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1 INTRODUCTION
Acid Sulfate Soil (ASS) causes significant environmental challenges in Finland.This mas-

ter’s thesis study, based on the west coast area of Finland, focuses on classifying and

predicting soil as either ASS or non-ASS using soils sample dataset and environmental

covariate layers .

1.1 Background
It is a common understanding the soil of our biosphere houses various natural resources

needed for life on this planet. For humans, soil is a means of agricultural production and

a source of raw materials required to build infrastructures. Without it, it is impossible

to think of constrictions of roads, bridges, buildings, dams, landscapes, and other human

civilization symbols and technologies. However, the soil being a means of subsistence for

living creatures and a reason for civilization, it is also a finite resource that needs proper

attention regarding its health and usage (Eash et al. (2015), Sarangi et al. (2022)). Misuse

of limited soil resources and lack of adequate prevention mechanisms has consequences

on the environment and our livelihood (Eash et al. (2015), L et al. (2021)).

The well-being of humans depends on the health of the soil. Excellent and healthy soils

provide healthy crops, medications, water filtration, provision of shelter, food, and clothes

(Brevik et al. (2020), L et al. (2021)). The United Nations Report on Sustainable Devel-

opment Goals (SDG) by 2030 indicated that healthy soil is believed to be the source of

various ecosystem services, including crop production, nutrient supply, detoxification,

water, nutrient retention, and maintaining biodiverse (L et al. (2021)). Again, the report

stressed that healthy soil is indispensable for a country’s sustainable growth and devel-

opment. Degradation and depravations of soil adversely affect the availability of food

and shelter and the provision of natural resources needed to construct infrastructure and

produce goods and services. Hence, a deep understanding of our ecosystem’s current soil

structure and environmental condition is critical. Soil composition on the earth’s surface

is diverse, and knowing its property is essential to implement appropriate soil conserva-

tion and management strategies (Epie et al. (2014), L et al. (2021)).

The continued soil degradation of our planet occurs because of both man-made activities
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and naturally occurring phenomena. As mentioned before, ASS is a naturally occurring

phenomenon causing soil acidification. ASS distribution persists in all continents (Lal

(2017), Andriesse & van Mensvoort (2002), Huang et al. (2011)), the Baltic basin contains

most of Europe’s ASS, and Finland exhibits the highest aggregation (Epie et al. (2014), F

et al. (2008), Yli-Halla et al. (1999)). According to GTK, ASS in Finland is considered an

existential threat to the nation’s environment, potentially disrupting the delicate balance

of its ecosystem ( Jaakko et al. (2022)).

The exposure of ASS to oxygen above see-level generates sulfuric acid that leads to

the acidification of soils and the release of heavy metals into the waterbodies(Jaakko

et al. (2022)). This phenomenon creates a toxic environment for aquatic plants and ani-

mals(Palko (1986)) and has a huge impact on fishing and agricultural production of the

nation; for more, read the manuscripts (Eden et al. (1999), Joukainen & Yli-Halla (2003),

Yli-Halla (2022)). Therefore, it is imperative to implement policy-based soil conserva-

tion and soil management strategies to prevent the damage caused by ASS(Ministry of

Agriculture and Forestry Ministry of the Environment (2011)).

In Finland, from as early as 1950, researchers have been actively involved in mapping

Acid Sulfate Soils (ASS) through a labor-intensive process of collecting soil samples from

specific locations and subsequently conducting pH level analyses in laboratory settings to

ascertain the presence of ASS (Ministry of Agriculture and Forestry Ministry of the Envi-

ronment (2011)). However, in recent times, the use of machine learning (ML) techniques

for digital mapping has emerged as a more cost-effective and streamlined approach, of-

fering detailed soil maps. For further insights into this innovative method, please refer

to the referenced manuscripts. (McBratney et al. (2003), Beucher et al. (2015), Minasny

& McBratney (2016), Estévez Nuño (2020), Baltensweiler et al. (2021), Estévez et al.

(2022))

1.2 Research Significance
As previously noted, acid sulfate soils (ASS) significantly influence on the environment

and infrastructure we build. Regions where ASS soil is present are the potential for sulfu-

ric acid generation and metal leaching, posing challenges to the country’s socio-economic
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growth and citizens’ livelihood ( Jaakko et al. (2022)). Therefore, it is imperative to

take into account the presence of ASS in all land use planning and decision-making pro-

cesses.

