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Abstract. Meta-learning has emerged as a powerful training strategy
for few-shot node classification, demonstrating its effectiveness in the
transductive setting. However, the existing literature predominantly fo-
cuses on transductive few-shot node classification, neglecting the widely
studied inductive setting in the broader few-shot learning community.
This oversight limits our comprehensive understanding of the perfor-
mance of meta-learning based methods on graph data. In this work, we
conduct an empirical study to highlight the limitations of current frame-
works in the inductive few-shot node classification setting. Additionally,
we propose a simple yet competitive baseline approach specifically tai-
lored for inductive few-shot node classification tasks. We hope our work
can provide a new path forward to better understand how the meta-
learning paradigm works in the graph domain.
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1 Introduction

Graphs have found extensive applications across various research fields, includ-
ing social network analysis[12], bioinformatics[I3], recommendation systems[11],
and more. Graphs are crucial in understanding user interactions, sentiment anal-
ysis, and community detection in social media mining. For example, consider a
scenario where we aim to classify user’s sentiments towards a particular product
or event on a social media platform. The graph can represent users as nodes
and their connections as edges, capturing their relationships and interactions.
By analyzing the structural properties of the graph, such as user connections,
and incorporating node attributes like past sentiments or textual content, node
classification algorithms can assign sentiment labels to new, unlabeled users.
However, getting labeled data for node classification can take time and effort in
real-world scenarios. Few-shot learning, a sub-field of machine learning, attempts
to address this issue by creating a model using just a few examples. Few-shot
learning has gained significant interest lately because of its capability to learn
swiftly from a restricted amount of labeled data.

In recent years, meta-learning, also known as learning to learn, has emerged
as a powerful technique for few-shot learning. Meta-learning involves training a
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model on a variety of tasks to learn a set of shared parameters that can be quickly
adapted to new tasks with limited labeled data. In the context of graph node
classification, meta-learning[5] has been used to train models that can quickly
adapt to new graphs with a few labeled examples.

While meta-learning has demonstrated promising results in the field of few-
shot node classification[I5], most of the existing works have focused on the trans-
ductive setting, where the graph neural network (GNN) encoder is trained and
evaluated on the same graph. The inductive setting, where the model is trained
on a set of graphs and tested on a new, unseen graph, has received less attention
in the few-shot learning community. Also, due to the message passing mecha-
nism, where nodes exchange information with their neighboring nodes to update
their own representations in GNNs, the inductive setting poses additional chal-
lenges compared to the transductive setting. Consider the example of sentiment
analysis described before. In an inductive setting, we encounter new social media
platforms or events where we need to classify user sentiment without access to
the entire graph used during training. This reflects the reality of dealing with
evolving social media platforms and ever-changing user dynamics.

Inductive few-shot learning allows us to train a model on a diverse set of
graphs and test its performance on unseen graphs, mimicking the real-world
scenario where we encounter novel contexts. This emphasizes the importance of
studying and developing effective few-shot learning approaches in the inductive
setting, enabling models to adapt and make accurate predictions in dynamic
real-world environments. Therefore, this work aims to bridge this gap by pro-
viding a comprehensive study of meta-learning for few-shot node classification
in the inductive setting. We empirically show that most current meta-learning
frameworks cannot perform well in this setting. Additionally, we introduce a
straightforward yet effective baseline approach for inductive few-shot node clas-
sification tasks.

2 Related Work

In this section, we present an comprehensive review of the current literature
concerning few-shot node classification and meta-learning, with a specific focus
on the transductive setting.

2.1 Few-shot Learning

Few-shot learning (FSL) is a machine learning paradigm that serves to address
concerns of limited data by capitalizing on knowledge gained from previous
training data. Some example of models that employ FSL are Model-Agnostic
Meta-Learning (MAML), Prototypical Networks, and Meta-GNN.

MAML [2] tackles the few-shot learning problem by learning an optimal ini-
tialization of model parameters. It enables fast adaptation to new tasks with
limited examples through a two-step process: an inner loop for task-specific up-
dates and an outer loop for optimizing adaptation across tasks. By iteratively
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fine-tuning the parameters, MAML achieves effective generalization and enables
efficient few-shot learning across various domains. Prototypical Networks [I]
capture the essence of similarities and dissimilarities among instances through
a metric-based approach by computing class prototypes based on support ex-
amples and using distance-based classification. This approach enables accurate
classification in few-shot scenarios which over various domains offers a valuable
approach to few-shot learning tasks. Meta-GNN [3] instead primarily addresses
few-shot learning when provided with graph structured data. The model en-
hances the capability of GNNs to capture expressive node representations and
effectively generalize to new classes or tasks with limited labeled data.

