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Abstract. Audio compression is usually achieved with algorithms that
exploit spectral properties of the given signal such as frequency or tem-
poral masking. In this paper we propose to tackle such a problem from
a different point of view, considering the time-frequency domain of an
audio signal as an intensity map to be reconstructed via a data-driven
approach. The compression stage removes some selected input values
from the time-frequency representation of the original signal. Then, de-
compression works by reconstructing the missing samples as an image
completion task. Our method is divided into two main parts: first, we
analyse the feasibility of a data-driven audio reconstruction with missing
samples in its time-frequency representation. To do so, we exploit an ex-
isting CNN model designed for depth completion, involving a sequence
of sparse convolutions to deal with absent values. Second, we propose a
method to select the values to be removed at compression stage, max-
imizing the perceived audio quality of the decompressed signal. In the
experimental section we validate the proposed technique on some stan-
dard audio datasets and provide an extensive study on the quality of the
reconstructed signal under different conditions.

Keywords: Audio compression · CNN · Sparse convolutions · Spectro-
gram · genetic algorithm

1 Introduction

Storing or transmitting digital audio data often involves compression, that can be
lossy or lossless. Classical audio compression and decompression algorithms re-
move redundant or irrelevant information from data exploiting different proper-
ties [6, 2]. In particular, when a lossy approach is adopted, the algorithm discards
the information that are considered as inaudible or less important to the human
hearing: this is performed moving from time to frequency domain (typically
via the Fourier transform), so that the compression can be performed directly
on frequencies, exploiting spectral properties of the signal. The literature counts
several approaches to perform effective compression for speech and generic audio
signals [11, 4], also targeted to specific applications such as wireless communi-
cations [7]. Recently, data-driven approaches proved to be effective in a variety
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of applications [20, 19], offering targeted solutions [3]. Among them, some works
proposed data-driven approaches to tackle the problem of audio data compres-
sion. An early work presented in [16] proposed a speech compression technique
using a three-layer perceptron, where outputs of the hidden layer are quantized
to perform the compression. Despite its limitations, we can consider such work
a first attempt at applying autoencoders for audio compression. The authors in
[24] introduce a neural network (NN) model to compress audio signals through
an encoder/decoder architecture and residual vector quantizer. Some works pro-
pose NN models specifically designed for speech compression [12, 13]. In all such
examples, audio signals are treated by the model as one-dimensional input sig-
nals. Other applications of data-driven approaches involving audio signal pro-
cessing include audio super-resolution (or bandwidth extension) [14] or speech
dereverberation and denoising [23], where the authors provide a time-frequency
approach.

In this paper we propose a first study on audio compression using data-driven
techniques designed for image processing. Specifically, we investigate the usage of
CNNs composed of Sparse Convolution layers applied to the 2D time-frequency
domain representation of an audio signal. The idea of sparse convolutions was
introduced in [21] to perform depth completion, with possible subsequent tasks
such as 3D reconstruction [17, 18] or segmentation [22]. Later the same con-
cept was extended and further improved by other authors [10, 9] to solve similar
problems or to merge different kinds of data as intensity images [15], but has
never been used for audio data specifically. In our work we shift from depth
data to audio signal by working on the "image" obtained when applying the
Short-Time Fourier Transform (STFT). Indeed, the main idea behind the pro-
posed compression method is to first convert the 1-dimensional audio signal into
a 2-dimensional spectrogram via STFT, and then to keep only part of such infor-
mation by performing a sparse sampling of the image. Then, at decompression
time, the original complete spectrogram image is reconstructed by a pre-trained
CNN. To do so, we designed a network architecture that performs sparse convo-
lutions to reconstruct the signal by filling in the missing values. Such model is
specifically trained on audio data, and involves a specialised loss function.
To summarize, the contributions of this work are threefold: first, we present an
"audio-completion" task that is novel with respect to other approaches proposed
in the literature. The audio signal is transformed into an image, sparsified by
an encoding algorithm, and reconstructed using sparse convolutions. Second, we
introduce an improved version of the Griffin-Lim Algorithm (GLA) [5] that is
able to enforce phase coherence given a sparse sampling of the phase image. Fi-
nally, we describe an effective compression method based on a Genetic Algorithm
that is able to optimize the pixel selection process keeping the desired compres-
sion level. In this way the compression step is able to select only the relevant
image areas so that the reconstruction preserves the best possible quality. We
provide an extensive experimental evaluation where we analyse all the proposed
approaches and compare the given alternatives in relation to the audio output
quality and the space needed to store all the compressed values.