Developing a comprehensive map of ASS distribution is crucial for implementing effec-

tive prevention and management techniques. Various efforts were made to create such a

map in the past decade (Ministry of Agriculture and Forestry Ministry of the Environment

(2011)). With the availability of extensive soil science and environmental data, machine

learning techniques offer an alternative approach to digital ASS mapping, reducing the

reliance on costly fieldwork and tedious PH measurements of soil samples (Ministry of

Agriculture and Forestry Ministry of the Environment (2011)). This thesis aims to ex-

plore the performance of the Extreme Learning Machine (ELM) model in the classifi-

cation of acid sulfate soils. Additionally, the research seeks to assess the comparative

advantages of using ELM in contrast to conventional classification models like Random

Forest (RF).

1.3 Limitation
The previous studies have typically encountered the following limitations: Firstly, tradi-

tional methods are characterized by high costs and time-intensive operations. Secondly,

there is a need for more accessible experimental data. Thirdly, acquiring environmental

covariates data is not straightforward, as it demands a significant amount of time and a

high degree of expertise to prepare the layers for each covariate.

1.4 Research Questions
As mentioned, various ML methods were implemented to classify soil as ASS or not. The

goal is to build a holistic digital ASS map for the nation, yet researchers are exploring dif-

ferent techniques to achieve the target. The main research topic of this thesis paper is

• How well can we classify ASS using covariate map tiles for input?

• Can Extreme Learning Machine (ELM) classify ASS correctly?
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• Which features or attributes are most significant in soil classification?

• How does the ELM model perform compared with RF?

To find an answer to the above research questions, sample point observations from the

west coast of Finland (prepared by GTK) and 13 environmental covariates layers were

prepared using remote sensing datasets. The ELM model was explored, and its results

were compared with the RF model.

Apart from the Introduction, this master’s thesis is organized into six sections. The fol-

lowing section is called Related Works; it summarizes the previous research works done

by researchers on digital soil mapping. The third section, Research and Database, pre-

pares point observations and environmental covariate datasets. The fourth section is the

Research Methodology about the machine learning models and map tiles concepts. The

fifth section is the Project Framework, which focuses on the model development process,

data preparation, parameter tuning, model selection, model training, and model evalua-

tion. The project experiment runs on Jupyter Notebook and uses cutting-edge libraries

GeoPandas, PySpark (a python library engine for large-scale parallel data processing)( Li

et al. (2020)), and others. The sixth section is the Experimental Result, which presents the

comparative results and evaluations of the proposed models, and the last section presents

the Conclusions of the project works.
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2 RELATED WORK
Artificial Intelligence (AI) has been known as a field of study in computer science since

the 1950s (Domingos (2012)). It is a broad term focused on software development, en-

abling a computer system to exhibit human intelligence and behaviors. We, humans, try to

learn new things by adapting to the world we live in and acting accordingly. Likewise, AI

focuses on creating "intelligent devices" that imitate human characteristics in perceiving

their environment and performing tasks without human intervention (Domingos (2012),

Bernard M (2019), Espinosa-Leal et al. (2020)).

Author Samuel, a pioneer in AI and Machine Learning (ML), defines ML as "A Field

of study that gives computers the ability to learn without being explicitly programmed.".

That means ML is an application of AI in which a computer system is provided with

a large volume of input data and a program called an algorithm to learn patterns and

behavior of the data on its own. Through this learning process, the machine will be able

to maximize an experience to generate a general rule to decide on a given task. Therefore,

ML is about how AI systems "learn" the environment through data and be able to imitate

human behavior and get the capability to analyze the task and make an informed decision.

Today, ML is widely used in healthcare, engineering, telecommunication technology, and

data-driven research; some use cases include automatic recommendation systems, fraud

detection, search engines, stock marketing, social media applications, DNA sequencing,

and many more (Bernard M (2019), Andreas C.Müller (2016)).

In research conducted by Virginia Estévez (Estévez Nuño (2020), Estévez et al. (2022)),

datasets collected from the southeastern region of Finland, specifically Virolahti and its

vicinity, were employed. The primary objective was to investigate the utilization of ma-

chine learning techniques in soil classification and the creation of a probability map for

AS. To achieve this, the researcher utilized various methods, including Support Vector

Machine (SVM), Gradient Boosting (GB), Random Forest (RF), and convolutional neu-

ral network (CNN). The finding revealed that both GB and RF methods demonstrated

strong performance in soil categorization, outperforming SVM and generating superior

AS probability maps. Notably, the model’s probability map demonstrated enhanced ob-

jectivity and accuracy compared to traditional maps.
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The Virolahti datasets were also subjected to analysis using the ELM (Extreme Learning

Machine) model in a study conducted by Akusok in 2023 (Akusok et al. (2023)). The

project used same databases as the previous one (Estévez Nuño (2020)). The findings

of this paper’s results show that ELM performance is comparable to alternative meth-

ods, SVM, and ensemble decision trees. The author acknowledged that a small training

dataset was the limitation, and the researcher expressed his anticipation of better ELM

performance by including additional training data.

