
Performance of Genetic Algorithms in the
Context of Software Model Refactoring

Vittorio Cortellessa1[0000−0002−4507−464X] Daniele Di
Pompeo1[0000−0003−2041−7375] and Michele Tucci1[0000−0002−0329−1101]

University of L’Aquila, L’Aquila, Italy
{vittorio.cortellessa, daniele.dipompeo, michele.tucci}@univaq.it

Abstract. Software systems continuously evolve due to new function-
alities, requirements, or maintenance activities. In the context of soft-
ware evolution, software refactoring has gained a strategic relevance. The
space of possible software refactoring is usually very large, as it is given
by the combinations of different refactoring actions that can produce
software system alternatives. Multi-objective algorithms have shown the
ability to discover alternatives by pursuing different objectives simulta-
neously. Performance of such algorithms in the context of software model
refactoring is of paramount importance. Therefore, in this paper, we con-
duct a performance analysis of three genetic algorithms to compare them
in terms of performance and quality of solutions. Our results show that
there are significant differences in performance among the algorithms
(e.g., PESA2 seems to be the fastest one, while NSGAII shows the least
memory usage).

Keywords: Performance · Multi-Objective · Refactoring · Search-Based
Software Engineering

1 Introduction

Multi-objective optimization techniques proved to be effective in tackling many
model-driven software development problems [21, 25, 29, 31]. Such problems
usually involve a number of quantifiable metrics that can be used as objectives to
drive the optimization. Problems related to non-functional aspects undoubtedly
fit into this category, as confirmed by the vast literature in this domain [1, 2, 23].
Most approaches are based on evolutionary algorithms [6], which allow exploring
the solution space by combining solutions.

The improvement of software models quality through refactoring is a kind of
task that can be carried out by multi-objective optimization. However, multi-
objective algorithms demand a lot of hardware resources (e.g., time, and mem-
ory allocation) to search the solution space and generate a (near-)optimal Pareto
frontier. Therefore, the actual performance of multi-objective algorithms in soft-
ware model refactoring is of paramount importance, especially if the goal is to
integrate them into the design and evolution phases of software development.

ar
X

iv
:2

30
8.

13
87

5v
1

 [
cs

.S
E

]
 2

6
A

ug
 2

02
3

2 Cortellessa et al.

For this reason, in this paper, we compare the performance in terms of exe-
cution time, memory allocation, and quality of Pareto frontiers of the NSGAII,
SPEA2, and PESA2 multi-objective algorithms within the context of software
model refactoring. We have selected NSGAII due to its extensive use in the con-
text of software refactoring, SPEA2 because it has already been compared with
NSGAII in other domains [8, 18, 22], and PESA2 because it uses a different tech-
nique (i.e., hyper-grid crowding degree operator) to search the solution space.

We have evaluated the performance of each algorithm by using a reference
case study presented in [15]. To achieve this, we have executed 30 independent
runs, as suggested in [3], for each algorithm by varying the number of itera-
tions for each run, and we have collected execution time and memory usage. We
provide a replication package of the experimentation presented in this study.1

We aim at answering the following research questions:

– RQ1: How do NSGA-II, SPEA2, and PESA2 compare in terms of execution
time?

– RQ2: How do NSGA-II, SPEA2, and PESA2 compare in terms of memory
usage?

– RQ3: How do NSGA-II, SPEA2, and PESA2 compare in terms of multi-
objectindicatorsive optimization indicators?

Our experimentation showed that PESA2 is the algorithm whose executions last
quite less than the NSGAII and SPEA2 ones. Furthermore, PESA2 generates Pareto
frontiers that showed better solutions in terms of reliability and performance.
NSGAII, instead, consumed less memory than SPEA2, and PESA2. However, it
generated less densely populated Pareto frontiers. Finally, SPEA2 showed worse
performance and Pareto frontiers than PESA2, and NSGAII.

The remaining of the paper is structured as follows: Section 2 reports related
work; Section 3 introduces the algorithms subject of the study; Section 4 briefly
introduces the case studies; Section 5 discusses results and findings. Section 6
describes takeaways from the study; Section 7 discussed threats to validity. Sec-
tion 8 concludes the paper.

2 Related Work

Genetic algorithms are exploited in different domains to identify alternatives of
the initial problem that show at least one better attribute (i.e., at least on ob-
jective). In particular, studies have analyzed the performance in building Pareto
frontiers in heterogeneous domains, which span from automotive problems to
economic ones [11, 20, 22, 32]. In this paper, instead, we analysed performance
in terms of hardware consumption needed to search the solution space for soft-
ware model refactoring. In the context of software architecture, studies have
investigated how multi-objective optimization can improve quality of software
architectures.
1 Replication package: https://github.com/danieledipompeo/replication-

package__Perf-Comp-GA-4-Multi-Obj-SW-Model-Ref

https://github.com/danieledipompeo/replication-package__Perf-Comp-GA-4-Multi-Obj-SW-Model-Ref
https://github.com/danieledipompeo/replication-package__Perf-Comp-GA-4-Multi-Obj-SW-Model-Ref

Title Suppressed Due to Excessive Length 3

For example, Cortellessa and Di Pompeo [8] studied the sensitivity of multi-
objective software architecture refactoring to configuration characteristics. They
compared two genetic algorithms in terms of Pareto frontiers quality dealing
with architectures defined in Æmilia, which is a performance-oriented Archi-
tecture Descrption Language (ADL). In this paper, we propose a performance
comparison between NSGAII, SPEA2, and PESA2 to identify which algorithm needs
less resources to search the solution space.

