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Abstract. Deep learning models undergo a significant increase in the
number of parameters they possess, leading to the execution of a larger
number of operations during inference. This expansion significantly con-
tributes to higher energy consumption and prediction latency. In this
work, we propose EAT , a gradient-based algorithm that aims to reduce
energy consumption during model training. To this end, we leverage a
differentiable approximation of the ℓ0 norm, and use it as a sparse penalty
over the training loss. Through our experimental analysis conducted on
three datasets and two deep neural networks, we demonstrate that our
energy-aware training algorithm EAT is able to train networks with a
better trade-off between classification performance and energy efficiency.

Keywords: training · hardware acceleration · energy efficiency · sparsity
maximization · regularization.

1 Introduction

Deep learning is widely adopted across various domains due to its remarkable
performance in various tasks. The increase in model size, primarily driven by
the number of parameters, often leads to improved performance. However, this
growth in model size also leads to a higher computational burden during pre-
diction, necessitating specialized hardware like GPUs to deliver the required
computational power for efficient training and inference [6]. Although benefi-
cial for many applications, this strategy contradicts the requirements of certain
real-time scenarios (e.g., embedded IoT devices, smartphones, online data pro-
cessing, etc.) that are often constrained in their energy resources or require fast
predictions for not compromising users’ usability.

Energy efficiency has therefore become a critical aspect in the design and
deployment of deep learning models, opening up new directions for research,
including pruning, quantization, and efficient architecture search. A common
⋆ Corresponding author.
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strategy is to train the networks and then prune them by removing neurons
or reducing the complexity of the operations by quantizing their weights. How-
ever, adopting these methodologies can compromise the accuracy of the resulting
models. Another way to reduce the amount of energy required for classification
is to use modern hardware acceleration architectures, including ASICs (Appli-
cation Specific Integrated Circuits), which reduce energy consumption without
changing the network’s structural architecture and thus preserve its performance.
Sparsity-based ASIC accelerators employ zero-skipping operations that avoid
multiplicative operations when one of the operands is zero, avoiding performing
useless operations [26]. For example, Eyeriss et al. [2] achieved a 10× reduction
in energy consumption of DNNs when using sparse architectures rather than
conventional GPUs.

In this paper, we propose a training loss function that leverages an esti-
mate of the model’s power consumption as a differentiable regularizer to apply
during training. We use it to develop a novel energy-aware training algorithm
(EAT ) that enforces sparsity in the model’s activation to enhance the benefits
of sparsity-based ASIC accelerators. Our training objective has been inspired
by an attack called sponge poisoning [6]. Sponge poisoning is a training-time
attack [3–5] that tampers with the training process of a target DNN to increase
its energy consumption and prediction latency at test time. In this work, we de-
velop EAT by essentially inverting the sponge poisoning mechanism, i.e., using
it in a beneficial way to reduce the energy consumption of DNNs (Sect. 2). Our
approach does not only aim to reduce energy consumption; it aims to achieve a
better trade-off between energy efficiency and model performance. By balancing
these two objectives, we can indeed train models that achieve sustainable energy
consumption without sacrificing accuracy.

We run extensive experiments on two distinct DNN architectures and us-
ing three datasets to compare the energy consumption and performance of our
energy-aware models against the corresponding baselines, highlighting the ben-
efits of using our approach (Sect. 3).

We conclude by discussing related work (Sect. 4), along with the contribu-
tions and limitations of our work (Sect. 5).