This project aims to develop high performing ELM model to classify AS soil types using

sample point observations and environmental covariates datasets. ELM model is a choice

because it exhibits; fast learning behavior, high accuracy, and easiness to use. To alle-

viate small-size training restraint, 5824 rows of point observations from the west coast

area of Finland were prepared, and more details about the datasets are found in the next

section.
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3 RESEARCH DATABASE
The database under study is a combination of two spatial datasets; a vector dataset (sample

point soil observations), some examples are shown in Table1, and a raster dataset of map

tiles(environmental covariates layers). A spatial dataset is a collection of observational

attributes of phenomena organized in a tabular format with its unique ability to represent

a geographical location worldwide. GTK is the provider of the points dataset. However,

the covariates layers dataset was generated by using the QGIS tool based on remote sens-

ing data.

Table 1. Some sample soil type from the west coast of Finland.

X Y class
25.768938 64.777988 ASS
25.776304 64.793496 ASS
25.784691 64.786808 ASS
25.315115 64.988732 ASS

3.1 Point Observations Dataset
As mentioned before, the points spatial dataset used in the experiment was provided by

GTK, and Table1 presents geographical location information: longitudes (X), latitudes

(Y), and a binary variable "class" which contain two classes of soil types, acid sulfate soil

and non-acid sulfate soil(ASS and non-ASS).The catagorization of soil types were con-

dacted in the laboratory based on specific criterias (PH level and others) (Estévez Nuño

(2020), Estévez et al. (2022)). To visualize the sample points observations, Fig. 1 is plot-

ted to show the heatmap distribution of soil types for the training dataset of the northwest

region. The red shade area in the map is the ASS area, and its coverage area is vast.

3.2 Environmental Covariate Layers
As discussed, the covariate layers of map tiles were extracted using remote sensing data,

and for further details, please consult the reference (Estévez et al. (2022), Estévez Nuño

(2020)). The tiles are a single-layer grayscale image that measures a single characteristic

or attribute, for instance slope, hillside, etc. To understand it better, Fig. 2 and Fig. 3

are presented to show hillshade and slope tile maps for zoom level 12 as an example.
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Figure 1. Heatmap of acidic soils distribution of west coast of Finland.

Similarly, 11 other environmental covariates layers were prepared using image processing

techniques.

The covariates layers used in the experiment are composed of three distinct groups of

layers:

1. Terrain: includes Slope, Aspect, Hillshade, Topographic Wetness Index (TWI), To-

pographic Position Index(TPI), Normalized Difference Vegetation Index (NDVI),
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Figure 2. Hillshade tile of experimental area for zoom level 12

Figure 3. Slope tile of experimental area for zoom level 12
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and Topographic Ruggedness Index (TRI) layers,

2. Geophysics (magnetism or electric conductivity data): includes electromagnetic

real, electromagnetic imaginary and electromagnetic resistivity layers,

3. Quaternary map: 41 soil types in our case "bedrocks" and 49 different classes of

land cover classes(Corine land cover) were included.

Corine stands for Coordination of Information on the environment, is a European way

of land cover inventory, and has five main categories built-up areas; agricultural areas;

forests and open fabrics and rocky lands; wetlands and open marshes and water areas. The

Corine data contain 49 sub-categories( SYKE). TWI measures the tendency of an area to

accumulate water, i.e., how likely the area is wet. An area with a higher TWI index value

is more wet relative to the lower index values of the neighboring area( Deenik (2021)).TPI

measures the altitude of a point against the neighboring points and hence helps to distin-

guish the topographic features like a hilltop, valley bottom, etc... Higher altitude point

has quantified to positive TPI value and sunken points to a negative value( Čučković

(2019)).

NDVI is an annual index measurement of the amount of green vegetation in the area based

on the information obtained through remote sensing data. The NDVI pixel value of the

dataset is 10m, and the index values range between 1 and -1 (the vegetable area is indexed

positive, and the water area is indexed negative)( GISGeography (2022)). TRI measures

the elevation difference between adjacent cells of the Digital Elevation Model, and the

geographical heterogeneity (TRI) measurement is taken from the center cell to eight sur-

rounding cells. The recommended classification ranges are; 0-80 level terrain surface,

81-116: nearly level surface, 117-161: slightly rugged surface, 162-239: intermediately

rugged surface, 240-497: moderately rugged surface, 498-958: highly rugged surface,

above 959: extremely rugged surface ( Evans, Riley et al. (1999)).

In the data preparation stage, the points coordinates of the data points are extracted using

the mathematical formula from the longitude and latitude pair of the sample observations.