Aleti et al. [1] have presented an approach for modeling and analyzing Ar-
chitecture Analysis and Design Language (AADL) architectures [17]. They have
also introduced a tool aimed at optimizing different quality attributes while
varying the architecture deployment and the component redundancy. Instead,
our work relies on UML models and offers more complex refactoring actions as
well as different target attributes for the fitness function. Besides, we investigate
the role of performance antipatterns in the context of multi-objective software
architecture refactoring optimization.

Menascé et al. [27] have presented a framework for architectural design and
quality optimization, where architectural patterns are used to support the search-
ing process (e.g., load balancing, fault tolerance). Two limitations affects the
approach: the architecture has to be designed in a tool-related notation and not
in a standard modelling language (as we do in this paper), and it uses equation-
based analytical models for performance indices that might be too simple to
capture architectural details and resource contention. We overcome the possible
the Menascé et al. limitation by employing Layred Queueing Network (LQN)
models to estimate performance indices.

Martens et al. [26] have presented PerOpteryx, a performance-oriented multi-
objective optimization problem. In PerOpteryx the optimization process is guided
by tactics referring to component reallocation, faster hardware, and more hard-
ware, which do not represent structured refactoring actions, as we employ in
our refactoring engine. Moreover, PerOpteryx supports architectures specified
in Palladio Component Model (PCM) [5] and produces, through model trans-
formation, a LQN for of performance analysis.

Rago et al. have presented SQuAT [30], an extensible platform aimed at
including flexibility in the definition of an architecture optimization problem.
SQuAT supports models conforming to PCM language, exploits LQN for per-
formance evaluation, and PerOpteryx tactics for architecture.

A recent work compares the ability of two different multi-objective optimiza-
tion approaches to improve non-functional attributes [28], where randomized
search rules have been applied to improve the software model. The study of Ni
et al. [28] is based on a specific modelling notation (i.e., PCM) and it has implic-
itly shown that the multi-objective optimization problem at model level is still
an open challenge. They applied architectural tactics, which in general do not
represent structured refactoring actions, to find optimal solutions. Conversely,
we applied refactoring actions that change the structure of the initial model by
preserving the original behavior. Another difference is the modelling notation,

4 Cortellessa et al.

as we use UML with the goal of experimenting on a standard notation instead
of a custom DSL.

3 Algorithms

NSGA-II The Non-dominated Sorting Algorithm II (NSGAII), introduced by Deb
et al. [13], is widely used in the software engineering community due to its good
performance in generating Pareto frontiers. The algorithm, randomly generates
the initial population P0, shuffles it and applies the Crossover operator with
probability Pcrossover, and the Mutation operator with probability PMutation to
generate the Qt offspring. Thus, the obtained Rt = Pt+Qt mating pool is sorted
by the Non-dominated sorting operator, which lists Pareto frontiers with respect
to considered objectives. Finally, a Crowding distance is computed and a new
family (i.e., Pt+1) is provided to the next step by cutting the worse half off.

SPEA2 Strength Pareto Evolutionary Algorithm 2 (SPEA2) has been introduced
by Zitzler et al. [34]. Differently from NSGAII, SPEA2 does not employ a non-
dominated sorting process to generate Pareto frontiers.

SPEA2 randomly generates an initial population P0 and an empty archive
P̄0 in which non-dominated individuals are copied at each iteration. For each
iteration t = 0, 1, . . . , T , the fitness function values of individuals in Pt and P̄t

are calculated. Then non-dominated individuals of Pt and P̄t are copied to P̄t+1

by discarding dominated individuals or duplicates (with respect to the objective
values). In case size of P̄t+1 exceeds N̄ , i.e., the size of the initial population, the
Truncation operator drops exceeded individuals by preserving the characteristics
of the frontier, using the k-th nearest neighbor knowledge. In case size of P̄t+1

is less than N̄ , dominated individuals from Pt and P̄t are used to fill P̄t+1. The
algorithm ends when a stopping criterion is met, e.g., the iteration t exceeds the
maximum number of iterations T , and it generates the non-dominated set A in
output.