2 EAT : Energy-Aware Training

In this paper, we consider sparsity-based ASIC accelerators that adopt zero-
skipping strategies to avoid multiplicative operations when an activation input
is zero, thus increasing throughput and reducing energy consumption [1, 2, 8,
24, 26]. Hence, to meet the goal of increasing the ASIC speedup, we need to
increase the model’s activations sparsity, i.e., the number of not firing neurons,
while preserving the model’s predictive accuracy. A similar objective has been
previously formulated by Cinà et al. [6], with the opposite goal of increasing the
energy consumption of the models. In their paper, the authors propose a training-
time attack against the availability of machine learning models that maximizes
the number of firing neurons at testing time. To achieve this goal, they apply
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a custom regularization term to the training loss that focuses on increasing
the number of firing neurons with the adoption of the ℓ0 norm. Specifically,
the ℓ0 norm is considered for counting the number of non-zero components of
the model’s activations. However, due to its non-convex and non-differentiable
nature, the ℓ0 norm is not directly optimizable with gradient descent. For this
reason, their optimization algorithm employs a differentiable approximation of
the ℓ0 norm proposed in [25], which we will denote as ℓ̂0. Formally, given an
input vector x ∈ Rn, we define:

ℓ̂0(x) =

n∑
j=1

x2
j

x2
j + σ

, x ∈ Rn, σ ∈ R , (1)

The parameter σ controls the approximation quality of the function toward the
ℓ0 norm. By decreasing the value of σ, the approximation becomes more accu-
rate. However, an increasingly accurate approximation could lead to optimization
instabilities [6].

This approximation is then used to estimate the number of non-zero elements
in the activation vectors of the hidden layers. Therefore, given the victim’s model
f , parametrized by w, a training set D = {(xi, yi)}si=1 the sponge training
algorithm by Cinà et al. [6] is formalized as follows:

min
w

∑
(x,y)∈D

L(x, y,w)− λ

K∑
k=1

ℓ̂0(ϕk, σ) , (2)

where L is the empirical risk minimization loss (e.g., the cross-entropy loss), ℓ̂0 is
the differentiable function to estimate the number of firing neurons in the k-layer
ϕk. The first term of Eq. 2 focuses on increasing the model’s classification accu-
racy, and the second term is a differentiable function responsible for increasing
the model’s energy consumption. Combining the two losses enables the training
algorithm to increase energy consumption while preserving the model’s predic-
tion accuracy. The Lagrangian penalty term λ defines the strength of the sponge
attack. In other words, low values of λ will focus on achieving high accuracy,
while high values will increase energy consumption.

Since our paper aims to induce sparsity in the model’s activation to enhance
the speed-up offered by ASIC HW accelerators, we reformulate the problem as
the minimization of the number of non-zero elements in the activation vectors
of the hidden layers. The final optimization program for our training algorithm
therefore becomes:

min
w

∑
(x,y)∈D

L(x, y,w) + λ

K∑
k=1

ℓ̂0(ϕk, σ) , (3)

Solution Algorithm. In Alg. 1, we present the training algorithm we employ for
training DNNs by maximizing prediction accuracy and minimizing energy con-
sumption. The algorithm first stores the initial model’s weights Line 1. Then,
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we update w for each batch in D and N epochs (Line 2-6). We make the update
(Line 6) in the direction of the negative gradient of the objective function Eq. 3,
therefore minimizing the cross-entropy loss L on the batch x and inducing spar-
sity in the model’s activations. After N epochs of training, the algorithm returns
the optimized model weights w∗.

Algorithm 1: Energy-aware Training Algorithm.
Input: D training dataset; w = (ϕ1, ...,ϕK), the initialized layers of the

neural network; λ, sparsification coefficient; α, the learning rate for
training; σ, the quality of the approximation.

Output: w∗ = (ϕ∗
1, ...,ϕ

∗
K), optimized weights.

1 w∗ ← w
2 for i in 1, . . . , N do
3 for (x, y) in D do
4 ∇L ← ∇wL(x, y,w)

5 ∇E ← ∇w

[
K∑

k=1

ℓ̂0(ϕk, σ)

]
6 w∗ ← w∗ − α [∇L− λ∇E]

7 return w∗

3 Experiments

We experimentally assess the effectiveness of the proposed training algorithms
in terms of energy consumption and model accuracy on two DNNs trained in
three distinct datasets. Furthermore, we provide more insights regarding the
effect of the proposed training algorithm on the models’ energy consumption by
analyzing the internal neuron activations of the resulting trained models. Finally,
we provide an ablation study to select the hyperparameters λ and σ.