After that, the environmental covariate layers of the data point were mapped to the point

16



coordinates of data points to extract tile coordinates points for every 13 covariates tiles

maps. Finally, a database is created from those two datasets. PySpark(Python integra-

tion of Apache Spark) functions were developed to accomplish those tasks, and using it

benefits speed and fault tolerance in a net shell.

The combined database consists of 5824 rows and 104 columns. Among the features, the

"class" variable is a binary class of soil types (ASS, non-ASS) and is a target feature for

the experiment. There are 3490 ASS and 2334 non-ASS soil types, and their frequency

distribution in percentages is 60% and 40%, respectively. The database has 2 features of

coordinate points (X and Y) and 13 environmental covariates layer coordinates. Among

the covariant layers, features "Corine-land-cover" and "bedrock" consist of 49 and 41

distinct values, respectively. A one-hot encoding technique was used to represent those

values. The encoding method adds extra 88 features: corine1 ... corine49 from Corine-

land-cover and bedrock1 ... bedrock41 from the bedrock layers; hence, the number of

features rose to 104.
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4 RESEARCH METHODOLOGY
As discussed before, ML is an application of AI where the computer system learns to per-

form a task by figuring out a generalization rule from the dataset fed. It is an ever-growing

field of science, and today there are thousands of ML algorithms known to be present.

There are two ways of classification of algorithms: based on learning methods (including

ensemble, supervised, unsupervised, semi-supervised, and reinforcement learning meth-

ods algorithms.) and second based on functional similarity(including Neuron-Network-

based and tree-based methods) with some exceptions (Sullivan (2017)).

An Artificial Neural Network (ANN) based system imitates the human neural system for

prediction; ELM is an excellent example and it will be discussed in the next section.

However, the decision tree(tree-based) algorithm generates a model of a decision tree of a

fork-like structure based on the dataset’s attributes until a prediction is made for the given

task.

This research experiment employs Extreme Machine Learning (ELM) using environmen-

tal covariate map tiles and compare the performance with the conventional model Random

Forest.

4.1 Map Tiles
A map on a web browser is a dynamic square map composed of multiple images called

Map tiles, making it easy for users to zoom and browse around the map. Google is the

inventor of the Map tile system (Forrest (2023b)) developed to create a Google Maps

App, and then every Maps API providers adopted the tiling technique as a standard in

developing web maps . A tile is usually a 256 X 256 pixels square image with a fixed

geographical area and scale. Browsing or zooming a map on the browser technically

means displaying multiple image tiles very fast in a grid system, as if panning on a single

image or browsing a portion of the map without loading the entire map. Zooming in and

out of a map happens because of loading a new set of tiles, and each zoom level has its

own sets of tiles. There are around 23 zoom levels: 0 to 22; Zoom 0 loads the entire world

in a single tile; Zoom 1 contains 4 tiles; Zoom 2 contains 16 tiles, etc. Fig. 4 shows map

tiles for zoom levels 0 and 1 (MapTiler (2023), Forrest (2023b,a)).
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Figure 4. Tiles for zoom level 0 and 1, source (MapTiler (2023))

Figure 5. Map tiles for specific Zoom level at each surface of the pyramid, source (MapTiler (2023))

The tiles are arranged in pyramidal structural layers of multiple floors of zoom levels,

shown in Fig. 5. Each tile has 3 assigned coordinates x,y,z, where z is the zoom level and

x, y is the grid position. For instance, for zoom 1, we have (0,0), (0,1), (1,0), and (1,1)

grid tiles shown in the Fig. 4, hence z/y/x in the pyramid refers to the tile coordinate or

address(MapTiler (2023)).

4.2 Decision Tree and Random Forest
Before discussing Random Forest (RF), it is essential to understand the basics of decision

trees (DT). DT is a building block for random forest and other tree-based ensemble mod-

els. Fig. 6 shows a random forest model for N subgroups; the blue shaded boxes in the

figure represent a decision tree based on the database’s subset groups. Unlike the usual
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Figure 6. Random Forest model

tree, the root node is located at the top, and the leaf nodes are at the bottom, which is

an upside-down tree. DT splits the node on all available features and selects the split,

which results in more homogeneous sub-nodes. There are multiple algorithms used by

DT to decide the best split for the given task. The most popular are Gini Impurity, Chi-

Square, Information Gain used for categorical features, and Reduction in Variance for

non-categorical features. For more details, refer to the page (Sharma (2023)). The algo-

rithm tries to split the subgroups differently or equivalently; members of each subgroup

are selected to be as similar as possible (Sullivan (2017), Yiu (2021)).