Exploring Audio Compression as Image Completion 3

Genetic
Subsampling

Audio 
Completion

STFT

GLA

Modified GLA

No phases

All phases

Compression

ISTFT

Decompression

Alternatives

M
ag

ni
tu

de
Ph

as
es

Fig. 1. Compression and decompression pipeline overview. The signal is transformed
into power spectrogram and phases images. The compression happens by discarding
most of the values through a custom-designed genetic sub-sampling (§2.3). We analyse
three alternatives for the phases: (i) discard all of them and recover with the Griffin-Lim
Algoritm, (ii) keep only the subsampled ones and apply our modified GLA, or (iii) keep
all of them. At decompression stage, our Audio completion CNN (§2.1) reconstructs
the spectrogram from the sparse samples, and the waveform is recovered via iSTFT.

2 Audio Compression via Sparse CNNs

Our approach works by projecting the 1-dimensional audio signal into a 2-
dimensional time-frequency domain representation called spectrogram. This op-
eration is performed with the Short-Time Fourier Transform (STFT), which is
implemented by dividing the audio waveform into small overlapping segments
and then applying the Fourier Transform to each of them individually. Similarly
to the classical Fourier Transform, also the STFT can be inverted to get back
the waveform from a spectrogram. Mathematically, it can be defined as:

Sk,h =

N−1∑
n=0

w(n) x(n+ hH) e−i2πn k
N (1)

Where h = 0, . . . , T is the time frame, k = 0 . . . N
2 is the frequency, N is the

number of samples that we are considering for each time frame, H is the amount
of overlapping defined as the hop size from one frame to another, and w(n)
is a windowing function to reduce the spectral leakage due to the non-integer
number of harmonic periods in the time frame1. Since it works on different
limited segments of the original data, the output spectrogram is an F×T complex
1 the most common functions are the Hamming, Hanning, and Blackman window. We

observed no relevant difference in the choice of such function for our purposes.
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matrix S where F is the number of frequency bins, equal to half of the frame size
N for the Nyquist theorem, and T is the number of frames that we analyse in
the waveform depending on the length of the signal and the amount of overlap.
For our purposes, it is more convenient to represent S in polar form, separating
the log magnitude (power) of the spectrum from the phases as shown in Fig. 1.

The rationale for studying a compression method operating on the spectro-
gram, instead of the original waveform, is that the power spectrum is generally
sparse for typical speech audio data. Indeed, most of the energy tends to clus-
ter into just a few energy bins for each time frame. For this reason, we cast
the audio compression problem as the task of reconstructing the audio signal in
presence of missing samples, or gaps, in the spectrogram data. Since the power
spectrum is just an image, we can apply state-of-the-art methods designed for
depth completion to solve the problem in an effective way. The only difference
is that the input data represents the power of each harmonic over time instead
of depth information.

The whole pipeline is displayed in Fig. 1. First, the input waveform is con-
verted to a spectrogram using the STFT. This results in an image where the
number of rows depends on the bandwidth of the signal and the columns to the
length of the signal itself. For simplicity, we consider a signal with a limited tem-
poral extent but the same process can be used for an infinitely long audio stream
by dividing the process into smaller chunks (we used 4 seconds chunks in all our
tests). At this point, compression happens by discarding a desired amount of
samples from the spectrogram (both in power spectrum and phases) according
to certain criteria. In this work, we evaluate two approaches, namely random
subsampling and genetic spectrogram subsampling (§ 2.3). The remaining sam-
ples are serialized into a one-dimensional stream, quantised to fixed point values
with a user-selectable amount of bits, and compressed. Decompression works by
“filling the gaps" caused by the samples that were removed during compression.
To do so, the binary stream is decompressed, and the spectrogram is recreated
together with a binary mask marking the location of the valid samples. We then
apply our Audio Completion Network (§ 2.1) to recover the missing values of the
power spectrum. Note that the same operation is not performed on the phases
because the “phase image" is not locally smooth and therefore not easily address-
able with the relatively limited receptive field of a CNN. Instead, we recover the
phases directly when inverting the STFT with a modification of the Griffin-Lim
algorithm (see § 2.2).

2.1 Audio Completion Network

The network architecture that we propose is based on the model presented by
Uhrig et al. [21]. In particular, we are interested in the concept of sparse convo-
lution, which is a convolutional-like operator designed to effectively account for
sparse data (i.e. manage missing pixel values).

Suppose we have an F × T input image X, then we define M ∈ {0, 1}F×T

to be a binary mask denoting the validity (with value = 1) or not of an input
pixel in X. The sparse convolution operation takes as input both the image data
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Fig. 2. CNN architecture for audio completion. We perform a sequence of 6 sparse
convolutions propagating the single-channel validity mask.