PESA2 The Pareto Envelope-based Selection Algorithm 2 (PESA2) is a multi-
objective algorithm, introduced by Corne et al. [7] that uses two sets of popu-
lation, called internal (IP) and external (EP).The internal population is often
smaller than the external one and it contains solution candidates to be included
in the external population. Furthermore, the external population is generally
called archive. The selection process is driven by a hyper-grid crowding distance
degree. The current set of IP are incorporated into the EP one by one if it is
non-dominated within IP, and if is not dominated by any current member of the
EP. Once a candidate has entered the EP, members of the EP which it dom-
inated (if any) will be removed. If the addition of a candidate renders the EP
over-full, then an arbitrary chromosome which has the maximal squeeze factor
in the population of EP is removed. Also, the squeeze factor describes the total
number of other chromosomes in the archive which inhabit the same box. The
PESA2 crowding strategy works by forming an implicit hyper-grid which divides

Title Suppressed Due to Excessive Length 5

the solution space into hyper-boxes. Furthermore, each chromosome in the EP
is associated with a particular hyper-box in solution space. Then, the squeeze
factor is assigned to each hyper-box, and it is used during the searching phase.

4 Case study

In this section, we apply our approach to the Train Ticket Booking Service
(TTBS) case study [15, 33], and to the well-established model case study CoCOME,
whose UML model has been derived by the specification in [19].

Train Ticket Booking Service Train Ticket Booking Service (TTBS) is a
web-based booking application, whose architecture is based on the microservice
paradigm. The system is made up of 40 microservices, and it provides different
scenarios through users that can perform realistic operations, e.g., book a ticket
or watch trip information like intermediate stops. Our UML model of TTBS

is available online.2 The static view is made of 11 UML Components, where
each component represents a microservice. In the deployment view, we consider
11 UML Nodes, each one representing a docker container. We selected these
three scenarios because they commonly represent performance-critical ones in a
ticketing booking service.

CoCOME CoCOME describes a Trading System containing several stores. A
store might have one or more cash desks for processing goodies. A cash desk is
equipped with all the tools needed to serve a customer (e.g., a Cash Box, Printer,
Bar Code Scanner). CoCOME describes 8 scenarios involving more than 20 compo-
nents. From the CoCOME original specification, we analyzed different operational
profiles, i.e., scenarios triggered by different actors (such as Customer, Cashier,
StoreManager, StockManager), and we excluded those related to marginal parts
of the system, such as scenarios of the EnterpriseManager actor. Thus, we se-
lected 3 UML Use Cases, 13 UML Components, and 8 UML Nodes from the
CoCOME specification.

5 Results

In this section, we compare execution times, memory consumption, and quality
of Pareto frontiers across the considered algorithms and case studies.

5.1 RQ1: How do NSGAII, SPEA2, and PESA2 compare in terms of
execution time?

In order to answer to the RQ1 we collected execution time of each algorithm 30
times. Based on the results of our experimentation, we can state that the PESA2

2 https://github.com/SEALABQualityGroup/2022-ist-replication-package/

tree/main/case-studies/train-ticket

https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/train-ticket
https://github.com/SEALABQualityGroup/2022-ist-replication-package/tree/main/case-studies/train-ticket

6 Cortellessa et al.

algorithm showed the best execution time with respect to NSGAII and SPEA2

in both case studies. Also, it appears as complexity and size of the case study
plays an important role in determining execution time and its variability across
iterations.

0 20 40 60 80 100
iteration

400

500

600

700

800

900

1000

ex
ec

ut
io

n
tim

e
(s

ec
)

NSGAII PESA2 SPEA2

(a) TTBS

0 20 40 60 80 100
iteration

150

200

250

300

350

400

450

ex
ec

ut
io

n
tim

e
(s

ec
)

NSGAII PESA2 SPEA2

(b) CoCOME

Fig. 1: Comparison of algorithms execution time.

Figure 1 compares NSGAII, SPEA2, and PESA2 in terms of their execution
times for TTBS and CoCOME, respectively. Darker lines report the mean over 30
runs for each iteration, while the bands represent 95% confidence intervals for
the mean, and are computed for the same runs. Our results show substantial
differences in the execution times of the algorithms, both on the same case
study, and across them.

It is easy to notice that, regardless of the algorithm, the search is twice as
fast in CoCOME that it is in TTBS, as it is obvious when observing the scale on the
y-axis. PESA2 is clearly the fastest algorithm in both cases (around 400 sec in
TTBS, and 180 sec in CoCOME). However, when it comes to comparing NSGAII and
SPEA2, their execution time, while consistently larger than PESA2, is almost on
par in TTBS, and noticeably apart in CoCOME. This suggests that the execution
time might very well be dependent on the complexity and size of the specific
case study. For instance, it looks like the more complex the case study is, the
slower SPEA2 is. Therefore, it appears evident that the search policy used by
SPEA2, i.e., the dominance operator, is slower than the crowing distance used
by NSGAII. Moreover, the search policy employed by PESA2, i.e., the hyper-grid
crowding distance, seems to be faster than the ones used by NSGAII and SPEA2,
as it lasts half the time of the other two techniques.

Another interesting point, could be the stability of execution times, as it ap-
pears that the three algorithms exhibit different variability. For instance, PESA2
and NSGAII showed a more stable execution time in both the case studies, while
SPEA2 showed a quite stable execution time with TTBS, and a considerably larger
variability with CoCOME, with some abrupt changes. This might be due to the

Title Suppressed Due to Excessive Length 7

usage of the archive for storing generated solutions. When the case study is more
complex, as it is the case for TTBS, the usage of the archive seems to help find a
Pareto frontier, while the usage of two archives with a less complex case study
results in prolonged executions. In fact, when a higher number of different solu-
tions are found, these slower executions may be caused by the fact that a higher
number of comparisons are needed to fill the two archives.

