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Abstract. Entity Matching is the task of deciding if two entity descrip-
tions refer to the same real-world entity. State-of-the-art entity matching
methods often rely on fine-tuning Transformer models such as BERT or
RoBERTa. Two major drawbacks of using these models for entity match-
ing are that (i) the models require significant amounts of fine-tuning
data for reaching a good performance and (ii) the fine-tuned models
are not robust concerning out-of-distribution entities. In this paper, we
investigate using ChatGPT for entity matching as a more robust, train-
ing data-efficient alternative to traditional Transformer models. We per-
form experiments along three dimensions: (i) general prompt design, (ii)
in-context learning, and (iii) provision of higher-level matching knowl-
edge. We show that ChatGPT is competitive with a fine-tuned RoBERTa
model, reaching a zero-shot performance of 82.35% F1 on a challenging
matching task on which RoBERTa requires 2000 training examples for
reaching a similar performance. Adding in-context demonstrations to the
prompts further improves the F1 by up to 7.85% when using similarity-
based example selection. Always using the same set of 10 handpicked
demonstrations leads to an improvement of 4.92% over the zero-shot per-
formance. Finally, we show that ChatGPT can also be guided by adding
higher-level matching knowledge in the form of rules to the prompts.
Providing matching rules leads to similar performance gains as provid-
ing in-context demonstrations.
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1 Introduction

Entity matching is the task of discovering entity descriptions in different data
sources that refer to the same real-world entity [4]. While early matching systems
relied on manually defined matching rules, supervised machine learning methods
have become the foundation of most entity matching systems [4] since the 2000s.
This trend was reinforced by the success of neural networks [2] and today most
state-of-the art matching systems rely on pre-trained language models (PLMs),
such as BERT or RoBERTa [5,9,10].

The downsides of using PLMs for entity matching are that (i) PLMs need a
lot of task-specific training examples for fine-tuning and (ii) they are not very
robust concerning unseen entities that were not part of the training data [1,10].

Large autoregressive language models (LLMs) [13] such as GPT, ChatGPT,
PaLM, or BLOOM have the potential to address both of these shortcomings.
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Due to being pre-trained on huge amounts of text as well as due to emergent
effects resulting from the model size [12], LLMs often have a better zero-shot
performance compared to PLMs such as BERT and are also more robust con-
cerning unseen examples [3]. Initial research on exploring the potential of LLMs
for data wrangling tasks was conducted by Narayan et al. [8] using the GPT-3
LLM. This paper builds on the results of Narayan et al. and extends them with
the following contributions:

1. We are the first to systematically evaluate the performance of ChatGPT
(gpt3.5-turbo-0301) on the task of entity matching, while Narayan et al.
applied the earlier GPT-3 model (text-davinci-002).

2. We systematically compare various prompt design options for entity match-
ing while Narayan et al. tested only two designs.

3. We extend the results of Narayan et al. on in-context learning for entity
matching by introducing a similarity-based method for selecting demonstra-
tions from a pool of training examples. Furthermore, we analyze the impact
of in-context learning on the costs (usage-fees) charged for running entity
matching prompts against the OpenAI API.

4. We are the first to experiment with the addition of higher-level matching
knowledge to prompts as an alternative to in-context demonstrations. We
show that guiding the model by stating higher-level matching rules can lead
to the same positive effect as providing in-context examples.

2 Experimental Setup

Narayan et al. [8] have measured the performance of GPT-3 using a range of
well-known entity matching benchmark datasets [11]. All of these datasets are
available on the Web for quite some time and are widely discussed in various
papers and on various webpages. Thus, it is very likely that the training data
of GPT-3 and ChatGPT contains information about these benchmarks which
could give the language models an advantage. In order to eliminate this poten-
tial of leaking information about the test sets, we use the WDC Products [10]
benchmark which has been published in December 2022 and is therefore newer
than the training data of the tested models.