X = {xi,j} and the 2-dimensional mask M = {mi,j}. Considering a kernel size
of 2k + 1, the sparse convolution output at position (u, v) is computed as f as
follows:

fu,v(X,M) =

∑k
i,j=−k mu+i,v+j xu+i,v+j wi,j∑k

i,j=−k mu+i,v+j wi,j + ϵ
+ b (2)

where wi,j are the kernel weights, b is bias and ϵ is a small value added to
avoid division by zero. Thanks to the normalization factor computed at the
denominator and the multiplication by mask values, the convolution takes into
account only valid pixel values, enabling the model to be sparsity invariant.
Moreover, since more valid values are computed as a result of the described
operation, the input binary mask is propagated to the following layers via a
function fm, that computes the max pool operator for each (u, v) as follows:

fm
u,v(M) = max

i,j=−k,...,k
mu+i,v+j wi,j (3)

meaning that an output pixel is considered valid if at least one pixel from the
input mask is equal to one.

Following a similar approach of [21], we build the audio completion network
concatenating different sparse convolution blocks. In this way, the final output
will be a full spectrogram image where input gaps (i.e. points for which the
mask is zero) are filled. The proposed audio completion architecture is displayed
in Figure 2. We start from a 2-channel input (one for the mask M and one for
sparse data) and then perform six sparse convolutions with decreasing kernel
sizes, namely: 7, 7, 5, 5, 3, 3. All convolutions are followed by ReLU activation
and all the feature maps have 16 channels; finally, the last layer outputs the
reconstructed spectrogram. We used the spectral convergence loss as proposed
in [1]:

L(Y, Ŷ ) =
|| |Y | − |Ŷ | ||Fro

|| |Y | ||Fro
(4)

where Y represents the ground truth spectrogram, Ŷ is the network prediction,
and || · ||Fro is the Frobenius norm.
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2.2 Phase recovery

Our audio completion network reconstructs the spectrum magnitude only. Phases
are recovered by taking advantage of the leakage between the sequence of time
frames managed by the STFT. Since time frames overlap, phases of consecutive
frames are obviously correlated depending on the frequencies. A popular tech-
nique to recover the phases in this way is the Griffin-Lim Algorithm (GLA) [5],
consisting of iterative refinement of the complex spectrum obtained by applying
STFT and its inverse while forcing the magnitude to the given values. We now
briefly sketch the mathematical formulation to better understand our proposed
modification of the original technique.

Let S = ÂeiΦ̂ be a complex spectrum with magnitude Â ∈ RT×F and
phases Φ̂ ∈ [0 . . . 2π]T×F . Let G[·], G−1[·] denote the forward and inverse STFT
respectively. Given just a power spectrum A, GLA reconstructs the full complex
spectrum S by solving the quadratic problem:

minimize
S

∥ S− G
[
G−1[S]

]
∥2Fro

subject to Â = A
(5)

The rationale is that if S is not consistent (i.e. phases are not correctly
correlated), applying inverse and direct STFT will produce a new (consistent)
spectrum S′ = G

[
G−1[S]

]
with different magnitudes and phases due to spec-

tral leakage. For this reason, GLA finds the best spectrum S with the given
magnitudes A minimising the Frobenius distance to a consistent spectrum S′.

Since GLA just aims at a consistent spectrum, multiple different solutions
are equally possible for the given set of amplitudes. The final result is in general
intelligible, but the perceived quality may vary greatly depending on the local
minima obtained during the optimisation. For this reason, we propose a modifi-
cation of GLA in which some phases ΦS (with S = {(k1, h1), . . . , (kN , hN )}) are
given. The new optimization is then:

minimize
S

∥ S− G
[
G−1[S]

]
∥2Fro

subject to Â = A

Φ̂(k1,h1) = Φ(k1,h1), · · · , Φ̂(kN ,hN ) = Φ(kN ,hN )

(6)

which can be solved with an iterative projection procedure similar to what was
originally proposed in [5]. Let S(0) be an initial spectrum in which Â = A and the
values in Φ̂ are drawn from a uniform random distribution in 0 . . . 2π excepts for
the values Φ̂(k1,h1), . . . , Φ̂(kN ,hN ) that are set to the given Φ(k1,h1), . . . , Φ(kN ,hN ).
The iterative projection procedure is defined as:

S(t+1) = G
[
G−1[P (S(t))]

]
(7)

P (S(t))k,h =

Ak,h eiΦ(k,h) , if (k, h) ∈ S
Ak,h

|S(t)
k,h|

S
(t)
k,h, otherwise (8)
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Fig. 3. Left: schema of the reproduction used for genetic subsampling (see text for
details). Right: PESQ score wrt iterations for mask generation for our genetic algorithm
vs. random sampling.

where P is the projection function forcing the amplitudes |S(t)| = A and the
phases in S to Φ(k1,h1), . . . , Φ(kN ,hN ). The procedure let S converge to a consistent
spectrum where amplitudes and known phases are equal to the ones that are
given in input. This effectively recovers the missing phases to values that are
consistent according to the overlap of subsequent time frames.