5.2 RQ2: How do NSGAII, SPEA2, and PESA2 compare in terms of
memory usage?

In order to answer to the RQ2 we collected the memory allocation of each al-
gorithm during the experiments by exploiting the Java API. From our experi-
mentation results, the NSGAII algorithm shows the least memory consumption
with respect to PESA2 and SPEA2. Our results also show that the memory usage
is not strictly related to the complexity of the case study.

0 20 40 60 80 100
iteration

2

4

6

8

10

12

m
em

or
y

(G
iB

)

NSGAII PESA2 SPEA2

(a) TTBS

0 20 40 60 80 100
iteration

2

4

6

8

10

12

m
em

or
y

(G
iB

)

NSGAII PESA2 SPEA2

(b) CoCOME

Fig. 2: Comparison of algorithms memory usage.

Figure 2 shows the memory allocation of the three algorithms. NSGAII, SPEA2,
and PESA2 occupy the same quantity of memory showing an increase trend of
the memory usage around the 20 iterations, then NSGAII becomes almost flat.
Moreover, SPEA2 shows a steep memory usage, and it occupies all the available
memory after 40 iterations, while PESA2 showed a smooth but linear increase of
the memory, and it filled the available memory after 80 iteration.

Undoubtedly, the NSGAII search policy is the least memory demanding among
the three analyzed in our study, and it requires around 5 GiB when it stabilizes.
SPEA2 and PESA2, on the other hand, occupy almost all the available memory
(i.e., 12 GiB).

SPEA2 shows a different behavior in the two case studies, in our results. In
the case of CoCOME, we can see an almost flat memory consumption around the
12 Gib after 20 iteration, while in TTBS we can observe a reduction of the memory

8 Cortellessa et al.

allocation after 80 iterations. Combining the latter with the overall quality of the
generated Pareto fronts (see Section 5.3), we can assume that SPEA2 cannot find
better solutions after 80 iterations, thus any new solution was probably already
stored in the two archives.

Finally, PESA2 showed an interesting trend, as it allocated more memory
almost linearly. This might be due to the search policy of splitting the solution
space in hyper-grids that will require to store new solutions when other locations
of the solution space will be investigated by longer iterations. Therefore, we can
expect that PESA2 will likely exceed the 12 GiB with longer iterations.

5.3 RQ3: How do NSGAII, SPEA2, and PESA2 compare in terms of
multi-objective optimization indicators?

In order to answer to the RQ3 we graphically compare properties of the Pareto
frontiers computed by each algorithm, and we use well-known indicators to esti-
mate the quality of Pareto frontiers. From our results, the PESA2 algorithm is the
best to search the solution space, with solutions closest to the reference Pareto in
TTBS and CoCOME. Also, NSGAII generates solutions with the highest variability
in both case studies. Finally, SPEA2 did not show any quality indicators with
higher quality.

0.1 0.0 0.1 0.2 0.3 0.4
perfQ

0.0

0.2

0.4

0.6

0.8

1.0

re
lia

bi
lit

y

initial

algorithm
NSGAII
PESA2
SPEA2
#PAs
13
14
15
16
18

(a) TTBS.

0.1 0.0 0.1 0.2 0.3 0.4
perfQ

0.0

0.2

0.4

0.6

0.8

1.0

re
lia

bi
lit

y

initial

algorithm
NSGAII
PESA2
SPEA2
#PAs
8
10
12
14
16
18

(b) CoCOME.

Fig. 3: Comparison of reference Paretos.

The overall quality of computed Pareto frontiers (PF c) is one of the most
critical parameters to consider when comparing genetic algorithms. Figure 3 de-
picts the PF c generated by the three genetic algorithms for TTBS and CoCOME,
where, in each plot, the top right quadrant is the optimal location for the op-
timization. Furthermore, we measure the quality of PF c through the quality
indicators listed in Table 1.

From Figures 3a and 3b, we can clearly deduce that none of the subject al-
gorithms shows the ability of finding solutions towards the top right quadrant

Title Suppressed Due to Excessive Length 9

in both the case studies. In fact, we can see that the solutions are organized in
a vertical cluster in Figure 3a, and in a horizontal one in Figure 3b. Also, it ap-
pears that the optimization process selects similar refactoring actions, therefore
generating almost identical solutions within the frontiers.

Furthermore, we can observe a different behavior of each algorithm in TTBS,
and CoCOME. For example, PESA2 found the best solutions for CoCOME, in terms
of reliability and perfQ (e.g., see the rightmost squares in Figure 3b), while this
is not the case for TTBS, where, instead, PESA2 found the best solution in terms
of perfQ , with worse reliability than the initial solution (see the square near the
point (0.3, 0.4) in Figure 3a).

