of neurons might have led to better accuracy.

Hyperparameter tuning is very important as there have been large differences between the
same model results with slight changes in the initializing model and optimization parameters.
Adding a lot of convolution in the graph neural network has not increased accuracy to a
great extent. Thus, maybe graph neural networks need not be too deep.

Future work was recently discussed with the company to run the model on more data-set
with more initial parameters for the die. By increasing the sample in the training data-set,
we could observe the changes in the error to check if the accuracy would increase, or if it
over-fits the model. We also need to check for more completely new mesh shapes, to check
for the generality of the model.

A check on the MSE loss after every 100 epochs can be made. If the learning curve is
still following a decreasing trend, then continue the process. If it is almost constant with
very small fluctuations around the mean, stop the process, as it means we have reached
our optimization minima. Also, a different combination of graph convolutions and graph
attention layers can be used to create a new model. More structural features could be
extracted from the graph. It is important to make sure that these features are not too
correlated with each other, as in that case, it would decrease the accuracy of the model.

Acknowledgment
We thank Dr. Jose Alves, Scientific Developer at Transvalor S.A for providing the datasets
for conducting this research.

References
[1] B-A Behrens. Finite element analysis of die wear in hot forging processes. CIRP annals,

57(1):305–308, 2008.

[2] Isaac Harari and Frédéric Magoulès. Numerical investigations of stabilized finite element
computations for acoustics. Wave Motion, 39(4):339–349, 2004.

7



[3] Mohamad H Hassoun et al. Fundamentals of artificial neural networks. MIT press,
1995.

[4] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada,
Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in artificial neural
network applications: A survey. Heliyon, 4(11):e00938, 2018.

[5] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[6] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660, 2017.

[7] Yanan Guo, Xiaoqun Cao, Bainian Liu, and Mei Gao. Solving partial differential
equations using deep learning and physical constraints. Applied Sciences, 10(17):5917,
2020.

[8] Renzo Phellan, Bahe Hachem, Julien Clin, Jean-Marc Mac-Thiong, and Luc Duong.
Real-time biomechanics using the finite element method and machine learning: Review
and perspective. Medical Physics, 48(1):7–18, 2021.

[9] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. Meshnet: Mesh
neural network for 3d shape representation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 8279–8286, 2019.

[10] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[11] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017.

[13] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In 2011
IEEE international conference on robotics and automation, pages 1–4. IEEE, 2011.

[14] Meduri Venkata Shivadity, José Alves, Francesca Bugiotti, and Frédéric Magoulès.
Graph neural network-based surrogate models for finite element analysis. arXiv preprint
arXiv:2211.09373, 2022.

[15] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[16] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[18] Weijie Wang and Yanmin Lu. Analysis of the mean absolute error (mae) and the
root mean square error (rmse) in assessing rounding model. In IOP conference series:
materials science and engineering, volume 324, page 012049. IOP Publishing, 2018.

[19] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-
performant package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

8



[20] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural infor-
mation processing systems, 32, 2019.

9


	Introduction
	Related Work
	Methodology
	Dataset
	Deep Learning Models

	Results and Discussions
	Results for EDGE and SAGE model convolution with linear layer
	Time Cost Analysis for the hybrid process

	Conclusion and future work