2.3 Genetic Spectrogram Subsampling

The studied compression approach works by discarding some values from the
signal spectrogram. So far we gave no details on how to choose such values, but
obviously this has an impact on the quality of the reconstructed signal. One
simple approach can be to do a random subsampling of the input spectrogram.
As we will see in the experimental section, this approach is very fast to implement
but it will not consider the different energy contributions of certain frequencies
in the spectrum.

In general, the subsampling operation can be solved optimally if posed as a
non-linear optimization problem. Let M ∈ {0, 1}T×F be a binary mask defining
which values to keep. Let Q(M) ∈ R be a fitness function measuring how good
is the reconstructed waveform when the mask M is applied. For example, Q
can evaluate the PESQ (Perceptual Evaluation of Speech Quality) when the
spectrogram magnitude is reconstructed with our Audio Completion Network
and the phases with the modified GL as described. We can write it as:

maximize
M

Q(M)

subject to
∑

M = γ , M ∈ {0, 1}T×F
(9)

where γ is a desired density level (in range 0 . . . T · F ), controlling the number
of values to keep and therefore the amount of compression to achieve. Even if
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Q is differentiable, the resulting problem is NP-Hard for the requirement of the
mask M to be binary. To make it tractable, we can either relax the constraint of
having a binary mask (i.e. using a soft mask) or use an optimization procedure
based on heuristics that provides a reasonable result even with no guarantee of
reaching the global optimum. In this work, we investigated the latter with an
approach based on Genetic Algorithms theory.

Our Genetic Spectrogram Subsampling (GSS) starts with an initial popu-
lation P = {M1, . . . ,ML} of valid candidate solutions. The genome of each
individual in P is a binary mask randomly generated with the property of also
being a valid solution for our optimization problem (i.e.

∑
i Mi = γ ∀i). In-

spired by the process of natural selection, individuals of the initial population
evolve by recombining and/or mutating their genome through an iterative pro-
cess spanning several generations. Individuals with a genome producing high
values of fitness Q are more likely to survive and be selected for recombination
(i.e. reproduction) across generations. After a fixed number of iterations, the
best genome is returned by the algorithm. At each iteration (generation) we
perform the following operations:

Selection. each element of P is ranked according to the fitness function Q.
This is performed by (i) applying each mask Mi to the input spectrogram, (ii)
executing the Audio Completion Network to recover the missing values and, (iii)
evaluating its quality against the original signal. The last step can be more or
less expensive depending on the evaluation metric chosen. For example, using the
MAE (Mean Absolute Error) on the spectrum amplitudes is less computationally
expensive but does not take into account the perceptual quality of the final
waveform. Conversely, using the PESQ metric requires computing the inverse
STFT (possibly with phase recovery) but can produce better overall solutions.
We use a hybrid approach here, sorting first the population in ascending order
wrt. MAE. The worst 60% of the individuals are eliminated and substituted
with new random individuals in the next generation. The best 40% are ranked
again with PESQ and selected for either being preserved as-is or modified with a
genetic operator. Specifically, the best 10% just pass through the next generation
while the remaining 30% are mutated and recombined by random crossover.

Mutation and Crossover. From the 40% of the best-ranked individuals
we create a number of random pairs equal to the 30% of the original population.
Such random pairs of individuals are then combined with a custom genetic op-
erator designed (heuristically) to produce a new individual with fitness higher
than both parents. The mask of the new individual is obtained as follows:

crossover(Mi,Mj) = Mi ∧Mj ∨ mutate∑Mi∧Mj
(Mi ⊕Mj) (10)

where mutatek(M) is a function that randomly sets some values of M to 0 so
that

∑
M = γ−k. The general idea is that, after crossover, the mask of the new

individual should have a 1 if both parents have a 1, or a 0 if both the parents
have a 0 at each position. This is performed by the element-wise and operation
(∧) of parent masks. Conversely, at every location where parents values disagree
(i.e. the element-wise xor ⊕ is 1) the output mask can randomly have a 0 or 1
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Fig. 4. Decompression quality in terms of PESQ (1st row) and MAE (2nd row) varying
sparsity levels. Each column denotes a different phase reconstruction approach.

with the only requirement that the total number of ones to be equal to γ. This
random flipping of values from 1 to 0 effectively represents a mutation of the new
individual with respect to the parents and introduces an element of variability
in the evolutionary process. In Figure3 (left) we sketched the selection process
across two generations while on the right-hand side we show an example of how,
albeit being a heuristic, the GSS can improve the search for optimal masks with
respect to a simple random search (i.e. with no mutation and crossover).

