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Abstract. This paper presents a novel reconstruction method that lever-
ages Diffusion Models to protect machine learning classifiers against ad-
versarial attacks, all without requiring any modifications to the classi-
fiers themselves. The susceptibility of machine learning models to mi-
nor input perturbations renders them vulnerable to adversarial attacks.
While diffusion-based methods are typically disregarded for adversarial
defense due to their slow reverse process, this paper demonstrates that
our proposed method offers robustness against adversarial threats while
preserving clean accuracy, speed, and plug-and-play compatibility.
Code at: https://github.com/HondamunigePrasannaSilva/DiffDefence.
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1 Introduction

The susceptibility of machine learning models to adversarial attacks is a major
challenge in the field of artificial intelligence. While various techniques have been
proposed to enhance the robustness of classifiers against such attacks, there is
a pressing need for more effective and efficient solutions. In recent years, gen-
erative models such as Generative Adversarial Networks (GANs) [13], Diffusion
Probabilistic Models [17] have emerged as a promising approach to improve the
resilience of machine learning models against adversarial attacks.

Modern deep generative models have a common structural similarity: the
generation of novel patterns is usually performed by transforming some ran-
dom latent code z. Sampling z ∼ p(z), where p(z) is a known distribution (e.g.
N (0, I) and then computing G(z), where G(·) is a deep neural network allows
the generation of new data. Given a model G(·), trained on clean data we can
assume that attacked samples x∗ have a different distribution, therefore finding
a latent code z∗ able to generate x∗ should be hard. Our approach builds on the
idea that given some attacked pattern x∗ = x+ ϵ where x is an unknown clean
pattern and ϵ is a perturbation crafted to induce some classifier into a mistake,
we should be able to find some latent code z∗ for which G(z∗) is closer to the
unknown clean pattern x than to the attacked one x∗. In Fig. 2 it can be seen
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Fig. 1: Overview of our approach. Adversarial attacks happen in image space by
adding crafted noise to a pattern x, shifting classifier’s output to a wrong class.
DiffDefence starts by drawing a sample z1T , to diffuse iteratively, for T steps

into a reconstruction x
(i)
r = z

(i)
0 = G

(
z
(i)
T

)
; we then optimize z

(i)
T so that the

diffusion output for a given optimized pattern z
(i+1)
T , lies closer to the original

attacked sample. In the figure, we drop the diffusion step subscript for readability
purposes .

how an attack can add subtle patterns (center) to a clean image(left) and how
DiffDefense recover a correctly classified example(right).

In this paper, we present a novel approach that leverages Diffusion Models to
enhance the resistance of machine learning classifiers to adversarial attacks. Our
proposed method involves reconstructing the input image using a reverse process
of a diffusion model (see Fig. 1 for details), which improves the model’s ability
to withstand adversarial attacks. We show that this approach offers comparable
speed and robustness to other generative model-based solutions. Moreover, our
proposed defense mechanism can be applied as a plug-and-play tool to any clas-
sifier without compromising its accuracy, provided that the diffusion model can
generate high-quality images. Overall, our approach holds promise as a viable
alternative to other more complex to train models, such as GANs, for defending
against adversarial attacks on machine learning models, owing to the benefits
offered by Diffusion Models.

Our contribution is threefold:

– We are the first to use recently successful Denoising Diffusion Probabilistic
models as a plug-in algorithm for reconstruction based adversarial defense.
Differently from [26, 35] our approach is based on reconstruction thus not
requiring backward and forward passes for each optimization step. Moreover,
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DDPMs are more stable in training with respect to GANs which have also
been used as a reconstruction tool [30].

– Thanks to a superior reconstructive and representational power, DDPMs
require less prototype embeddings and iterations to extract a clean pattern
from the attacked one, leading to higher inference efficiency with respect
to [26,30,35].

– Finally, our approach does not require to be trained on adversarial patterns
and can be used to detect attacked images.

Fig. 2: Left original example from MNIST. Center result of the DeepFool attack
(wrongly classified). Right our DiffDefense reconstruction (correctly classified).

2 Related Works

We now cover existing state of the art on modern generative models in adversar-
ial machine learning, forming the base of our reconstruction based adversarial
defense approach. We than discuss recent methods of adversarial attacks and
defense.

