
Seeding Contradiction: a fast method for
generating full-coverage test suites

Li Huang1, Bertrand Meyer1,2[0000−0002−5985−7434], and Manuel Oriol1

1 Constructor Institute, Schaffhausen, Switzerland
{li.huang, bm, mo}@constructor.org https://constructor.org

2 Eiffel Software, Santa Barbara, California
https://eiffel.com

Abstract. The regression test suite, a key resource for managing pro-
gram evolution, needs to achieve 100% coverage, or very close, to be
useful. Devising a test suite manually is unacceptably tedious, but ex-
isting automated methods are often inefficient. The method described in
this article, “Seeding Contradiction”, inserts incorrect instructions into
every basic block of the program, enabling an SMT-based Hoare-style
prover to generate a counterexample for every branch of the program
and, from the collection of all such counterexamples, a test suite. The
method is static, works fast, and achieves excellent coverage.

Keywords: Testing · Coverage · Software verification · Eiffel

Draft of article to be presented at ICTSS 2023 (International Conference on
Testing Software and Systems) in Bergamo, 18-20 September 2023.

1 Overview

In the modern theory and practice of software engineering, tests have gained a
place of choice among the artifacts of software production, on an equal footing
with code. One particularly important rule is that every deployed program should
come accompanied with a regression test suite achieving high branch coverage
and making it possible to check, after any change to the software, that previous
functionality still works: no “regression” has occurred.

Producing a high-coverage regression test suite is a delicate and labor-intensive
task. Tools exist (RANDOOP [23], Pex [25], AutoTest [4], Korat [7]) but they are
typically dynamic, meaning that they require numerous executions of the code.
The Seeding Contradiction (SC) method and supporting tools presented in this
article typically achieve 100% coverage (excluding unreachable code, which they
may help detect) and involve no execution of the code, ensuring very fast results.

The principal insight of Seeding Contradiction is to exploit the power of
modern program provers, which attempt to generate a counterexample of pro-
gram correctness. In normal program proving, we hope that the prover will not
find such a counterexample: a proof follows from the demonstrated inability to

ar
X

iv
:2

30
9.

04
23

2v
1 

 [
cs

.S
E

] 
 8

 S
ep

 2
02

3

https://constructor.org
https://eiffel.com


2 L. Huang, B. Meyer and M. Oriol

disprove the program’s correctness. Switching the focus from proofs to tests,
we may look at counterexamples in a different way: as test cases. We may call
this approach Failed Proofs to Failing Tests or FP-FT. Previous research (in-
cluding by some of the present authors) has exploited FP-FT in various ways
[20] [13] [14]. Seeding Contradiction extends FP-FT to a new goal: generating a
full-coverage test suite, by applying FP-FT to seeded versions of the program in
which a branch has on purpose been made incorrect. For every such variant, the
prover generates a counterexample exercising the corresponding branch. Com-
bining the result for all branches yields a high-coverage test suite. In fact coverage
is normally 100%, with the following provisions:

• Some branches may be unreachable. Then by definition no test could cover
them; the tool may help identify such cases. (Terminology: we will use the
term exhaustive coverage to mean 100% coverage of reachable branches.)

• Limitations of the prover may prevent reaching 100%. In our examples so far
such cases do not arise.

The method involves no execution of the code and on examples tried so far
produces a test suite much faster than dynamic techniques (section 5).

The current setup involves the AutoProof [26] [3] verification framework for
contract-equipped Eiffel [19] code, relying internally on the Boogie proof system
[18] [5] and the Z3 SMT solver [11]. It is generalizable to other approaches.

The discussion is organized as follows. Section 2 presents the approach by
considering a small example. Section 3 examines the theoretical correctness of
that approach. Section 4 describes the extent to which we have applied it so far,
and section 5 assesses the results. Section 6 discusses limitations of the current
state of the work and threats to validity of the evaluation results. Section 7
reviews related work and section 8 presents conclusions and future work.

2 The method

A simple code example will illustrate the essential idea behind Seeded Compo-
sition.

2.1 Falsifying a code block

Consider a small routine consisting of a single conditional instruction:
simple (a: INTEGER)

do
if a > 0 then x := 1 else x := 2 end

end

where x is an integer attribute of the enclosing class. In a Design-by-Contract
approach intended to achieve correctness by construction, the routine might
include the following postcondition part (with =⇒ denoting implication):



Seeding Contradiction: fast generation of full-coverage test suites 3

ensure
a > 0 =⇒ x = 1
a ≤ 0 =⇒ x = 2

With or without the postcondition, how can we obtain a regression test suite
that will exercise both branches?