In order to understand the potential of LLMs for challenging entity matching
use cases, we use a difficult variant of the WDC Products benchmark for the ex-
periments which contains 80% corner-cases (hard positives and hard negatives).
The types of products that are contained in our evaluation dataset range from
computers and electronics over bike parts to general tools and thus examplify
different product categories. The products are described by the attributes brand,
title, description and price. In order to keep the costs of running benchmark ex-
periments against the OpenAI API in an acceptable range, we down-sample the
WDC Products benchmark to 50 products and retain the high ratio of corner-
cases by using the original benchmark creation code. Table 1 shows statistics
about the original and down-sampled versions of the benchmark.
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Table 1. Statistics of the WDC Products benchmark datasets.

Dataset Type Purpose # Pairs # Pos # Neg

Original Validation RoBERTa baseline 4,500 500 4,000
Original Training RoBERTa baseline 19,835 8,741 11,364

Sampled Validation Evaluation of prompts 433 50 383
Sampled Training In-context sample selection 2025 898 1,127

API Calls and Costs: We use the down-sampled validation set to report
the impact of the various prompt design decisions and the down-sampled training
set as a source of in-context demonstrations for the corresponding experiments.
Thus, one evaluation run results in 433 API calls to the OpenAI API. For all
experiments we use the ChatGPT version gpt3.5-turbo-0301 and set the temper-
ature parameter to 0 to make experiments reproducible as stated in the OpenAI
guidelines. We further track the cost associated with each pass of the validation
set by using the Tiktokenizer1 python package to calculate the cost associated
with each prompt and corresponding ChatGPT answer.

Serialization: For the serialization of product offers into prompts, we follow
related work [8] and serialize each offer as a string with pre-pended attribute
names. Figure 1 shows examples of this serialization practice for a pair of product
offers and the attribute title.

Evaluation: The responses gathered from the model are natural language
text. In order to decide if a response refers to a positive matching decision re-
garding a pair of product offers, we apply simple pre-processing to the answer
and subsequently parse for the word yes. In any other case we assume the model
decides on not matching. This rather simple approach turns out to be surpris-
ingly effective as the high recall values in Table 2 and manual inspection of the
answers suggest. This approach has also been used by Narayan et al. [8].

Replicability: All data and code used in this paper are available at the
project github2 meaning that all experiments can be replicated. In addition,
we contributed the down-sampled datasets and three selected prompts to the
OpenAI evals3 library.

3 General Prompt Design

Designing the prompt input to large language models to convey the task de-
scription, input, as well as additional information is one of the main challenges
for achieving good results [7]. Careful prompt design is important as it can have

1 https://github.com/dqbd/tiktokenizer
2 https://github.com/wbsg-uni-mannheim/MatchGPT
3 https://github.com/openai/evals/blob/main/evals/registry/evals/product-
matching.yaml
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Fig. 1. Examples of prompt designs and product offer serializations.

a large impact on the overall task performance [8,14]. In this Section, we ex-
periment with various prompt designs for ChatGPT in a zero-shot setting: We
describe the task to the model and ask for a matching decision for each of the ex-
amples in our validation set. The prompt designs that we use can be categorized
as follows and are illustrated by the example prompts in Figure 1:

– General: These prompts describe the task as the matching of entity descrip-
tions to real-world entities. The product offers are referred to as entities. An
example of a general prompt is the right prompt in Figure 1.

– Domain: The domain-specific prompts describe the task as matching of
product descriptions and refers to the examples as product offers. An example
of this type of prompt is the left prompt in Figure 1.

– Complex: Prompts in this category use more complex language, specifically
they use the formulations ”refer to the same real-world product” or ”refer
to the same real-world entity”. An example is the right prompt in Figure 1.

– Simple: This type of prompt uses less complex language and replaces the
formulations from Complex with a simple ”match”. An example is the left
prompt in Figure 1.

– Free: This category reflects prompts that do not restrict the models answers
in any way. An example is the right prompt in Figure 1.

– Forced: In contrast to Free, these kinds of prompts explicitly tell the model
to answer the stated question with ”Yes” and ”No”. An example is the left
prompt in Figure 1

– Attributes: We vary using the three attributes brand (B), title (T) and
price (P) in the combinations T, BT and BTP when serializing product
offers into single strings.