Besides the graphical analysis, we performed a study of the quality of PF c in
both case studies, by exploiting established quality indicators for multi-objective
optimization. It is important to recall that an indicator estimates the quality of
a specific property of PF c with respect to the reference Pareto frontier (PF ref).
Since PF ref has not yet been defined for our case studies, we estimated the
PF ref as the set of non-dominated solutions produced by any algorithm. In
particular, we computed the Hypervolume (HV) [35], Inverted Generational Dis-
tance + (IGD+) [24], GSPREAD [16], and Epsilon (EP) [16] quality indicators.
We listed quality indicators (Q Ind) in Table 1, where the up arrow (↑) means
the indicator is to be maximized, and the down arrow (↓) means the indicator
is to be minimized.

From our experimental results, we see that PESA2 produced the highest value
of Hypervolume, thus proving that the algorithm covered the solution space
better than NSGAII and SPEA2. Also, PESA2 showed the best value of IGD+,
meaning that solutions belonging to the PF c are closer to the PF ref . NSGAII
produced the best value of generalized spread (GSPREAD), thus indicating that
the solutions in NSGAII Pareto frontiers are more different from each other.
Finally, our results prove that SPEA2 computes quality indicators with good
quality only for CoCOME. Therefore, it seems that SPEA2 is able to find good PF c

when case studies with lower complexity.

Q Ind # iter
NSGAII PESA2 SPEA2

TTBS CoCOME TTBS CoCOME TTBS CoCOME

HV (↑) 102 0.22433 0.07022 0.50909 0.44431 0.14467 0.36521
IGD+ (↓) 102 0.11221 0.06005 0.04683 0.04046 0.10270 0.06620
GSPREAD (↓) 102 0.16013 0.12675 0.38391 0.52451 0.39153 0.33592
EP (↓) 102 0.33333 0.20339 0.20000 0.10000 0.50000 0.36191

Table 1: Quality indicators to establish the overall quality of Pareto frontiers.

10 Cortellessa et al.

6 Lesson Learned

Genetic algorithms have proved to help optimize quantifiable metrics, such as
performance and reliability. Their ability to search for optimal solutions is in-
fluenced by several configuration parameters. In our experience, we noticed that
each configuration parameter has a different impact on the overall performance,
e.g., the population size impacts the execution time and the memory usage.
A wider initial population size requires longer execution times to generate in-
dividuals, and it might produce stagnation during the optimization [4] that, in
turn, might hamper the quality of Pareto frontiers. Furthermore, in model-based
software refactoring, a wider initial population also implicates a higher memory
consumption, because entire models need to be loaded in memory for the refac-
toring to be performed. Hence, it is crucial to find the optimal trade-off between
the configuration parameters and the quality of the Pareto frontiers.

Besides the initial population, crossover and mutation operators might im-
pact the execution time. For instance, a higher mutation probability will obvi-
ously produce more frequent mutations within the population. The more muta-
tions are produced, the higher the probability of having an invalid individual,
thus requiring additional time to check for feasibility, repair or even change
the individual entirely. The crossover probability, instead, impacts the execu-
tion time since combinations of individuals are more frequent. Furthermore, the
crossover operator requires time to perform the combination and might also
generate invalid individuals. Therefore, using the right crossover and mutation
probabilities is crucial for the time and quality of subsequent populations. This
is clearly an opportunity for further research on heuristic to estimate some con-
figuration values, since it would be impractical to evaluate every parameter com-
bination. In future work, we plan to examine how different configurations affect
the resulting quality and performance of different genetic algorithms.

We cannot guarantee that our analysis can be generalized in other domains or
with other modeling notations. However, in the context in which we performed
our study, there is not an in-depth analysis of performance traits of genetic
algorithms. We believe this study might open a research direction on improving
genetic algorithm performance for model-based refactoring optimization. For
example, in a recent work, Di Pompeo and Tucci [14] studied the possibility
of reducing the search time by limiting it with a budget. Also, knowing how
algorithms compare in terms of performance might open to even using them in an
interactive optimization process, where the designer could be involved in a step-
by-step decision process aided by the automation provided by the algorithms,
but bounded in time. In such a scenario, the designer could be at the core of the
process, potentially making optimization trade-offs at each step.

7 Threats to validity

Our results may be affected by threats related to the specific versions of Java
and the JMetal library. We mitigated these threats by using the same configu-
ration for the Java Virtual Machine and the same JMetal version in each run.

Title Suppressed Due to Excessive Length 11

In particular, we used the OpenJDK 11 with default configuration, and we built
the implementation on JMetal v5.10.

Multiple factors may influence the performance measurements gathered dur-
ing the experiments and, therefore, could undermine our conclusions. However,
we mitigated external influences by disabling any other software running on the
same server, and we repeated each experiment 30 times as suggested in [3].

Also, the study we conducted in this paper may be affected, as for any perfor-
mance analysis experiment, by the input data. Although we use two case studies,
our deductions may change if other case studies, i.e., different software models,
are employed as inputs to the optimization problem. However, we considered
two models presented in [15, 19] that has been already used in other perfor-
mance analysis problems [9, 10, 14]. To the best of our knowledge, there are
no previous studies that analyzed and compared performance of multi-objective
algorithms in the context of software model refactoring, as we did in this study.
Therefore, although the paper may suffer from this threat to conclusion validity,
it represents a first investigation in this direction.