2.2 Meta Learning

In the context of few-shot node classification, meta-learning algorithms have been
proposed to learn effective representations and update strategies for handling
new, unseen classes with only a few labeled examples. Popular meta-learning
algorithms for few-shot learning include GPN, G-Meta etc.

Graph Prototypical Network (GPN) [5] introduces graph prototypes, learned
through iterative aggregation with GNNs, as representative embeddings from the
support set. By utilizing these prototypes, GPN achieves accurate few-shot clas-
sification by computing similarity scores between query nodes and prototypes.
GPN’s incorporation of graph-level information and iterative aggregation enables
effective generalization and robust few-shot classification on graph-structured
data. G-Meta [4] combines subgraph extraction with GNNs to learn expressive
node representations. It employs the MAML strategy to iteratively update and
meta-update GNN parameters. This enables efficient adaptation to new tasks
and improved classification on query nodes. Other models like AMM-GNN ex-
tend MAML with an attribute matching mechanism, and TENT reduces the vari-
ance among different meta-tasks for better generalization performance. Existing
works primarily focus on transductive few-shot node classification, neglecting the
widely studied inductive setting. We empirically evaluate meta-learning frame-
works in the inductive setting to gain deeper insights into their performance on
graphs.

3 Preliminaries

3.1 Problem Statement

The problem of few-shot node classification is concerned with attributed net-
works represented as G = (V,&,X) = (A, X), where V is the set of nodes
V1,02, ..., Vp, € is the set of edges e1,ea,...,em , X = [21;20;...;2,] € R?*4
is the matrix of node features, and A = {0,1}"*" is the adjacency matrix rep-
resenting the network structure. Each element in A is either 0 or 1, indicating
the absence or presence of an edge between nodes. The task involves a series of
node classification tasks T' = {Ti}le, where T} is a dataset for a particular task,
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and [ is the number of such tasks. The classes of nodes available during training
are referred to as base classes, while the classes during the target test phase
are referred to as novel classes, and the intersection of the two sets is empty.
Notably, under different settings, labels of nodes for training (i.e., Cpase) may
or may not be available during training. Conventionally, there are few labeled
nodes for novel classes Cjope; during the test phase.

Definition 1. Few-shot Node Classification (FSNC): Few-shot node
classification refers to a problem in which an attributed graph G = (4, X) is
given, with a label space C divided into two sets, Cpase and Choper- The goal is
to predict the labels of unlabeled nodes (query set Q) from Cipper, given only a
few labeled nodes (support set S) for Choper. If each task in the test set has N
novel classes and K labeled nodes for each class, then this task is referred to as
an N-way K-shot node classification problem.

Transductive Setting: In the transductive setting, the input graph is ob-
served in all dataset splits, including the training, validation, and test sets
(Fig. [1). The graph remains intact, and only the node
labels are split for training and evalu-
ation purposes. During training, em-
beddings are computed using the en-
tire graph, and the model is trained
using the labels of selected nodes (e.g.,
node 1 and node 2). During vali-
dation, embeddings are again com-
puted using the entire graph, and the Fig. 1: Transductive/Inductive Setting
model’s performance is evaluated on
the labels of other nodes (e.g., node 3 and node 4).

Inductive Setting: In the inductive setting, the graph is modified by break-
ing the edges between the dataset splits, resulting in different neighbor environ-
ments for nodes compared to the transductive setting (Fig. [L]). For example, node
4 will no longer have an influence on the prediction of node 1. During training,
embeddings are computed using the graph specific to the training split, such as
the graph over node 1 and node 2. The model is trained using the labels of these
selected nodes. During validation, embeddings are computed using the graph
specific to the validation split, such as the graph over node 3 and node 4. The
model’s performance is then evaluated on the labels of these respective nodes
(node 3 and node 4). This will further lead to the change of message passing,
making it harder for GNNs to learn generalizable knowledge [13].