The decision tree algorithm works well for classification and regression types of prob-

lems; however, it’s more efficient in classifying classification tasks into two or more

homogeneous sets. The classification tasks depend on the target variables. Using a de-

cision tree has various advantages: easy to understand, faster, less data cleaning, and

non-parametric (doesn’t require assumptions about the classifier or spatial distribution).

However, the main problem of decision trees is over-fitting, which occurs when a model

learns the details and noise of the training dataset as a concept and applies it to new
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data. The new concepts or practices affect the model’s generalization ability negatively,

reducing the overall model’s performance. It is worth considering that non-parametric

algorithms are more flexible to learn and are subject to overfitting (Sullivan (2017), Yiu

(2021)).

Concerning the regression task, the DT prediction value at the terminal node will be the

mean response value of the subgroup. And in the classification task, the predicted class

at the terminal node will be the observation mode. Both tree processes are top-down,

and the splitting process on nodes continues until the algorithm meets the user’s stopping

criteria such as depth of the tree, maximum number of terminal nodes, minimum sample

for node split, and other. This leads to model overfitting and is the cause of accuracy

redaction.

The random forest model is a popular ensemble-supervised machine learning algorithm

that combines many tree-based predictors or classifiers. The logical diagram of the RF

model is shown in Fig. 6. An ensemble model is a set of weak predictive models trained

independently to transform weak learners into strong or more robust ones. The ensemble

prediction value will be the combined prediction values of all week’s models, done by

boosting or bagging methods. The idea behind this is to trade off between bias and vari-

ance error; the more complex the model is, the higher the variance and less bias will be,

whereas the less variance is, the higher the bias. Hence, the ensembling method comes

into the equation to find a balance point(Sullivan (2017)).

To discuss further, boosting is a sequential learning technique that transforms weak mod-

els into strong ones by iteratively improving upon the errors (XGBoost, Gradient Boost-

ing, and AD Boost are good examples). However, in the bagging method, decision trees

are created to classify objects based on a sub-training set of the dataset and the attributes;

each tree presents its classification prediction called "vote".

4.3 Extreme Learning Machine
Extreme Learning Machine is one of the feedforward Neuron Networks (FFNNs) with

a new, faster learning technique for a machine system to imitate human behavior( Aku-
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Figure 7. Single Layer Feedforward Network (SLFN) for ELM.

sok et al. (2019b), Leal et al. (2018)). The single-layer feedforward Neuron Networks

(SLFNs) with hidden layer, bias function, and adjustable parameters has universal ap-

proximator property. The conventional backpropagation (BP) learning technique is time-

consuming and prone to overfitting. Technically, BP is a repetitive process of calculating

and minimizing loss function based on the weight and bias parameters to optimize the

weight coefficient of the relationship between the input and output layers of the hidden

block.

In ELM, the parameters of the hidden block (input weights, biases of additive neurons, and

others) do not require to be tuned; instead, they are randomly generated independent of the

input data. The learning process is feedforward and non-iterative; unlike backpropagation,

it’s more stable and generalizes the new data with better accuracy. It has been noticed that

ELM provides solutions 5 times faster than Multilayer Perceptron (MLP) or 6 times faster

than Support Vector Machines (SVM). Fig. 7 illustrates single layer feedforward neuron

network for the ELM model, source, and for further reading (Akusok et al. (2015), Deng

et al. (2015)).
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The diagram in Fig. 7 has three components: the input component X, the hidden com-

ponent h, and an output component t. The coefficients W, b, and β represent the input

weight, the bias (error component), and the output weight, respectively. It is in the hid-

den layer where data projection (using the weight and bias) and transformation of the

projected data is made to generate the output layer’s weight (β) and then, finally, on the

output layer, a prediction value (t) (Akusok et al. (2015)). Hence, as compared with con-

ventional ML and traditional neural network algorithms, ELM offers significant advan-

tages: less learning time, ease of implementation, good generalization, and takes minimal

human intervention.

The mathematical formula of ELM model estimation with L number of hidden layers and

with N number of input features is written as follows (Akusok et al. (2015), Burnpiro

(2020)):

FL(x) =
L

∑
i=1

βi fi(x) (1)

FL(x) =
L

∑
i=1

βi f (wi ∗ x j +b j)where j = 1, ..,N (2)

Where x is the input vector, b is the bias vector, W is the weight vector between

the input and hidden layers, f is the activation function, and β is the weight

vector between the hidden and output layers. The transformed data h in

the hidden layer is used to generate β, and equation (2) can be shortened

as:

T = Hβ (3)

where

23



H =


(w1 ∗ x1 +b1) · · · (wl ∗ x1 +bl)

... . . . ...