Table 2 shows the results of the experiments with general prompt designs and
associated average cost for querying a single pair with each design. The recall
values for all prompts with ChatGPT are equal to or above 98% which suggests
that, in combination with the lower precision values, the model is inclined to
overestimating matching pairs in these cases. Interestingly, the prompt design of
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Table 2. Results of the general prompt design experiment with associated cost.

Prompt P R F1 ∆ F1
cost (¢)
per pair

general-complex-free-T 49.50 100.00 66.23 - 0.11
general-simple-free-T 70.00 98.00 81.67 15.44 0.10
general-complex-forced-T 63.29 100.00 77.52 11.29 0.14
general-simple-forced-T 75.38 98.00 85.22 18.99 0.13
general-simple-forced-BT 79.66 94.00 86.24 20.01 0.13
general-simple-forced-BTP 71.43 70.00 70.70 4.47 0.13

domain-complex-free-T 71.01 98.00 82.35 16.12 0.11
domain-simple-free-T 61.25 98.00 75.38 9.15 0.10
domain-complex-forced-T 71.01 98.00 82.35 16.12 0.14
domain-simple-forced-T 74.24 98.00 84.48 18.25 0.13
domain-simple-forced-BT 76.19 96.00 84.96 18.73 0.13
domain-simple-forced-BTP 54.54 84.00 66.14 -0.09 0.13

Narayan-complex-T 85.42 82.00 83.67 17.44 0.10
Narayan-simple-T 92.86 78.00 84.78 18.55 0.10

Narayan et al. [8] that we also evaluate using ChatGPT, conversely results in a
more balanced precision and recall, the latter being significantly lower than the
ones we observe for our prompts. The main difference between Narayan et al.’s
and our prompts is that they provide the examples to be matched before the
task description while we do it the other way around. Comparing the F1 val-
ues of our general and domain-specific prompts with ChatGPT, three patterns
emerge: (i) Formulating the prompt with domain-specific wording leads to gen-
erally more stable results, (ii) Using simpler language works better than more
complex wording in all but one case and (iii) forcing the model to answer with a
short ”Yes” or ”No” leads to a significant increase in every scenario. While the
addition of brand information increases F1 by up to 1% F1 percentage point,
adding the price as well leads to a significant decrease in performance likely due
to the format and currency of the prices not being normalized in the dataset.

Baselines: We compare the results of ChatGPT on our benchmark dataset
to results of GPT-3 gpt3.5-davinci-002 which has been used by Narayan et al. [8],
as well as to results for RoBERTa-base fine-tuned with different amounts of train-
ing data. A fine-tuned RoBERTa-base corresponds to the state-of-the-art entity
matching system Ditto [5] with all pre-processing and data augmentation op-
tions turned off. Results of the baseline methods are presented in Table 3. Using
four of the prompt designs on the earlier gpt3.5-davinci-002 model shows that
this model generally performs significantly worse compared to ChatGPT while
having an about ten times higher cost per queried pair. The comparison with the
fine-tuned RoBERTa-base baseline shows that ChatGPT in a zero-shot setting is
able to reach a similar performance or even surpass RoBERTa fine-tuned with 2K
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Table 3. Results of the baseline experiments.

Model Configuration P R F1 ∆ F1
cost (¢)
per pair

gpt3.5-davinci-002

domain-complex-forced-T 59.70 80.00 68.38 2.15 1.36
domain-simple-forced-T 72.34 68.00 70.10 3.87 1.29
general-complex-forced-T 43.10 100.00 60.24 -5.99 1.40
general-simple-forced-T 65.50 80.00 70.18 3.95 1.29

RoBERTa
fine-tuned on sampled
training set (2K pairs)

85.99 80.00 82.72 16.49 -

RoBERTa
fine-tuned on original
training set (20K pairs)

86.79 92.00 89.32 23.09 -

training pairs. RoBERTa trained with 20K pairs is finally able to surpass most
zero-shot prompts but its recall remains 6-8% lower. The training data for both
RoBERTa models contains product offers for the same products that are also
part of the validation set, i.e. these products are considered in-distribution. It
has been shown [10] that such fine-tuned models experience a significant drop in
performance when applied to pairs containing out-of-distribution products. The
performance of ChatGPT in the zeroshot setup essentially corresponds to results
on out-of-distribution data as no training happens, suggesting that ChatGPT is
generally more robust concerning unseen products.