2.1 Generative Models

Generative models [13, 17, 19, 31] have emerged as a powerful class of machine
learning algorithms that can create new data samples with characteristics sim-
ilar to a given dataset. Their central idea is to learn the underlying probabil-
ity data distribution, which could then be used to generate new patterns via
sampling. Interestingly, these models have also proven to be particularly effec-
tive in adversarial scenarios, showcasing their ability to create samples that can
attack classifiers [34, 36]. Aforementioned models have also shown the capabil-
ity to learn a semantically coherent latent embedding space. This property has
been exploited, in adversarial scenarios, to remove attacks from patterns. By
reconstructing [20, 30], purifying [26] the perturbed sample and generating new
samples to bolster adversarial training [16], these models can significantly en-
hance the security of machine learning systems. Recent research has highlighted
the potential role of generative models in adversarial defense, as their primary
objective is to produce fake data that closely resembles real data. In this paper
we want to investigate the use of Diffusion Models to bolster the robustness of
models against adversarial attacks. For a more thorough coverage of modern
Deep Generative Models we refer the reader to [4].
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2.2 Adversarial Attacks and Defense

An adversarial attack is a process that aims at altering a classifier input pattern
in order to get the classifier to output a wrong prediction. So given an input
xi and a corresponding label yi, and a classifier C an attack method will aim
at obtaining a x∗ such that C(x∗) ̸= yi. Given this definition any method com-
pletely replacing pattern x with a different pattern would suffice in making a
classifier mistake the label. For this reason, a constraint on the perturbation of
the attacked pattern x∗ is also required. Therefore the attacked pattern x∗ must
be close to the original one ||x− x∗|| < ϵ.

Adversarial attacks can work in white-box and black-box scenarios. In the
white-box scenario the classifier is known to the attacker. The full knowledge
of the classification method implies that, for example for a neural network all
weights are known and the attacking method can leverage this knowledge. White-
box approaches may exploit the computation of the gradient of the model loss
with respect to its parameters for a specific input, such as the Fast Gradient
Signed Method (FGSM) [14]. PGD [21,22] improves over [14] by a refined attack
generation obtained by iterative Projected Gradient Descent (PGD). Instead,
Deepfool [23] attempts to find the closest decision boundary to then perturb the
input in that direction. Combination of attacks have been also proposed in [11],
combining parameter free versions of PGD with SquareAttack [2]. EOT+PGD
combines the concepts of Expectation over Transformation (EOT) [3] and Pro-
jected Gradient Descent (PGD) to improve its effectiveness. Elasticnet [6] ex-
ploits a combination of L1 and L2 regularisation terms to provide an optimal
trade-off.

In the black-box scenario, the attacking method does not have access to the
classifier, which is the most realistic setting. When an attacker has no knowledge
of a classifier’s architecture and weights, they can employ a query-based approach
to perturb the input without relying on the gradient by applying a perturbation
on the input until the classifier changes its output. Depending on the model’s
feedback for a given query, an attack can be classified as a score-based [7] or
hard-label [5] attack. In the score-based setting,the attacker exploits the model’s
output probabilities of each decision. Several attacks have been created with
this approach, such as Square Attack [2], which selects localized square-shaped
updates at random positions. Pixel Attack [32] show attacks are possible even
with a single pixel perturbation.

In the hard label-based approach, the attacker exploits the model’s final de-
cision output. Recently, SIGN-OPT [9] improved a previous work [8] using fewer
queries (20K) to attack, being faster than the previous and obtaining a similar
error rate of white-box attacks, but remaining much slower than the white-box.
However, a query-based approach may not be as efficient as a white-box attack.
Instead, a black-box attack can be employed by using the transferability [27,28]
of perturbed images to attack the target model. The attacker can use a sub-
stitute model, where they have full knowledge, to generate adversarial images
using white-box attacks that can then be used to attack the target model. Fur-
ther coverage of adversarial attack and defense technique can be found in [1].
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The issue of adversarial attacks in machine learning has prompted the devel-
opment of various defense mechanisms, we can roughly identify three main ap-
proaches: adversarial training, adversarial reconstruction, and adversarial purifi-
cation. Adversarial training methods improve the robustness of a model against
adversarial attacks by augmenting its training set with adversarial examples.
Introduced first by [14], adversarial training has become one of the most suc-
cessful defense against adversarial attacks [15, 21, 29], adversarial training can
also be enhanced using generative models for data augmentation [16]. The main
limitation of this approach is that is mainly protecting classifiers from methods
used in the adversarial training.