, « Validation -~
. Test

3.2 Episodic Meta-learning for FSNC

Episodic meta-learning has emerged as an effective paradigm for addressing few-
shot learning tasks, garnering substantial attention [I7/T8]. The underlying con-
cept of episodic meta-learning involves training neural networks to mimic the
evaluation conditions, which is believed to improve prediction performance on
test tasks [I7IT18]. This paradigm has been successfully extended to few-shot node
classification in the graph domain, as demonstrated by recent works [BIT5]T9]. In
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the context of few-shot node classification, the training phase follows a specific
procedure. Meta-train tasks or episodes, denoted as T}, are generated from a
base class set Cpqyse, to emulate the test tasks. These episodes adhere to N-way
K-shot node classification specifications. Each episode, denoted as Ty, comprises
a support set S, and a query set ¢, defined as follows:

Ty ={T}_, = {11, T2, ..., Tr},
Tt = {Sth}a

St = {(U17y1)5 (U27y2)a ) (UNXKayNXK)}?
Qt = {(Ulayl)7 (U2ay2)> sy (UNXKayNXK>}-

(1)

In a typical meta-learning method, within each episode, K labeled nodes are
randomly sampled from N base classes to form the support set. This support
set is then used to train a GNN model, simulating the N-way K-shot node
classification scenario during the test phase. Subsequently, the GNN predicts
labels for a query set, which comprises nodes randomly sampled from the same
classes as the support set. The optimization process involves minimizing the
Cross-Entropy Loss (Lcg) w.r.t. the GNN encoder gy and the classifier fy:

0,1 = arg min Log (T} 6,v). (2)
0,9

Several approaches have been proposed based on this framework such as
Meta-GNN[3], GPN[5], G-Meta[4] etc. Nevertheless, the evaluation of these meth-
ods has predominantly been conducted under transductive settings, neglecting
the exploration of their performance in inductive settings.

3.3 Proposed Baseline

Our work is motivated by the Intransigent GNN model (I-GNN) introduced by
a previous study[16]. The I-GNN model proposes a straightforward approach for
few-shot learning that relies on reusing features instead of using complex meta-
learning algorithms to achieve fast adaptation. The authors show that the -GNN
model, despite its simplicity, can achieve competitive performance compared to
meta-learning based approaches. In our study, we adapt the I-GNN model to
the inductive setting and propose a simple yet effective baseline for inductive
few-shot node classification tasks.

The I-GNN model is designed to be inflexible and unadaptable to new tasks.
The training process of I-GNN is split into two phases. In the first phase, a
GNN encoder (gg) and a linear classifier (f;) are pre-trained on all base classes
(Chase) using vanilla supervision through the Leog loss function. A weight-decay
regularization term is also applied during this phase. In the second phase, the
parameter of the GNN encoder is frozen, and the classifier is discarded. When
fine-tuning on a target few-shot node classification task, the pretrained GNN
encoder is used to directly transfer embeddings of all nodes from the task, and a
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new linear classifier (fy) is involved and tuned with few-shot labeled nodes from
the support set (S;) to predict labels of nodes in the query set (Q;).

T, = U{T}]_, = U{T\, Ty, ..., Tr}
6, = arg min LCE(Tt/,.; 0,0) + R(9), (3)
0,¢

1 = arg min Log(Si;6,v) (4)
P

4 Empirical Evaluation

4.1 Experimental Settings

In this research study, various methods for few-shot node classification are eval-
uated through systematic experiments under the inductive setting. These meth-
ods include ProtoNet[I], MAML[2], Meta-GNN[3], G-Meta[4], GPN[5], AMM-
GNNJ[6], and TENT[7]. The performance of these methods is compared on five
real-world graph datasets: CoraFull[8], Coauthor-CS[9], Amazon-Computer[9],
Cora[I0], and CiteSeer[10].