3.1 Experimental Setup

Datasets. We conduct our experiments by following the same experimental
setup as in [6,23]. Therefore, we assess our training algorithm on three datasets
where data dimensionality, number of classes, and their balance are different,
thus making the setup more heterogeneous and challenging. Specifically, we con-
sider the CIFAR10 [16], GTSRB [11], and CelebA [19] datasets. The CIFAR10
dataset contains 60, 000 RGB images of 32 × 32 pixels equally distributed in
10 classes. We consider 50, 000 samples for training and 10, 000 as the test set.
The German Traffic Sign Recognition Benchmark dataset (GTSRB) consists of
60, 000 RGB images of traffic signs divided into 43 classes. For this dataset, we
compose the training set with 39, 209 samples and the test set with 12, 630, as
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done in [12]. The CelebFaces Attributes dataset (CelebA) is a face attributes
dataset with more than 200K RGB images depicting faces, each with 40 binary
attribute annotations. We categorize the dataset images in 8 classes, generated
considering the top three most balanced attributes, i.e., Heavy Makeup, Mouth
Slightly Open, and Smiling. We finally split the dataset into two sets, 162, 770
samples for training and 19, 962 for testing. We scale the images of GTSRB and
CelebA to the resolution of 32×32px and 64×64px, respectively, and use random
crop and random rotation during the training phase for data augmentation. Fi-
nally, we remark that the classes of the GTSRB and CelebA datasets are highly
imbalanced, which makes them challenging datasets.
Models and Training phase. We consider two DNNs, i.e., ResNet18 [9]
(∼ 11M parameters) and VGG16 [28](∼ 138M parameters). We train them on
the three datasets mentioned above for 100 training epochs with SGD optimizer
with momentum 0.9, weight decay 5e−4, and batch size 512, and we choose the
cross-entropy loss as L. We employ an exponential learning scheduler with an
initial learning rate of 0.1 and decay of 0.95. The trained models have compara-
ble or even better accuracies compared to those obtained with the experimental
setting employed in [22,23].
Hyperparameters. Two hyperparameters primarily influence the effectiveness
of our algorithm. The former is σ (see Eq. 2) that regulates the approximation
goodness of ℓ̂0 to the actual ℓ0. A smaller value of σ gives a more accurate
approximation; however, extreme values will result in optimization failure [6].
The other term that affects effectiveness is the Lagrangian term λ introduced
in Eq. 2, which balances the relevance of the sponge effect compared to the
training loss. A wise choice of this hyperparameter can lead the training process
to obtain models with high accuracy and low energy consumption. In order to
have a complete view of the stability of our approach to the choice of these
hyperparameters, we empirically perform an ablation study considering σ ∈
{1e − 01, ...1e − 08}, and λ ∈ {0.1, ..., 10}. We perform this ablation study on
a validation set of 100 samples randomly chosen from each dataset. Finally,
since the energy consumption term has a magnitude proportional to the model’s
number of parameters m, we normalize it with the actual number of parameters
of the model.
Performance Metrics. We consider each trained model’s prediction accuracy
and the energy gap as the performance metrics. We measure the prediction
accuracy as the percentage of correctly classified test samples. We check the
prediction accuracy of the trained model because the primary objective is to
obtain a model that performs well on the task of choice. Then, we consider the
energy consumption ratio in [6, 27]. The energy consumption ratio, introduced
in [27], is the ratio between the energy consumed when using the zero-skipping
operation (namely the optimized version) and the one consumed when using
standard operations (without this optimization). The energy consumption ratio
is upper bounded by 1, meaning that the ASIC accelerator has no effect, and the
model has the worst-case performance (no operation is skipped). Furthermore,
we report the energy decrease computed as the difference between the energy
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consumption of the standardly trained network and our EAT network divided by
the total energy of the standard network. For estimating the energy consumption
from ASIC accelerators, we used the ASIC simulator developed in [27].5