The overall quality of Pareto frontiers generated by each algorithm has been
estimated through well-known quality indicators. These indicators leverage the
estimation by comparing a Pareto frontier to problem-specific reference points.
Since in our experimentation these reference points are not yet available, we
computed them as the non-dominated points within every Pareto frontier of each
run of each algorithm. Therefore, the reference points might affect the overall
quality computation, and we further investigate the usage of more appropriated
reference points.

Finally, our results may be affected by threats related to the configurations of
the genetic algorithms. For example, the number of iterations can influence per-
formance results. We cannot be sure to have effectively mitigated these threats
because of the long execution time required to run each configuration. Such long
execution times make trying many alternative configurations unfeasible. For this
reason, we used a configuration in an attempt to detect performance flaws that
may only manifest during longer executions.

8 Conclusion

This study presented a performance comparison of three genetic algorithms, i.e.,
NSGAII, SPEA2, and PESA2. We selected those algorithms due to their wide usage
in the software refactoring context and their search algorithm characteristics.

We compared the execution time, the memory allocation, and the quality of
the produced Pareto frontiers. We collected performance metrics by using two
case studies presented in [15, 19] by executing 30 different runs, and we compared
the overall quality of Pareto frontiers through specific quality indicators, such as
Hypervolume and IGD+. Our analysis can summarize that PESA2 is the fastest
algorithm, and NSGAII is the least memory-demanding algorithm. Finally, SPEA2
has shown the worst memory usage as well as the worst execution time. We

12 Cortellessa et al.

will further investigate memory consumption by employing a more sophisticated
memory profiling, which might introduce an overhead within the measurements.

Concerning the overall quality of the produced Pareto frontiers, we found
that PESA2 produced the most densely populated Pareto frontiers, while NSGAII
generated the least densely populated frontiers. PESA2 has also shown a linear
memory consumption, thus we intend to further analyze the trend by exploring
longer execution in terms of the number of iterations.

Furthermore, we intend to investigate if our findings can be generalized to
other case studies, different algorithms, and different kinds of refactoring actions,
as those aimed at other non-functional properties, such as availability [12].

Acknowledgements Daniele Di Pompeo and Michele Tucci are supported by
European Union - NextGenerationEU - National Recovery and Resilience Plan
(Piano Nazionale di Ripresa e Resilienza, PNRR) - Project: “SoBigData.it -
Strengthening the Italian RI for Social Mining and Big Data Analytics” - Prot.
IR0000013 - Avviso n. 3264 del 28/12/2021.

References

1. Aleti, A., Björnander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: An extend-
able tool for architecture optimization of AADL models. In: ICSE 2009 Workshop
on Model-Based Methodologies for Pervasive and Embedded Software, MOMPES
2009, May 16, 2009, Vancouver, Canada, pp. 61–71, IEEE Computer Society, Wash-
ington, DC, USA (2009)

2. Aleti, A., Buhnova, B., Grunske, L., Meedeniya, I.: Software Architecture Opti-
mization Methods: A Systematic Literature Review. IEEE Transactions on Soft-
ware Engineering 39(5), 658–683 (2013)

3. Arcuri, A., Briand, L.C.: A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In: Taylor, R.N., Gall, H.C., Med-
vidovic, N. (eds.) Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pp.
1–10, ACM (2011), https://doi.org/10.1145/1985793.1985795, URL https:

//doi.org/10.1145/1985793.1985795

4. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical in-
vestigation in search-based software engineering. Empirical Software Engineer-
ing 18(3), 594–623 (2013), https://doi.org/10.1007/s10664-013-9249-9, URL
https://doi.org/10.1007/s10664-013-9249-9

5. Becker, S., Koziolek, H., Reussner, R.H.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1), 3–22 (Jan
2009)

6. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003), https:
//doi.org/10.1145/937503.937505

7. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: Pesa-ii: Region-based se-
lection in evolutionary multiobjective optimization. In: GECCO, p. 283–290 (2001),
ISBN 1558607749, https://doi.org/10.5555/2955239.2955289, URL https://

doi.org/10.5555/2955239.2955289

https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/937503.937505
https://doi.org/10.5555/2955239.2955289
https://doi.org/10.5555/2955239.2955289
https://doi.org/10.5555/2955239.2955289
https://doi.org/10.5555/2955239.2955289

Title Suppressed Due to Excessive Length 13

8. Cortellessa, V., Di Pompeo, D.: Analyzing the sensitivity of multi-objective soft-
ware architecture refactoring to configuration characteristics. Inf. Softw. Tech-
nol. 135, 106568 (2021), https://doi.org/10.1016/j.infsof.2021.106568, URL
https://doi.org/10.1016/j.infsof.2021.106568

9. Cortellessa, V., Di Pompeo, D., Eramo, R., Tucci, M.: A model-driven approach for
continuous performance engineering in microservice-based systems. Journal of Sys-
tems and Software 183, 111084 (2022), https://doi.org/10.1016/j.jss.2021.
111084, URL https://doi.org/10.1016/j.jss.2021.111084