Table 1: Statistics of Benchmark Datasets
Dataset # Nodes # Edges # Features |C| |Crrain| |Caev| |Crest|

CoraFull 19,793 63,421 8710 70 40 15 15
Coauthor-CS 18,333 81,894 6,805 15 5 5 5
Amazon-Computer 13,752 245861 767 10 4 3 3
Cora 2,708 5278 1433 7 3 2 2
CiteSeer 3,327 4,552 3,703 6 2 2 2

CoraFull, Coauthor-CS, Amazon-Computer, Cora, and CiteSeer are five preva-
lent real-world graph datasets, each consisting of multiple node classes for train-
ing and evaluation. These datasets include citation networks, co-authorship
graphs, and co-purchase graphs, and the task is to predict the category of a
certain publication or paper. The number of node classes used for training, de-
velopment, and testing varies depending on the dataset. Table [1| describes the
statistics of the datasets.

4.2 Evaluation Protocol

This section outlines the evaluation protocol used to compare the meta-learning
methods. The node label space C of an graph dataset G = (A4, X) is divided into
{Chases Crnovel OF Chest}- Chase is split into Cirain and Cye, (division strategy for
each dataset are in Table . Evaluation is done by providing a GNN encoder g,
a classifier, f, an epoch interval ET for validation, S sampled meta-tasks for eval-
uation, F epoch patience, M maximum epoch number, T experiment repeated
times, and N-way K-shot, Q-query settings specification. The algorithm [I| cal-
culates the final FSNC accuracy A and confident interval CZ. The default values
of all the parameters are as follows, £I = 10; .S = 100; E = 10; M = 10000; T =
5N ={2,5}; K ={1,3,5}; Q = 10.
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Algorithm 1 UNIFIED EVALUATION PROTOCOL FOR FEW-SHOT NODE CLASSIFICATION

Input: Graph G, Cirains Cdevs Ctest; GNN g, classifier f; parameters EI = 10,5 = 100,E = 10,M =
10000, 7 =5, N = 2,5, K = 1,3,5,Q = 10
Output: f, accuracy A, confident interval I, trained models g
Repeat experiment for T times

1: fori=1,2,...,T do
2: j 1,k «+ 1,apeet + 05

3: while £ < M do

4: Optimize g based on the specific training strategy; > Training
5: if k mod EI = 0 then

6: Sample S meta-tasks from Cy.,, on G; > Validation
7: Calculate the obtained few-shot node classification accuracy a;

8: if a > apegy then apeqy + a,j + 05

9: else j «+ j+ 1;

10: end if

11: end if

12: if j = E then break; > Early Break
13: end if

14: end while

15: Sample S meta-tasks from Cieg¢ on Gj > Test
16: Calculate the obtained classification accuracy agegt;

17: A 4 Qpest,t — i+ 1;

18: end for

19: Calculate averaged accuracy A and confident interval CZ based on {aj, ag, ..., a;};

4.3 Comparison

In Table the performance of different meta-learning methods and the pro-
posed baseline is compared for few-shot node classification tasks. The compar-
ison includes four distinct few-shot settings: 5-way 1-shot, 5-way 5-shot, 2-way
1-shot, and 2-way 5-shot, allowing for a comprehensive analysis. The evaluation
metrics used are the average classification accuracy and the 95% confidence in-
terval, which are computed based on multiple repetitions (T). Fig [2| presents
the performance results of the CiteSeer dataset (similar trends observed in other
datasets) for various N-way K-shot settings. The observations derived from the
results are as follows:

Table 2: Few-shot node classification results of meta-learning methods and I-GNN.
Accuracy (1) and Confidence Interval (}) are in %. The best and second best results
are bold and underlined, respectively.