3 Experimental Results

We tested our method on the Flickr 8k audio caption dataset [8]. To have uniform
samples, we extracted audio patches with a duration of 4 seconds, avoiding parts
with no signal, and we selected 10K audio tracks sampled at 16 KHz. Then we
divided such data into training and test sets with an 80/20 ratio, obtaining
20K audio samples for the test set. Each audio sample was transformed with
the STFT, choosing 2048 frequency bins and setting the window size to 2048
with a hop length equal to 256. In this way, we obtained complex images of
size 1025 × 294. As for the absolute values, we converted the spectrogram to a
log-power scale. The audio completion network was trained by applying uniform
random masks to the training set, randomly selecting the sparsity levels between
80% to 95%. The training process was performed with Adam optimizer with an
adaptive learning initialized to 10−4, and run up to convergence.

In our study we explore the phases reconstruction step with different meth-
ods: (i) keep no phases and compute them with GLA, (ii) keep only the phases
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Fig. 5. Quality of reconstruction wrt values to be stored for different approaches and
subsampling methods.

corresponding to the selected power values and use the improved version of
GLA to ensure coherency, and (iii) keep all the input phases. Therefore, we first
analyse the behaviour of these three approaches when reconstructing audio at
different sparsity levels. Figure 4 shows the decompression quality for different
phase reconstructions: all phases (1st column), masked phases (2nd column), and
no phases (3rd column). We show PESQ (1st row) and MAE (Mean Absolute
Error, 2nd row) metrics computed on all test set data with different sparsity
levels up to 0.95. As expected, the quality decreases as the sparsity level raises,
and keeping all the phases gives the best quality both in terms of perceptual
quality and MAE. Observing the PESQ values, we can see that the modified
GLA improves the quality up to PESQ = 2.5, offering a better outcome with
respect to the classical GLA (no phases), meaning that our approach is effective
while requiring less space. The modified GLA works well also when looking at
the MAE, being comparable with the "all phases" method. This is also an indi-
cation of the effectiveness of our proposed modification to GLA when also the
compressed phases are sparse. The second test we performed is meant to assess
the effectiveness of the proposed genetic algorithm to perform the subsampling
during compression. In particular, we show the reconstruction results for a ran-
dom uniform sampling versus the genetic subsampling. In order to evaluate the
compression step together with the three phase reconstructions alternatives, we
include such results in Figure 4 as different curves on the already discussed plots.
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We can see that the genetic algorithm always computes a better mask for the
given sparsity levels, in particular for the perceptual quality, reaching values
around 3.5 for all the phases and 2.5 for the sparse phases (with modified GLA).
As a last experiment, we compared the memory space needed to store the com-
pressed data for each different approach. Note that we do not plot the bitrate,
but rather we prefer to show the number of values to be saved. This is because
the final amount of bytes depends on a number of external factors such as the
STFT parameters, the quantization level, and the data structure that is actually
employed to store the sparse matrix. In this way we only show the number of
values, discarding other possible choices. Figure 5 compares the number of stored
values for all three methods (all phases, modified GLA and classic GLA) and
for the two subsampling approaches: genetic (left) and uniform random (right).
Again, the genetic method offers better quality for the same number of values,
and the "all phases" approach (blue curve) offers the best results, but at the cost
of having almost 3 times more memory consumption with respect to the others.

4 Conclusions

In this paper we proposed a first study involving the adoption of CNNs to per-
form audio compression as an image-reconstruction task. We presented a decom-
pression method that takes as input a sparse spectrogram and reconstructs the
dense image via a data-driven model. Moreover, we proposed an improved version
of the well-known Griffin-Lim algorithm to effectively recover the original wave-
form with just a few available phases. Then, we proposed a novel sub-sampling
approach based on a genetic algorithm. Experimental results show the valid-
ity of both our compression and decompression methods in terms of MAE and
quality perception. The genetic approach effectively selects the values to be com-
pressed, while the decompression based on a CNN model and on a constrained
implementation of GLA offers quantitative significant results.
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