10. Cortellessa, V., Di Pompeo, D., Stoico, V., Tucci, M.: On the impact of per-
formance antipatterns in multi-objective software model refactoring optimiza-
tion. In: 47th SEAA 2021, Palermo, Italy, September 1-3, 2021, pp. 224–233,
IEEE (2021), https://doi.org/10.1109/SEAA53835.2021.00036, URL https:

//doi.org/10.1109/SEAA53835.2021.00036

11. Cortellessa, V., Di Pompeo, D., Stoico, V., Tucci, M.: Many-objective optimization
of non-functional attributes based on refactoring of software models. Inf. Softw.
Technol. 157, 107159 (2023), https://doi.org/10.1016/j.infsof.2023.107159,
URL https://doi.org/10.1016/j.infsof.2023.107159

12. Cortellessa, V., Eramo, R., Tucci, M.: Availability-driven architectural change
propagation through bidirectional model transformations between UML and petri
net models. In: IEEE International Conference on Software Architecture, ICSA
2018, Seattle, WA, USA, April 30 - May 4, 2018, pp. 125–134, IEEE Com-
puter Society (2018), https://doi.org/10.1109/ICSA.2018.00022, URL https:

//doi.org/10.1109/ICSA.2018.00022

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (Apr 2002)

14. Di Pompeo, D., Tucci, M.: Search budget in multi-objective refactoring optimiza-
tion: a model-based empirical study. In: 48th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2022, pp. 406–413, IEEE (2022),
https://doi.org/10.1109/SEAA56994.2022.00070, URL https://doi.org/10.

1109/SEAA56994.2022.00070, to appear
15. Di Pompeo, D., Tucci, M., Celi, A., Eramo, R.: A microservice reference case study

for design-runtime interaction in MDE. In: STAF 2019 Co-Located Events Joint
Proceedings: 1st Junior Researcher Community Event, 2nd International Workshop
on Model-Driven Engineering for Design-Runtime Interaction in Complex Systems,
and 1st Research Project Showcase Workshop co-located with Software Technolo-
gies: Applications and Foundations (STAF 2019), Eindhoven, The Netherlands,
July 15 - 19, 2019, CEUR Workshop Proceedings, vol. 2405, pp. 23–32, CEUR-
WS.org (2019), URL http://ceur-ws.org/Vol-2405/06_paper.pdf

16. Durillo, J.J., Nebro, A.J.: jmetal: A java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42(10), 760–771 (2011)

17. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI series in software
engineering, Addison-Wesley (2012)

18. Gadhvi, B., Savsani, V., Patel, V.: Multi-Objective Optimization of Vehicle Passive
Suspension System Using NSGA-II, SPEA2 and PESA-II. Procedia Technology 23,
361–368 (2016)

19. Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A., Reussner, R., Krogmann,
K., Koziolek, H., Mirandola, R., Hummel, B., Meisinger, M., Pfaller, C.: Cocome -
the common component modeling example. In: The Common Component Modeling

https://doi.org/10.1016/j.infsof.2021.106568
https://doi.org/10.1016/j.infsof.2021.106568
https://doi.org/10.1016/j.infsof.2021.106568
https://doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1016/j.jss.2021.111084
https://doi.org/10.1109/SEAA53835.2021.00036
https://doi.org/10.1109/SEAA53835.2021.00036
https://doi.org/10.1109/SEAA53835.2021.00036
https://doi.org/10.1109/SEAA53835.2021.00036
https://doi.org/10.1016/j.infsof.2023.107159
https://doi.org/10.1016/j.infsof.2023.107159
https://doi.org/10.1016/j.infsof.2023.107159
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1109/ICSA.2018.00022
https://doi.org/10.1109/SEAA56994.2022.00070
https://doi.org/10.1109/SEAA56994.2022.00070
https://doi.org/10.1109/SEAA56994.2022.00070
https://doi.org/10.1109/SEAA56994.2022.00070
http://ceur-ws.org/Vol-2405/06_paper.pdf

14 Cortellessa et al.

Example: Comparing Software Component Models, LNCS, vol. 5153, pp. 16–53
(2008), https://doi.org/10.1007/978-3-540-85289-6_3

20. Hiroyasu, T., Nakayama, S., Miki, M.: Comparison study of spea2+, spea2, and
NSGA-II in diesel engine emissions and fuel economy problem. In: CEC, pp. 236–
242 (2005), https://doi.org/10.1109/CEC.2005.1554690

21. Kessentini, M., Sahraoui, H.A., Boukadoum, M., Benomar, O.: Search-based model
transformation by example. Journal of Software and Systems Modeling 11(2), 209–
226 (2012), https://doi.org/10.1007/s10270-010-0175-7, URL https://doi.

org/10.1007/s10270-010-0175-7

22. King, R.A., Deb, K., Rughooputh, H.: Comparison of nsga-ii and spea2 on the
multiobjective environmental/economic dispatch problem. University of Mauritius
Research Journal 16(1), 485–511 (2010)