(w1 ∗ x1 +b1) · · · (wl ∗ x1 +bl)


NL

T =
[
tT
1 · · · tT

N

]
NM

β =
[
βT

1 · · · βT
L

]
LM

M is the number of outputs, H is the hidden layer output matrix, and T is

the training data target matrix. The estimated output weight β̂ using the

Moore-Penrose generalized inverse is as follows:

β̂ = T H+ (4)

Where H+ is the Moore-Penrose (MP) generalization inverse of matrix

H.

Generally, the learning and prediction process of the ELM model is easy,

and the steps are presented as follows.

1. Assigin the input weight Wi and bias bi randomly, i = 1 . . .L.

2. Calculate hidden layer output H.

3. Calculate output weight β̂

24



4. Predict T on new data

To explore the benefits of ELM, both models were implemented to predict

soil types as ASS or non-ASS and compare the models’ performance based

on their classification accuracy.

4.4 Model Selection And Model Training

The next phase after prepossessing is model selection and training using

the training dataset, along with parameter tuning. There are several ma-

chine learning algorithms to choose from. Generally, the selection process

relies on the dimension of the dataset, the required accuracy, the inter-

pretability of the output, the time needed to train, and the linearity of the

training dataset. This experiment employed two classification models: Ex-

treme Learning Machine (ELM) and Random Forest (RF). The dataset was

partitioned into train and test sets; the train-to-test ratio choice was 3 to 1.

The test set is meant to validate the predictive performance of the fitted

model.

Technically speaking, a hyperparameter is a high-level attribute: like n_job,

n_estimators, max_depth, that a practitioner sets before model training.

Besides that, the model learns other characteristics by finding a mathe-

matical relationship between the training dataset (features and target vari-

able).

This research employed a randomized cross-validation search for hyper-

parameter tuning to get the best cross-validation score for the RF model.

The optimization process of parameter tuning is carried out to archive a
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better accuracy model prediction of soil types, ASS or non-ASS. The pa-

rameters tuning phase depends on manually seated parameters space with

a randomized cross-validation search of 10 folds. That means 10 randomly

categorized subset groups were created from the training dataset, and each

of the subsets of the train groups was used to validate the model perfor-

mance; the rest 9 subsets were used on training the model. Therefore,

because of the deployment of the cross-validation search technique, 10

different models were fitted with the corresponding 10 sets of validation

estimators. Through this process, the best score’s parameters among the

10 fitted model parameters are selected and used for building RF model

prediction of soil types, ASS or non-ASS.

In the case of ELM, there is no need to carry out the time-consuming hyper-

parameter tuning task. That is one of the benefits of using ELM solutions

for machine learning prediction tasks. Scikit-ELM toolbox was used be-

cause of its flexibility and usability; the reader is directed to the canonical

papers for more detail(Akusok et al. (2015, 2019a)).
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5 PROJECT FRAMEWORK

The project framework illustrates the whole end-to-end machine Learning

process of model building, from data ingestion to model evaluation in pre-

dicting soil types. As Fig. 8 below demonstrates, the model development

process that includes many complicated data analysis and image process-

ing tasks. The tasks are dataset collection (point observations and envi-

ronmental covariates layers), model selection, model training, parameter

tuning, and assessing the performance of the choice model.

5.1 Data Preparation

The sample point dataset is prepossessed by creating GeoPandas dataframe

with a new variable of point geometry. Since Finland is located near the

north pole, the point dataset’s longitude and latitude need to be set to the

regional standard coordinate reference system (CRS) "WGS84" to avoid

image distortion that occurs near the pole. The next step will be extracting

pixel coordinates (x,y) and tile coordinates (z,x,y) using the geographical

location coordinates of the sample point(longitude and latitude) and zoom

level z. Tile image (z,x,y) is a 256 X 256 pixel-sizes of multiple neighbor-

ing pixel points (x,y) for a given zoom level z.

5.2 Data Encoding

The research project is a supervised binary classification of ASS and non-

ASS. The target feature "class" is a categorical feature that needs to be

converted to a numerical feature of 0 and 1 for soil type ASS and non-

ASS, respectively.
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Figure 8. Model development framework for acid sulfate soil prediction
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The prepossessing task of covariate layers is complex, and it starts by load-

ing tiles images of the 13 environmental covariate layers. A Python func-

tion was developed to load the image tiles and extract the covariate layer’s

data pixel for a given sample point location and zoom level. The two

covariate layers, corine-land-cover and bedrock are categorical variables;

hence, the one-hot encoding technique was used to represent the categori-

cal values of the variables. The encoding method helps to avoid the ordinal

relationship of integral values between values used to distinguish the cate-

gorical attributes of the given feature. Other prepossessing works include

merging the two datasets (points and covariate layers datasets), splitting

the database into train and validation sets, and scaling the training dataset

using the Scikit-learn RobustScaler module.