3.2 Experimental Results

Energy-aware Performance. Table 1 presents the test accuracy, energy con-
sumption ratio, and energy decrease achieved for the CIFAR10, GTSRB, and
CelebA datasets using two different training algorithms: standard empirical-risk
minimization training (ST) and our proposed energy-aware training approach
(EAT ). We select the hyperparameter configuration of σ and λ that ensures
the lowest energy ratio while maintaining the test accuracy within a 3% margin
compared to the standard network training. Results for other configurations are
reported in our ablation study. Our experimental analysis demonstrates a sig-
nificant reduction in energy consumption achieved by our energy-aware training
models, EAT , while maintaining comparable or even superior test accuracy com-
pared to the standardly-trained networks ST. For example, through the adoption
of EAT , the energy consumption ratio of ResNet18 for GTSRB is substantially
decreased from approximately 0.76 to 0.55. This corresponds to a remarkable
27% reduction in the number of operations required during prediction, therefore
reducing the computational workload of the system. Overall, with higher spar-
sity achieved through our energy-aware training algorithm, the advantages of
ASIC accelerators become even more pronounced than for models trained with
the standard training algorithm. For EAT models, their energy consumption is
further diminished while simultaneously increasing the prediction throughput.

Table 1: Comparison of accuracy and energy consumption achieved with stan-
dard training (ST) and our energy-aware method (EAT ).

GTSRB CIFAR-10 CelebA

ResNet18 VGG16 ResNet18 VGG16 ResNet18 VGG16
ST EAT ST EAT ST EAT ST EAT ST EAT ST EAT

Accuracy 0.91 0.93 0.90 0.89 0.92 0.90 0.91 0.88 0.76 0.78 0.77 0.78
E. ratio 0.76 0.55 0.69 0.63 0.73 0.61 0.67 0.53 0.68 0.63 0.63 0.54
E. decrease% - 27.63 - 8.69 - 16.43 - 20.89 - 7.35 - 14.28

Inspecting Layers. We depict in Fig. 1 and Fig. 2 the layer-wise activations of
ResNet18 and VGG16 models, respectively, trained using standard training and
our energy-aware training approach.

Our results demonstrate that the energy-aware algorithm significantly re-
duces the percentage of non-zero activations in both networks. In particular, the
5 https://github.com/iliaishacked/sponge_examples

https://github.com/iliaishacked/sponge_examples
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Fig. 1: Percentage of firing neurons in each layer of a ResNet18 on the GTSRB
(top), CIFAR10 (middle), and CelebA (bottom) datasets. In blue the percentages
achieved with ST, and in red the ones obtained with EAT .
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Fig. 2: Percentage of firing neurons in each layer of a VGG16 on the GTSRB
(top), CIFAR10 (middle), and CelebA (bottom) datasets. In blue the percentages
achieved with ST, and in red the ones obtained with EAT .
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substantial reduction in activations involving the max function, such as ReLU
and MaxPooling operations, is noteworthy. For instance, in Fig. 2, across the
CIFAR10 and GTSRB datasets, the number of ReLU activations is decreased to
approximately 10% of the original value. This finding holds significance consid-
ering that ReLU is the most commonly used activation function in modern deep
learning architectures [29]. Therefore, our energy-aware training algorithm can
potentially favor the sparsity exploited by ASIC accelerators for all ReLU-based
network performance [1]. Furthermore, consistent with the observations made
by Cinà et al. [6], convolutional operators remain predominantly active as they
apply linear operations within a neighborhood and rarely produce zero outputs.
Consequently, reducing the activations of convolutional operators poses a more
challenging task, suggesting potential avenues for future research.

Ablation Study. Our novel energy-aware training algorithm is mainly influ-
enced by two hyperparameters, λ and σ.
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Fig. 3: Ablation study on σ and λ for ResNet18 trained with EAT on GTSRB
(top) and CIFAR10 (bottom). We show the accuracy on the left and the energy
ratio on the right.