Adversarial reconstruction approaches leverage the projection of patterns
onto a learned latent manifold to regenerate the original input from its adver-
sarial counterpart. Generative models [20,30] are a natural choice to learn such
latent representation and to obtain clean reconstructions out of attacked pat-
terns. Other approaches leveraged super-resolution networks [24] or trained a
reconstruction network to minimize the perceptual loss between the reconstruc-
tion of the attacked pattern and the clean image.

Adversarial purification techniques perform a filtering of attacked patterns
removing adversarial perturbations while preserving their original features. Re-
cently proposed denoising Diffusion Models have been used as a tool for purifi-
cation [33,35,37]

Reconstructions based on GANs [30] are effective and generalize versus un-
seen threats. However, the instability of GANs during training remains a chal-
lenge. Moreover, many source noise embeddings and multiple reconstruction it-
erations are required to obtain effective defense. Defense-VAE is faster and as
effective as Defense-GAN. However, to obtain effective reconstructions [20] the
method is fine-tuned on attacked images making the approach less general and
more prone to fail on unseen threats. Purification via Diffusion Models [26,33,35]
exploits multiple forward/backward passes to obtain a reliable defense which re-
quires significant time to purify an image.

With respect to [20, 30] our approach exploits powerful Diffusion Models as
a reconstruction tool. Interestingly, our approach is more efficient then Defense-
GAN, requiring less iterations and source embeddings. Different from [20] we
do not require to train on adversarial examples to work as Defense-VAE [20].
Current defense mechanisms exploiting Diffusion models are less efficient, re-
quiring as much as 5s on a V100 card [26], while our approach runs in 0.28s on
a TitanXP card.

3 Methodology

We propose a diffusion reconstruction method as a defense against adversarial
attacks. The underlying idea is that adversarial attacks seek to deceive a deep
neural network (DNN) by introducing a disturbance to the image while pre-
serving its semantic meaning. Hence, the adversarial image ought to be situated
close to the original, unperturbed image.



6 Silva H. P., Seidenari L., Del Bimbo A.

Our approach is based on the idea that it is possible to induce a Generative
model G(·) to produce a given image x∗ by minimizing the distance in image
space of the output pattern, getting ẑ as the result of such minimization

ẑ = argmin
z

||G(z)− x∗|| (1)

Obtaining the reconstructed image xr = G(ẑ). Having G(·) being learned on a
clean dataset, the main assumption is that output generated obtained by solving
Eq. 1 are closer to clean examples than corrupted ones.

In our case G(z) is the result of a reverse diffusion process, each step of which
is given by:

zt−1 =
1

√
αt

−
(
zt −

1− αt√
1− ᾱt

ϵθ (zt, t)

)
+ σtn (2)

where ϵθ is the U-Net noise prediction model, αt = 1−βt, ᾱt =
∏t

s=1 αs, {βt ∈
(0, 1)}Tt=1, σt =

√
βt.

Our goal is to have the diffusion reverse process create a clean image, that is
as close as possible to the attacked input. To this end we must obtain a suitable
noise vector zk. Therefore, we start from a random noise sample z1T , and we
iteratively generate an image using the reverse process of a diffusion model. We
then optimize z to solve Eq. 1 as shown in Algorithm 1. In its general form, the
proposed algorithm may also be run for multiple source embeddings, although
we found that it only increase slightly the accuracy.

Algorithm 1 DiffDefense Reconstruction Algorithm. As a loss L(x(i)
r , x∗) we

used Mean Square Error (MSE). T ∗ are the diffusion steps and L are the gradient
descent iterations, both treated as hyperparameters. ∆ = 0.1 is a decay rate.