23. Koziolek, A., Koziolek, H., Reussner, R.H.: PerOpteryx: automated application of
tactics in multi-objective software architecture optimization. In: 7th International
Conference on the Quality of Software Architectures, pp. 33–42, ACM, New York,
New York, USA (2011)

24. López, E.M., Coello, C.A.C.: An improved version of a reference-based multi-
objective evolutionary algorithm based on igd+. In: Aguirre, H.E., Takadama, K.
(eds.) GECCO, pp. 713–720 (2018), https://doi.org/10.1145/3205455.3205530

25. Mariani, T., Vergilio, S.R.: A systematic review on search-based refactoring. Jour-
nal of Information and Software Technology 83, 14–34 (Mar 2017)

26. Martens, A., Koziolek, H., Becker, S., Reussner, R.H.: Automatically improve
software architecture models for performance, reliability, and cost using evolu-
tionary algorithms. In: ICPE 2010 - Proceedings of the 1st ACM/SPEC Inter-
national Conference on Performance Engineering, pp. 105–116 (2010), https:

//doi.org/10.1145/1712605.1712624

27. Menascé, D.A., Ewing, J.M., Gomaa, H., Malek, S., Sousa, J.P.: A framework for
utility-based service oriented design in SASSY. In: Adamson, A., Bondi, A.B.,
Juiz, C., Squillante, M.S. (eds.) Proceedings of the first joint WOSP/SIPEW
International Conference on Performance Engineering, pp. 27–36 (2010), https:
//doi.org/10.1145/1712605.1712612

28. Ni, Y., Du, X., Ye, P., Minku, L.L., Yao, X., Harman, M., Xiao, R.: Multi-objective
software performance optimisation at the architecture level using randomised
search rules. Inf. Softw. Technol. 135, 106565 (2021), https://doi.org/10.1016/
j.infsof.2021.106565, URL https://doi.org/10.1016/j.infsof.2021.106565

29. Ouni, A., Kessentini, M., Inoue, K., Cinnéide, M.Ó.: Search-based web ser-
vice antipatterns detection. IEEE Trans. Serv. Comput. 10(4), 603–617 (2017),
https://doi.org/10.1109/TSC.2015.2502595, URL https://doi.org/10.1109/

TSC.2015.2502595

30. Rago, A., Vidal, S.A., Diaz-Pace, J.A., Frank, S., van Hoorn, A.: Distributed
quality-attribute optimization of software architectures. In: Proceedings of the
11th Brazilian Symposium on Software Components, Architectures and Reuse,
SBCARS, pp. 7:1–7:10 (2017), https://doi.org/10.1145/3132498.3132509

31. Ramı́rez, A., Romero, J.R., Ventura, S.: A survey of many-objective optimisation in
search-based software engineering. Journal of Systems and Software 149, 382–395
(2019)

32. Zhao, F., Lei, W., Ma, W., Liu, Y., Zhang, C.: An improved spea2 algorithm with
adaptive selection of evolutionary operators scheme for multiobjective optimization
problems. Mathematical Problems in Engineering 2016, 1–20 (2016)

https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1007/978-3-540-85289-6_3
https://doi.org/10.1109/CEC.2005.1554690
https://doi.org/10.1109/CEC.2005.1554690
https://doi.org/10.1007/s10270-010-0175-7
https://doi.org/10.1007/s10270-010-0175-7
https://doi.org/10.1007/s10270-010-0175-7
https://doi.org/10.1007/s10270-010-0175-7
https://doi.org/10.1145/3205455.3205530
https://doi.org/10.1145/3205455.3205530
https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1145/1712605.1712612
https://doi.org/10.1145/1712605.1712612
https://doi.org/10.1145/1712605.1712612
https://doi.org/10.1145/1712605.1712612
https://doi.org/10.1016/j.infsof.2021.106565
https://doi.org/10.1016/j.infsof.2021.106565
https://doi.org/10.1016/j.infsof.2021.106565
https://doi.org/10.1016/j.infsof.2021.106565
https://doi.org/10.1016/j.infsof.2021.106565
https://doi.org/10.1109/TSC.2015.2502595
https://doi.org/10.1109/TSC.2015.2502595
https://doi.org/10.1109/TSC.2015.2502595
https://doi.org/10.1109/TSC.2015.2502595
https://doi.org/10.1145/3132498.3132509
https://doi.org/10.1145/3132498.3132509

Title Suppressed Due to Excessive Length 15

33. Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Li, W., Ding, D.: Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and em-
pirical study. TSE 47(2), 243–260 (2021), https://doi.org/10.1109/TSE.2018.
2887384, URL https://doi.org/10.1109/TSE.2018.2887384

34. Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the strength pareto evo-
lutionary algorithm. TIK-report 103, Swiss Federal Institute of Technology (ETH)
Zurich (2001)

35. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwe-
fel, H. (eds.) Parallel Problem Solving from Nature, LNCS, vol. 1498, pp. 292–
304 (1998), https://doi.org/10.1007/BFb0056872, URL https://doi.org/10.

1007/BFb0056872

https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872
https://doi.org/10.1007/BFb0056872

	Performance of Genetic Algorithms in the Context of Software Model Refactoring