Various techniques exist, discussed in section 7 and generally requiring ex-
ecution of the code. The Seeding Contradiction technique is, as noted, static
(it does not involve executing the code); it assumes that we have a toolset for
proving program correctness. Specifically, we rely on the AutoProof environment
[26] [3], with a tool stack presented in Fig. 1, in which the Boogie prover is itself
based on an SMT solver, currently Z3. A characteristic of this style of proof is
that it relies on a disproof of the opposite property: the SMT solver tries to
construct at least one counterexample, violating the desired result. If it cannot
find one, the proof is successful.

Fig. 1: AutoProof tool stack

In this work, as in previous articles using the general FP-FT approach [13] [14],
we are interested in a proof that actually fails: then the counterexample can be
useful on its own, yielding a directly usable test.

In contrast with the earlier FP-FT work, the proof that will fail is not a proof
of the actual program but of a modified version, into which we have inserted
(“seeded”) incorrect instructions. In the example, we change the first branch, so
that the routine now reads

simple (a: INTEGER)
do

if a > 0 then
check False end -- This is the added instruction
x := 1 -- The rest is unchanged.

else
x := 2

end
end

A “check C end” instruction (assert C in some other notations [17]) states that
the programmer expects condition C to hold at the corresponding program point.
Specifically, its semantics is the following, from both a dynamic perspective
(what happens if it gets executed) and a static, proof-oriented perspective:

• From a dynamic viewpoint, executing the instruction means: if condition C
has value True at that point, the check instruction has no effect other than



4 L. Huang, B. Meyer and M. Oriol

evaluating C; if C evaluates to False and the programmer has enabled run-
time assertion monitoring, as possible in EiffelStudio, execution produces a
violated-assertion exception, usually implying that it terminates abnormally.

• In the present discussion’s static approach, the goal is to prove the program
correct. The semantics of the check instruction is that it is correct if and only
if the condition C alway has value True at the given program point. If the
prover cannot establish that property, the proof fails.

In a general FP-FT approach, the key property is that in the static view, if
the proof fails, an SMT-based prover will generate a counterexample. In the
Seeding Contradiction approach, C is False: the proof always fails and we get
a counterexample exercising the corresponding branch — exactly what we need
if, as part of a regression test suite, we want a test exercising the given branch.

For the simple code seeded with a check False end, such a counterexample
will, by construction, lead to execution of the first branch (a > 0) of the condi-
tional. If we have an efficient mechanism to turn counterexamples into tests, as
described in earlier work [13] [14], we can get, out of this counterexample, a test
of the original program which exercises the first branch of the conditional.

Such a generated test enjoys several interesting properties:

• It can be produced even in the absence of a formal specification (contract
elements such as the postcondition above).

• Unless the enclosing code (here the routine simple) is unreachable, the test
can be produced whether the program is correct or incorrect.

• If the program is correct, the test will pass and is useful as a regression test
(which may fail in a later revision of the program that introduces a bug).

• Generating it does not require any execution.
• That generation process is fast in practice (section 5).

The next sections will show how to generalize the just outlined idea to produce
such tests not only for one branch as here but for all branches of the program,
as needed to obtain an exhaustive-coverage regression test suite.

2.2 Block variables

To generalize the approach, the following terminology is useful. So far it has
been convenient to talk informally of “branches”, but the more precise concept
is basic block, defined in the testing and compilation literature as a sequence
of instructions not containing conditionals or loops. (This definition is for a
structured program with no branching instructions. In a more general approach,
a basic block is any process node — as opposed to decision nodes — in the
program’s flowchart.) “Block” as used below is an abbreviation for “basic block”.

The method illustrated on the simple example generates a test guaranteed to
exercise a specific block of a correct program: seed the program by adding to the
chosen block one check False end instruction. Then, as seen in the example, we
run the prover and apply the FP-FT scheme: since the program is now incorrect,



Seeding Contradiction: fast generation of full-coverage test suites 5

the proof fails and the prover generates a counterexample, which we turn into a
runnable test guaranteed to exercise the given block in the original program.

To generalize this approach so that it will generate a test suite exercising all
blocks, a straightforward idea is “Multiple Seeded Programs” (MSP): generate
such a seeded program for each of its blocks in turn; then run the prover on
every such program, in each case producing a counterexample and generating
a test from it. Subject to conditions in section 3 below, the MSP approach
is correct, in the sense that together the generated tests exercise all reachable
blocks. It is, however, impractical: for a single original program, we would need
to generate a possibly very large number of seeded programs, and run every one
of them through the prover.