As discussed in Sect. 2, the parameter σ controls the level of approximation
for counting the number of firing neurons, whereas λ determines the emphasis
placed on the energy-minimization task during training. By tuning these two val-
ues, practitioners can find the desired tradeoff between test accuracy and energy
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performance on the resulting models. To investigate the influence of these hyper-
parameters, we conducted an ablation study presented in Fig. 3. Specifically, we
examined the test accuracy and energy consumption ratio of ResNet18 trained on
GTSRB and CIFAR10 while varying λ and σ. We observe that by incrementing
λ, practitioners can push the training toward a more energy-sustainable regime.
Such models would have a significantly lower impact on energy consumption
and the number of operations executed, decreasing the accuracy only slightly.
ASIC accelerators can significantly benefit from this increased sparsity. However,
very large values of λ (e.g., > 3) may cause the training algorithm to prioritize
energy minimization over predictive accuracy. On the other hand, small values
(e.g., < 0.5) would lead the training algorithm to neglect our regularization term
and focus solely on accuracy. Regarding σ, we observe that EAT is systemat-
ically stable to its choice when a suitable value of λ is used. We can observe
a slight variation in the energy ratio when considering large values for σ. This
effect is due to the approximation function ℓ̂0 in Eq. 2 not being accurate enough
to capture the precise number of firing neurons.

4 Related work

ASIC accelerators have effectively addressed the growing computational require-
ments of DNNs. They can often optimize energy consumption by skipping oper-
ations when the activations are zero or negligible, an operation known as “zero-
skipping”. As related work, we first discuss the attacks against the zero-skipping
mechanism, and then we summarize related work regarding model compression
and reduction.
Energy-depletion attacks. Recently, ASIC acceleration has been challenged
by hardware-oriented attacks that aim to eliminate the benefits of the zero-
skipping mechanism. Sponge examples [27] perturb an input sample by injecting
specific patterns that induce non-zero activations throughout the model. In a
different work, by promoting high activation levels across the model, the sponge
poisoning attack [6] demonstrates that increasing energy consumption can also
be enforced during training. Staging this attack leads to models with high accu-
racy (to remain undetected), but an increased latency due to the elimination of
hardware-skippable operations.

Contrary to these works, we focus on improving the benefits of ASIC accel-
eration by introducing more zero-skipping opportunities. Consequently, in this
paper, we invert the sponge poisoning attack mechanism, minimizing the number
of activations and hence the energy consumption required by the model.
Model compression. Model compression and quantization are techniques used
to optimize and condense deep neural networks, reducing their size and compu-
tational requirements without significant loss in performance. Network pruning
aims to remove redundant or less important connections [13], filters [17, 21, 31],
or even entire layers [18,20] from a neural network. Pruned models often exhibit
sparsity, which techniques like zero-skipping can further exploit. To push com-
pression to the limit, the lottery ticket hypothesis [7] and knowledge distillation
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methods [10] aim to find smaller networks that can achieve the same performance
as larger networks. Quantization [14,15,30], on the other hand, reduces the pre-
cision of numerical values in a deep learning model. Instead of using full precision
(e.g., 32-bit floating-point numbers), quantization represents values with lower
precision (e.g., 8-bit integers). Quantization reduces the memory requirements
of the model for more efficient storage and operations.

We argue that both model compression and quantization can be applied to
our technique without specific adaptations to push even further the benefits of
our method.

5 Conclusions

In this paper, we explored a novel training technique to improve the efficiency
of deep neural networks by enforcing sparsities on the activations. Our goal is
achieved by incorporating a differentiable penalty term in the training loss. We
show how it is possible to obtain a chosen trade-off between model performances
and efficiency by applying our technique.

The practical significance of our findings lies in their direct applicability to
real-world scenarios. By leveraging the energy-aware training provided by EAT ,
deep learning models can achieve significant energy savings without compromis-
ing their predictive performance. In future work, we believe that our method
can be effectively combined with existing pruning and quantization techniques
to create advanced model compression methods.
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