1: Given adversarial image x∗

2: z1T ∼ N (0, I)
3: for i = 1, 2, . . . , L do
4: for t = T ∗, T ∗ − 1, . . . , 0 steps do
5: n ∼ N (0, I)

6: z
(i)
t−1 = 1√

αt
−

(
z
(i)
t − 1−αt√

1−ᾱt
ϵθ

(
z
(i)
t , t

))
+ σtn

7: end for
8: ηi = ηi−1∆

1
⌈L∗0.8⌉

9: x
(i)
r = z

(i)
0

10: z
(i+1)
T = z

(i)
T − ηi∇zL(x(i)

r , x∗)
11: end for

3.1 Implementation details

The noise prediction U-Net ϵθ architecture consists of a contracting path, bot-
tleneck layer and an expansive path. The contracting path involves repeating a
block with layer normalization, 3x3 convolutions, and SiLU activation, followed
by downsampling with a stride of 2. The number of feature channels is doubled
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at each of the three downsampling step. The bottleneck layer consists of the
same block of the contracting path repeated three times. The expansive path
starts by concatenating the corresponding feature map from the contracting
path with an upsampled input using transpose convolution. It is then followed
by a block with layer normalization, 3x3 convolutions, and SiLU activation. At
each upsampling step, the number of feature channels is halved. This process is
also repeated three times. Both the contracting and expansive paths include a
time-embedding layer, which consists of two linear layers with a SiLU activation
in between. This time-embedding layer is added at each block of the contracting
and expansive paths.

We employ two classifiers: the attacked classifier A and the surrogate classifier
B. Classifier A is composed of two 5x5 convolutions with 64 output channels and
stride of 2 and 1, respectively, using ReLU activations. It is then followed by a
dropout layer (p = 0.25), a linear layer with 128 output features using ReLU
activation, another dropout layer (p = 0.5), and finally a linear layer with 10
output features. We use classifier B to generate adversarial samples for black box
attacks. B consists of a dropout layer (p = 0.2), followed by three convolutions
with respective filter sizes of 8x8, 6x6, and 5x5 and strides of 2, 2, and 1, using
ReLU activations. Afterward, another dropout layer (p = 0.5) is applied, and
the final layer is a linear layer with 10 output features.

The Diffusion Model and the classifier are trained using the same clean
dataset. Training the classifier on reconstructed data is unnecessary if the diffu-
sion model generates high-fidelity images resembling the originals.

To implement the adversarial attack used to evaluate DiffDefense, we used
adversarial robustness toolkit [25] and torchattacks [18].

4 Experiments

This section presents the experiments that evaluate the proposed method using
both black-box and white-box attacks. First, we evaluate performance against
three classic attacks in both settings [14, 22, 23]. In these experiments we seek
optimal values for the number of iterations for gradient descent L, the embed-
ding set size R, and the diffusion step T ∗. Then, keeping these hyperparameter
fixed we test DiffDefense against unseen attacks [2,6,11,38]. Finally, we use this
method to detect adversarial samples. The experiments are conducted on two
different datasets, MNIST [12] and KMNIST [10].

4.1 Result of white-box & black-box attack

We investigate DiffDefense ability to withstand both white-box and black-box
attacks. To this end, we subject it to three potent white-box attacks: FGSM,
PGD, and Deep Fool. Furthermore, we evaluate the performance of DiffDefense
against these same attacks in the black-box setting, where we generate adversar-
ial samples using an auxiliary classifier to attack the target classifier. In Tab. 1
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Table 1: Performance of DiffDefense on white box & black box attacks on MNIST
& KMNIST datset. We report accuracy for each attack with and without defense.
For Black blox attacks, adversarial images has been crafted using a substitute
classifier.

Dataset Attack Type Without defense With defense

MNIST

No attack - 99.14% 99.06%

DeepFool
White box 0.95% 98.16%

Black box 97.17% 98.86%

PGD
White box 5.81% 95.94%

Black box 51.28% 97.18%

FGSM
White box 23.72% 89, 95%

Black box 15.81% 91.28%

KMNIST

No attack - 95.18% 94.38%

DeepFool
White box 2.93% 93.92%

Black box 92.16% 93.92%

PGD
White box 26.83% 84.85%

Black box 58.43% 91.49%

FGSM
White box 37% 79.5%

Black box 49.96% 88.53%

we can see how all attacks are pretty effective in both settings except for Deep-
Fool used as a black box method. In general using DiffDefense we can always
recover a correct classification for almost all attacked examples.

Table 2: Robustness of DiffDefense against unseen threats on MNIST dataset.
Adversarial training using adversarial sample crafted by FGSM attack ϵ = 0.3.