Dataset CoraFull Coauthor-CS Cora Amazon-Computer CiteSeer
| Settings |5-way 1-shot|5-way 5-shot|5-way 1-shot|5-way 5-shot|2-way 1-shot|2-way 5-shot|2-way 1-shot|2-way 5-shot|2-way 1-shot|2-way 5-shot|
Inductive
| MAML | 2263+ 1.19 | 27.21 + 1.32 | 27.98 + 1.42 | 42.12 & 1.40 | 53.13 & 2.26 | 57.39 & 2.23 | 52.6742.11 | 58.23+2.53 | 52.394220 | 54.13+2.18 |
| ProtoNet | 3243 + 1.61 | 51.54 + 1.68 | 32.13 + 1.52 | 49.25 &+ 1.50 | 53.04 & 2.36 | 57.92 & 2.34 | 61.9842.95 | 70.2042.64 | 52.514244 | 55.69+2.27 |
| Meta-GNN | 34.97 + 1.78 | 49.32 + 1.99 | 37.78 £ 2.02 | 51.17 & 1.91 | 52.09 + 2.39 | 58.21 + 1.52 | 55.4742.43 | 50. 55 | 51.1842.04 | 63.68+2.65 |
|  GPN | 27.90 + 1.35 | 36.40 & 1.82 | 35.00 + 1.55 | 49.30 & 2.63 | 50.00 + 1.89 | 55.00  1.81 | 49.75+0.85 | 54.25+2.45 | 52.75:+1.85 | 59.50+2.10 |
|[AMM-GNN] 36.45 + 1.99 | 52.09 + 1.90 | 53.30 + 2.30 |72.64 + 1.48| 54.36 & 2.20 | 60.01 & 240 | 51.99+1.51 | 52.48+1.57 | 52404214 | 54.63+2.24 |
| G-Meta | 40.76 & 2.19 | 57.69 £ 1.93 | 46.79 + 1.95 | 66.95 + 1.43 | 53.78 & 2.05 | 58.35 + 2.15 | 52.2741.98 | 61.03+2.19 | 52.214217 | 54.9242.26 |
| TENT | 38904220 | 54.32 + 1.65 |53.52 + 1.73| 68.16 & 1.18 | 50.40 + 2.01 | 59.80 & 2.38 | 82.4042.28 | 92.00+1.18 | 57.3542.74 | 64.5542.63 |
| T-GNN [47.14 + 2.08]59.01 + 1.82] 37.23 + 1.70 | 51.24 + 1.42 |62.33 + 2.67|70.16 + 2.05| 59.0842.67 | 68.35+248 | 60.04+1.55 | 73.63+2.03 |
Transductive
| MAML | 2263+ 1.19 | 27.21 + 1.32 | 27.98 + 1.42 | 42.12 4 1.40 | 53.13 + 2.26 | 52.6742.11 | 58.23+253 | 52.394220 | 54.1342.18 |
| ProtoNet | 3243 4 1.61 | 51.54  1.68 | 32.13 & 1.52 | 49.25 & 1.50 | 53.04 & 2.36 | 61.9842.95 | | 52.5142.44 | 55.6942.27 |
| Meta-GNN| 55.33 & 243 | 70.50  2.02 | 52.86 + 2.14 | 68.59 & 1.49 | 65.27 & 2.93 | 72.51 + 1.91 | 65.1943.29 | | 56.142.62 | 67.3442.10 |
| GPN | 5275 4232 | 72.82 + 1.88 | 60.66 + 2.07 |81.79 + 1.18| 62.61 + 2.71 | 76.39 + 2.33 | 57.26+1.50 | | 53.10+2.39 | 63.09+2.50 |
|AMM-GNN]| 58.77 4 2.49 | 75.61 + 1.78 | 62.04 £ 2.26 | 81.78 & 1.24 | 65.23 + 2.67 [82.30 + 2.07| 71.04£3.56 | 79214338 | 54534251 | 62.93+2.42 |
| G-Meta [60.44 + 2.48|75.84 & 1.70] 59.68 + 2.16 | 74.18 + 1.29 |67.03 + 3.22| 80.05 & 1.98 | 63.68::3.05 | 70.2143.16 | 55.1542.68 | 64.5342.35 |
| TENT | 5544 4208 | 70.10 + 1.73 |63.70 + 1.88 76.90 + 1.19 | 53.05 + 2.78 | 62.15 + 2.13 | 71.15+3.11 | 79.25+2.61 | 62.75+3.23 | 72.95+2.13 |

| I-GNN | 4270 + 1.92 | 51.46 + 1.69 | 43.89 + 1.82 | 55.93 + 1.46 | 54.45 + 3.13 | 65.18 & 2.21 | 62.3+22.89 | 72.81+2.93 | 58.70+3.17 | 65.60+2.59 |

— In the inductive setting, except for MAML and ProtoNet, meta-learning
models exhibit a significant performance drop compared to the trans-
ductive setting. This decline is attributed to the challenges of generalizing
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knowledge from limited labeled examples to unseen data. In the transductive
setting, models access the entire graph for predictions, while in the induc-
tive setting, they must generalize to new nodes or graphs. Limited labeled
data and the need for generalization contribute to lower performance in the
inductive setting.