4 In-Context Learning

In the second set of experiments we analyse the impact of adding matching and
non-matching product offer pairs as task demonstrations [6] to the prompts in or-
der to help the model to understand and subsequently perform the task correctly.
We experiment with three different heuristics for selecting task demonstrations:

– Hand-picked: Hand-picked demonstrations are a set of up to 10 match-
ing and 10 non-matching product offer pairs which were hand-selected by a
human domain expert from the pool of the training set.

– Random: Demonstrations are drawn randomly from the labeled training
set while making sure that they do not contain any of the products that are
part of the product offer pair to be matched.

– Related: Related demonstrations are selected from the training set by calcu-
lating the Jaccard similarity between the pair to be matched and all positive
and negative pairs in the training set. The resulting similarity lists are sorted
and the most similar examples are selected.

In addition to the three selection heuristics, we also vary the amount of
demonstration (shots) from 6 over 10 to 20 with an equal amount of positive
and negative examples in order to evaluate the impact on performance and API
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cost. Due to their length, we do not provide examples of in-context prompts in
this paper but refer the reader to the project github which contains all prompts.

Table 4 shows the results of the in-context experiments. We compare the re-
sults to the zero-shot baseline of using domain-specific, complex language as well
as forcing the model to answer with a simple ”Yes” or ”No” (see Section 3). For
all three selection heuristics, providing 3 positive and 3 negative examples as task
demonstrations leads to improvements over the zero-shot baselines of at least 2%
F1. Random demonstrations have the smallest impact with a maximum increase
of 3.89% (10 demonstrations) while the hand-picked demonstrations lead to an
increase of up to 4.92% (10 demonstrations) over the zeroshot baseline. Provid-
ing 20 related examples as demonstrations has the largest impact and improves
the F1 score by nearly 8% over the baseline. Across all in-context experiments,
providing demonstrations consistently leads to an increase in precision while the
recall decreases. This points to the model becoming more cautious when predict-
ing positives. The more examples are provided the more pronounced this effect
becomes. Providing task demonstrations is helpful in all cases as it provides the
model with clear guidance on how the solutions to the task should look as well as
patterns that correlate with the correct answer. The provision of related demon-
strations increases this effect, as the model is steered towards patterns that are
relevant for the decision at hand.

Table 4. Results of the in-context learning experiments and associated cost.

Selection heuristic Shots P R F1 ∆ F1
Cost (¢)
per pair

Cost
increase

Cost increase
per ∆ F1

ChatGPT-zeroshot 0 71.01 98.00 82.35 - 0.14 - -

ChatGPT-random
6 78.33 94.00 85.45 3.10 0.77 450% 145%
10 79.66 94.00 86.24 3.89 1.13 707% 182%
20 78.95 90.00 84.11 1.76 2.07 1379% 783%

ChatGPT-handpicked
6 76.19 96.00 84.86 2.51 0.72 414% 165%
10 80.00 96.00 87.27 4.92 1.00 614% 125%
20 79.66 94.00 86.24 3.89 2.03 1350% 347%

ChatGPT-related
6 80.36 90.00 84.91 2.56 0.68 386% 151%
10 89.58 86.00 87.76 5.41 1.05 650% 120%
20 88.46 92.00 90.20 7.85 1.97 1307% 167%

GPT3.5-handpicked
10 61.97 88.00 72.72 -9.63 10.54 7429% 771%
20 61.43 86.00 71.67 -10.68 19.71 13979% 1309%

GPT3.5-related
10 67.69 88.00 76.52 -5.83 10.04 7071% 1213%
20 61.43 86.00 71.67 -10.68 20.34 14429% 1351%

Cost Analysis: The performance gain resulting from task demonstrations
comes with a sizable increase in API usage cost. While the zeroshot baseline
prompt and model answer cost around 0.14¢ per matching decision, providing
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an additional 20 examples increases this cost by nearly 1400% to 2¢ per decision.
Breaking the increase in cost down to the increase per percentage point of F1 (see
rightmost column in Table 4) it becomes clear that providing related examples
has the best price performance ratio, followed by hand-picked examples. This
calculation does not factor in the cost of acquiring labeled pairs to be selected
by the heuristics. As the handpicked demonstrations consists of only 20 labeled
pairs, the labeling cost of this approach is significantly lower than the costs for
the other two.