5.3 Feature Selection

Feature selection is one of the important data processing techniques for

selecting features that contribute most to model building. In most cases,

incorporating irrelevant or less significant features in model training has a

negative impact on the generalization role of the model on unseen (Estévez

et al. (2023)). Removing the irrelevant or less informative features reduces

over-fitting, improves performance, and decreases training time. Fig. 9

illustrates features importance of the Random Forest model for the entire

103 features of the study database.

Generally, more features in the model mean more complexity and more

time to train a model. It is vital to reduce the size of the features to

a level that would not harm the model’s performance. This experiment
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Figure 9. Accuracy of Random Forest model with respect to the number of features

employed a Scikit-learn tool called RFECV (Recursive Feature Elimina-

tion Cross-Validation), with 10 folds cross-validation features selection

method. RFECV works on a subset of all possible space of features, recur-

sively training a model and pruning the less significant one on all possible

subsets until the optimal number of features is reached. Deploying the

RFECV method using a random forest model on the study database re-

duces the feature number to 22. Fig. 10 shows the selected features and

their importance.

It is apparent that elevation, pixel x, pixel y, and aem_imaginary features

are the most significant features and account for about 44% of the RF

model’s predictive power. Features aspect, NDVI, TRI, TWI, and aem_real

in aggregate accounts for about 23%, and features hillshade, slope, TPI,

and aem_apparent contribute about 15% of the predictive power of the RF

model. Therefore, out of 103 features, 12 features contribute about 82% of

the total predictive power of the RF model.
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Figure 10. Random Forest feature importance for the most informative features
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6 EXPERIMENTAL RESULTS

The thesis project explores the ELM’s classification of ASS using the

environmental covariates variables based on the sample point observa-

tions taken from the west coast area of Finland. The following section

presents the results of the project experiments obtained using machine

learning models, namely Random Forest(RF) and Extreme Learning Ma-

chine(ELM). Before presenting the results, it is essential to discuss the

metrics used for evaluating the results of the experiments and the methods

used.

6.1 Evaluation Metrics

The overall objective of building a predictive machine learning model is

to deliver a high accuracy score for unseen data. They are measuring how

robust the model prediction is, and explaining the performance before de-

ployment is essential. Several evaluation metrics exist, and their selection

depends on the model types and the implementation plan. Some of the

evaluation matrices are discussed as follows (Estévez Nuño (2020)):

• Confusion Matrix: is N X N matrix, where N is the number of the

predicted classes, describes the complete performance of the model.

Table2 shows a confusing matrix where TP is true positive, FN is false

negative, FP is false positive, and TN is true negative.

Besides that, the confusion matrix helps to drive important measures:

precision-recall, accuracy, and AUC_ROC curve.
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Table 2. Confusing Matrix

Predictive
Values

Actual Values Positive TP FN
Negative FP TN

• precision or Sensitivity: the proportion of positive cases correctly

identified, i.e.

T P
(T P+FP)

• Recall or specificity (negative predictive value): is the proportion of

correctly identified negative cases, i.e.,

T P
(T P+FN)

• Classification Accuracy: the proportion of correct predictions to the

total number of input samples, i.e.,

(T P+T N)

(T P+T N +FP+FN)

• F1-score: represents a balanced combination of precision and recall,

taking the harmonic mean of these two metrics. An F1 score of 1

is the optimal value and 0 is the lowest value, i.e., (Pedregosa et al.

(2011))

33



2∗ ( precision∗Recall
precision+Recall

)

• The AUC_ROC (Area Under Curve _ Receiver Operating Character-

istics) curve: represents the true positive rate (Sensitivity) as a func-

tion of the false positive rate (1-specificity). The AUC value is be-

tween 0 and 1; if the value is above threshold 0.5, the model can

identify the classes very well.

6.2 Results And Discussion

The research experiment used RF and ELM models for class prediction

of soil as acid sulfate soil (ASS) or normal soil (non-ASS). The evalua-

tion statistics are described as follows. In the case of RF, Fig. 11 com-

pares mean test score versus tree size (param_n_estimators) for tree depth

(param_depth) of 10 and 20. The model offers a higher mean_score for 20

param_depth than 10 for a given number of trees (param_n_estimator).Fig. 12

shows that the higher the tree depth, the better the performance is, but with

a more extended period to process.