Attack Type W/O Defense W/ Defense Adv. Training

FGSM ϵ = 0.3 White Box 23.72% 89.95% 98.02%
PGD ϵ = 0.3 White Box 5.81% 95.94% 79.59%
Deep Fool White Box 0.95% 98.16% 5.81%
EOT+PGD ϵ = 0.3 White Box 24.57% 96.46% 89.22%
Square Attack Black Box 43.31% 97.31% 93.09%
AutoAttack White Box 1.26% 88.09% 45.86%
Elastic Net White Box 0.75% 95.75% 0.62%

4.2 Defense against unseen threats

One of the significant limitations of existing adversarial training defense methods
is their inability to effectively address previously unseen threats. DiffDefense
does not require to observe adversarial patterns to work, nonetheless previous
experiments were performed seeking the optimal values for hyperparameters
L,R, T ∗. In order to assess the robustness of our proposed approach to such
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unseen attacks we conducted evaluations using four different attack techniques:
Square Attack [2], Auto Attack [11] , EOT+PGD [38] attack and Elastic Net [6],
without tuning hyperparameters. Results in Tab. 2 indicate that our method is
robust against all four of these previously unseen attack methods. Here we also
test the behavior of adversarial training with samples produced by FGSM with
ϵ = 0.3. Interestingly, DiffDefense obtains high accuracy even in cases in which
adversarial training, is not helping at all [6, 11,23].

4.3 Ablation Studies

To evaluate the effectiveness and speed of our proposed approach, we conducted
an analysis of the three main hyperparameters, iteration number L, embedding
set size R and diffusion step T ∗. We found that the proposed method does not
need the same amount of steps of the Diffusion Model but it converges with
less steps, as shown in Fig.3. Moreover, in a comparison with Defense-GAN [30],
the results of our experiments revealed that our method achieved convergence
with fewer iteration steps and a smaller embedding set, while also requiring less
time to converge than the GAN-based method. This was evident in the results
presented in Tab.3, which show the superiority of our proposed approach over
Defense-GAN. The metrics used for comparison include robust accuracy, which
measures the accuracy after applying the defense, and time, which indicates the
duration to reconstruct a single image.

Table 3: Comparison with Defense-GAN [30]. Fewer iterations (L) and smaller
embedding set (R) in DiffDefense lead to faster convergence and reduced time.
All tests made on MNIST using white-box FGSM attack (ϵ = 0.3) and the same
classifier as [30]

Method L R Time Robust Acc

Defense
Gan [30]

25 10 0.086 79.98%
100 1 0.273 50.11%
100 10 0.338 89.11%
200 10 0.675 91.55%

Ours
5 1 0.280 87.78%
5 5 0.280 89.95%

4.4 Attack detection

Interestingly the results of our study indicate that non-perturbed images are
reconstructed with greater ease in comparison to those subjected to adversarial
attacks. This is expected since the diffusion model and the classifier are trained
on the same data, facilitating the diffusion in the reverse process phase using
an unperturbed image to an adversarial image. This ease of reconstruction is
reflected in significantly smaller reconstruction errors after an equal number of
iterations. These findings suggest that the reconstruction error may serve as a
potential indicator of the presence of an attack. In Fig. 4 we show ROC curves
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Fig. 3: Accuracy analysis of the classifier after DiffDefense has been applied on
different diffusion steps. Using L = 4 and R = 5.

varying the diffusion step for [6, 23]. For all other methods [2, 11, 22, 38] we get
AUC ∈ [.99, 1].
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Fig. 4: Attack detection ROC curves for DiffDefense. In our experiments FGSM,
PGD, EOT+PGD, AutoAttack, Square Attack yielded a AUC ∈ [.99, 1].

5 Conclusion

We proposed DiffDefense, a novel method that uses Diffusion models for recon-
struction, enhancing classifier robustness against attacks. Empirical evaluation
demonstrated its efficacy, speed, and potential as an alternative to GAN-based
methods and adversarial purification methods based on diffusion models. We
also showed that our approach is effective against previously unseen attacks,
highlighting its robustness to new attacks. Additionally, we illustrated the use-
fulness of reconstruction as a tool for adversarial detection. Our findings suggest
that Diffusion based adversarial defense by reconstruction is a promising path
toward developing secure AI systems. We believe that future work may further
improve our method by adopting better solvers for more accurate and faster
reconstruction.
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