I-GNN shows superior performance in the inductive setting compared to
the transductive setting for certain datasets like Cora, Citeseer, and Cora-
Full. This can be due to its ability to capture more transferable node em-
bedding in the inductive setting.

The scores for both MAML and ProtoNet remain the same on all datasets
because they do not utilize message-passing GNN in their approach. Since
they do not leverage the graph structure and operate on a per-node ba-
sis, the performance drop observed in other meta-learning models under the
inductive setting does not affect them in the same way. Therefore, their per-
formance remains consistent between the transductive & inductive settings.
The I-GNN model outperforms the meta-learning-based methods under
the inductive setting, particularly on datasets like Cora, CiteSeer and Cora-
full, while demonstrating competitive performance on other datasets. This
can be attributed to the fact that meta-learning methods typically require
a large number of samples to learn effectively.

CiteSeer

. MAML B Meta-GNN B AMM-GNN BN TENT

MAML* Meta-GNN* AMM-GNN*  mmm TENT*

Emm ProtoNet GPN G-Meta mmm |-GNN

X 100 ProtoNet* GPN* G-Meta* I-GNN*
> 90
® 80+
3 701
g 60 -
“ 50 A
o 40
F 30
20
101
0-

2-way 1-shot 2-way 3-shot 2-way 5-shot

Fig. 2: Meta-Learning, I-GNN with inductive and transductive (*)

4.4 Further Analysis

To make a direct comparison between the results of meta-learning methods and
I-GNN, we present additional findings in Fig. [3|and Fig. [4] which showcase the
performance of all methods across different N-way K-shot settings. By analyzing
these results, we can draw the following conclusions.

— As N increases, the performance of all methods deteriorates due to the

greater variety of classes within each meta-task. This increased complexity
poses challenges for classification tasks, resulting in lower performance. Fig.
demonstrates the impact of increasing N on the classification performance
using the CoraFull dataset.
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CoraFull

BEN MAML  BEE ProtoNet MM Meta-GNN MBSl GPN  BEm AMM-GNN B G-Meta Mmwm TENT  mm |-GNN
100 -
90
80
704
60 1
50 4
404
304
201
10

Test Accuracy (%)

2-way 1-shot 2-way 3-shot 2-way 5-shot 5-way 1-shot 5-way 3-shot 5-way 5-shot

Fig. 3: N-way K-shot results of CoraFull, Meta-Learning and I-GNN.

Cora CiteSeer

— MAML N Meta-GNN  EEM AMM-GNN  Ems TENT — MAML BN Meta-GNN  BEE AMM-GNN W= TENT

100 ™= ProtoNet mmm GPN - G-Meta m -GNN 100 ™= ProtoNet  mmm GPN m G-Meta m -GNN
$ 9 X 92
> 80 > 80
@ 70 @ 70
3 60 3 60
& 50 £ 50
z 40 = 40
@ 30 < 30
20 20
10 10
0 0

2-way 1-shot 2-way 3-shot 2-way 5-shot 2-way 1-shot 2-way 3-shot 2-way 5-shot

Fig. 4: N-way K-shot results of Cora and CiteSeer, Meta-Learning and I-GNN.

— The performance improvement of the -GNN method compared to meta-
learning methods on the Cora dataset, as shown in Fig. [4 is notable due
to its smaller number of classes, allowing I-GNN to leverage structural in-
formation for better generalization. The meta-learning methods struggle to
effectively utilize the available supervision information during training.

5 Conclusion

In this paper, we investigate the performance of meta-learning methods in the
inductive few-shot node classification tasks. While existing research primarily
focused on the transductive setting, the inductive setting has received limited
attention in the few-shot learning community. To bridge this gap, we conduct
a comprehensive study of meta-learning for inductive few-shot node classifica-
tion. Our empirical analysis reveals that most current meta-learning frameworks
struggle in the inductive setting. To address this challenge, we propose a sim-
ple yet competitive baseline model called I-GNN. Experimental evaluations on
five real-world datasets showcase the effectiveness of our proposed model. Our
findings emphasize the need for further research in exploring the potential of
meta-learning in the inductive setting, contributing to a more comprehensive
understanding of few-shot node classification.
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