As discussed in the previous sections, randomized grid searches for hyper-

parameter tuning and feature selection were deployed on the RF model to

get the best performance. The best results are shown in Fig. 13, and this

figure presents a confusion matrix and related metrics called classification

reports. The confusion matrix presents the RF model correctly classifying

322 sample points as Normal soils (True Positive) and 705 as Acid Sulfate

soil (True Negative). However, the model mispredicted 171 sample soils as
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Figure 11. Random Forest test score line chart with 10 and 20 tree depths

Figure 12. Heatmap of Random Forest test score, decision trees versus tree depth
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Normal and 258 as Acid Sulfate soil. Both classes’ correct predicted soil

types are greater than the incorrectly predicted classes. Therefore, the RF

model built is capable of classifying unseen location soil with significant

accuracy.

The classification report presented at the top of the confusion matrix shows

the overall accuracy of the RF model is 71%, i.e., 71% of the prediction is

correct. The precision for Acid Sulfate and Normal soil types are 73% and

65%, respectively, i.e., 73% and 65% of the respective soil types classified

as such are accurate. However, the recalls are 80% and 56% for Acid

Sulfate and Normal soil types, respectively, i.e., 80% and 56% of all soil

types of the respective soils are classified correctly. The prediction for

each class is presented by F1-score 77% for Acid Sulfate and 60% for the

Normal, so the model classifies Acid Sulfate soils with better accuracy than

the Normal.

Fig. 14 depicts the ROC curve representing the performance of the RF

model. In this illustration, the green curve surpasses the blue one(non-

discrimination line), signifying the model’s effective classification. The

ROC curve’s area under it is 0.78, which is not a perfect case where ROC

equals 1. The model prediction rank of 0.78 reflects the RF model predic-

tion is significant.

ELM model Implementation of acid soil classification using the Scikit-elm

library is very easy (Akusok et al. (2019a)). As shown in the project frame-

work section of Fig. 8, in the ELM model, unlike conventional learning al-

gorithms, the parameters of the hidden layers are randomly established and
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Figure 13. Classification report and confusion matrix for Random Forest model

Figure 14. ROC curve for Random Forest
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don’t need to tune, and it means the training of the hidden nodes is accom-

plished before the input is acquired (Deng et al. (2015)). Practically, the

model is fitted with features and target variables, then the class prediction

of soil type ASS or Normal is delivered. The statistics results are shown

in Fig. 15; the figure presents the confusion matrix and the classification

report of the ELM model. The overall model accuracy is 71%, which is

the same percentage as the RF model prediction. The precisions are 72%

and 67%, and the recalls are 83% and 51% for Acid Sulfate and Normal

soils, respectively. F1-scores are 77% and 58% for Acid Sulfate and Nor-

mal soil, respectively, so as the RF model, ELM classifies the Acid Sulfate

soil type better than the Normal soil type.

Figure 15. Classification report and confusion matrix for ELM model
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Figure 16. AUC-ROC for Extreme Machine Learning

The ELM ROC curve in Fig. 16 is above the non-discrimination line, which

means the model works well in classifying the soil types. The area under

the curve ROC is 0.76, it is not a perfect result, but the rank explains that

the ELM model prediction is significant.

Comparing the two models based on the statistical results presented above,

the precision values of both models indicate that both models performed

almost equally the same in predicting ASS (Acide Sulfate). Still, the ELM

model performs better predicting non-ASS(Normal) type. About recalls:

concerning prediction on its own class, ELM performed better in predict-

ing ASS, and RF performed better in predicting non-ASS type. However,

the overall performance of both models is the same. On the other hand,

comparing the processing time and complexity in the implementation pro-

cess, the ELM model is very fast and user-friendly.
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7 CONCLUSIONS

This project aims to categorize soil as either ASS or non-ASS based on

environmental covariates represented by layers of tiles, utilizing ELM al-

gorithm. Besides that, the research focuses on identifying the most relevant

features and exploring the performance of ELM and RF models. To con-

duct this experiment, sample point observations dataset and environmental

covariates layers of images were employed.The experiment incorporated

13 environmental covariates layers and two locational variables, longitude

and latitude. During the prepossessing phase, one-hot encoding techniques

were utilized, and additional features were generated, thus increasing the

overall feature count to 103.

After data processing, RF and ELM classification models were imple-

mented to predict soil type. The implementation of the Scikit-learn ELM

model doesn’t require hyperparameter tuning, whereas RF requires a ran-

domized grid search hyperparameter tuning to get the best performance.

Additionally, feature selection techniques were used to enhance the RF

model’s performance by removing the less significant and irrelevant fea-

tures in predicting soil class. As a result, 22 features were chosen based

on their level of influence on the RF model’s predictive ability. Both mod-

els work well in classifying soils as either ASS or non-ASS, but neither

is perfect. Notably, the ELM model stands out for its swiftness and user-

friendliness. One potential research avenue in the future will be optimizing

the model performance by incorporating additional environmental covari-

ates.
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