5 Providing Matching Knowledge

The last set of experiments focuses on providing explicit matching knowledge
in the form of natural language rules and asking the model to use these rules
for its decisions. Asking ChatGPT to explain matching decisions revealed that
ChatGPT is able to identify product features and corresponding feature values.
Following this finding, we formulate explicit rules for a set of common product
features as well as a general rule capturing any possible additional features. The
natural language formulation of the rule set that we add to the prompts is shown
in Figure 2. We experiment with using these rules in a zero-shot scenario as well
as together with related demonstrations (see Section 4).

Fig. 2. Example of a prompt containing matching rules.

Table 5 shows the results of adding matching rules to the prompts. Adding
matching rules increases the zero-shot performance by 6% F1 to 88.29%. This
performance is only 2% lower than the performance that was reached by pro-
viding 20 related task demonstrations. Interestingly, providing the rules in a
zero-shot setting does not negatively impact the recall, which remains at 98%,
but increases the precision of the model by nearly 10%. Combining matching
rules and 20 related demonstrations in a single prompt slightly further improves
the precision but leads to a 10% drop in recall and an overall lower F1. ChatGPT
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Table 5. Results of providing explicit matching knowledge to ChatGPT.

Prompt Shots P R F1 ∆ F1
Cost (¢)
per pair

Cost
increase

Cost increase
per ∆ F1

ChatGPT-zeroshot 0 71.01 98.00 82.35 - 0.14 - -

ChatGPT-zeroshot
with rules

0 80.33 98.00 88.29 5.94 0.28 100% 17%

ChatGPT-related
6 80.36 90.00 84.91 2.56 0.68 386% 151%
10 89.58 86.00 87.76 5.41 1.05 650% 120%
20 88.46 92.00 90.20 7.85 1.97 1307% 167%

ChatGPT-related
with rules

6 90.70 78.00 83.87 1.52 0.79 464% 305%
10 90.91 80.00 85.11 2.76 1.17 736% 267%
20 91.11 82.00 86.32 3.97 2.09 1393% 351%

seems to be able to interpret matching rules and successfully applies them to
improve matching results. Ultimately, task demonstrations and matching rules
both serve the same purpose of guiding the model on how to match entities.
Matching rules are more generic, while related demonstrations are rather prod-
uct pair specific. This specificness might be the reason for the slightly higher
performance. On the other hand, defining matching rules requires significantly
less human effort compared to labeling a pool of examples for selecting related
demonstrations. Adding explicit matching rules to prompts might thus be a
promising approach for many real-world use cases.

6 Conclusion

We have demonstrated the impact of various prompt designs on the performance
of ChatGPT on a challenging entity matching task. We have shown that the
model can achieve competitive performance in a zero-shot setting compared to
PLMs like RoBERTa which require to be fine-tuned using thousands of labeled
examples. Due to the relative shortness of the prompts and the associated low
API fees, using ChatGPT for entity matching can be considered a promising
alternative to fine-tuned PLMs which require the costly collection and mainte-
nance of large in-domain training sets. ChatGPT can further be considered more
robust as it demonstrates competitive performance even in zero-shot settings
while fine-tuned PLMs struggle with out-of-distribution entities which where
not seen during training [10]. The provision of task demonstrations further in-
creases the performance, especially if the selected demonstrations are textually
similar to the pair of entities to be matched. If closely related demonstrations are
not available, providing randomly selected demonstrations also has a significant
positive effect. The manual selection of just 20 demonstration pairs by a do-
main expert resulted in a strong positive effect and requires a significantly lower
effort than having the domain expert label thousands of pairs for PLM-based
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matchers. Finally, providing the model with a set of explicit matching rules has
a similar effect as providing textually related demonstrations. The provision of
explicit, higher-level matching knowledge to LLMs via prompts is a promising
direction for future research as it has the potential to significantly reduce the
labeling effort required for achieving state-of-the-art entity matching results.
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