To obtain a realistic process, we can instead generate a single seeded program,
designed to produce the same counterexamples as would all the MSP-generated
programs taken together. A helpful property of a good counterexample-based
prover is that it can deal with a program containing several faults and generate
a set of counterexamples, each addressing one of the faults. In the example above,
we can submit to the prover a single seeded program of the form

simple (a: INTEGER)
do

if a > 0 then
check False end
x := 1 -- Instruction 1

else
check False end
x := 2 -- Instruction 2

end
end

which will produce two counterexamples, one for each branch. We call this ap-
proach “RSSP” (Repeatedly Seeded Single Program). With AutoProof, the FP-
FT tools generate tests with a = 1 and a = 0. (More precisely, the prover initially
generates larger and less intuitive values, but a minimization technique described
in earlier work [14] produces 1 and 0.)

This approach does not suffice for more complex examples. Assume that after
the conditional instruction the routine simple includes another conditional:

-- This code comes after the above conditional (Instructions 1-2)
if a2 > a then

x := 3 -- Instruction 3
else

x := 4 -- Instruction 4
end

With the program seeded as above, even if we insert a check False end into each
of the two new blocks (before Instructions 3 and 4), we will get tests covering
only two cases (1-4, 2-4), not four (1-3, 1-4, 2-3, 2-4) as needed. These two tests,
a = 1 and a = 0, fail to cover Instruction 3. The reason is that the prover
does not generate specific tests for the branches of the second conditional (3-4)



6 L. Huang, B. Meyer and M. Oriol

since it correctly determines that they are unreachable as both branches of the
first conditional (1-2) now include a check False end. They were, however, both
reachable in the original! The test suite fails to achieve exhaustive coverage.

The solution to this “Seeded Unreachability” issue is to make the check them-
selves conditional. In the seeded program, for every routine under processing,
such as simple, we may number every basic block, from 1 to some N, and add to
the routine an argument bn (for “block number”) with an associated precondition

require
bn ≥ 0 -- See below why 0 and not 1.
bn ≤ N

To avoid changing the routine’s interface (as the addition of an argument im-
plies), we will instead make bn a local variable and add an initial instruction
that assigns to bn, non-deterministically, a value between 0 and N. Either way,
we now use, as seeded instructions, no longer just check False end but

if bn = i then check False end end
where i is the number assigned to the block. In the example, the fully seeded rou-
tine body for the extended version of simple with two conditionals, is (choosing
the option of making bn a local variable rather than an argument):

bn := ‘‘Value chosen non−deterministically between 0 and N’’
if a > 0 then

if bn = 1 then check False end end
x := 1 -- Instruction 1

else
if bn = 2 then check False end end
x := 2 -- Instruction 2

end

if a2 > a then
if bn = 3 then check False end end
x := 3 -- Instruction 3

else
if bn = 4 then check False end end
x := 4 -- Instruction 4

end
As in the previous attempt, there are four incorrect check False instructions,
but all are now reachable for bn values ranging from 1 to 4. The prover generates
counterexamples exercising all the paths of the original program (with appro-
priately generated values for its original variables). In this case there is only one
relevant variable, a; AutoProof’s prover generates, for the pair [bn, a], the test
values [1, 1], [2, 0], [3, -1], [4, 0]. These four tests provide 100% branch coverage
for the program and can serve as a regression test suite. We call this technique
Conditional Seeding; it addresses the Seeded Unreachability issue.

As noted above, we accept for bn not only values between 1 and N (the num-
ber of basic blocks) but also 0. This convention has no bearing on test generation
and coverage but ensures that the behavior of the original program remains pos-



Seeding Contradiction: fast generation of full-coverage test suites 7

sible in the seeded version: for bn = 0, none of the seeded check False will
execute, so the program behaves exactly as the original. If the original was cor-
rect, the prover will not generate any counterexample for that value.

3 Correctness

The goal of a test-suite-generation strategy is to produce high-coverage test
suites. The Seeding Contradiction strategy is more ambitious: we consider it
correct if it achieves exhaustive coverage (as defined in section 1: full cov-
erage of reachable branches). More precisely, we will now prove that SC is
“coverage-complete” if the prover is “reachability-sound”, “correctness-sound” and
“counterexample-complete”. 3.1 defines these concepts and 3.2 has the proof.

3.1 Definitions and assumptions

Establishing the correctness of SC requires precise conventions and terminology.
A general assumption is the availability of an “FP-FT” mechanism which,

as described in previous articles [13], can produce directly executable tests (ex-
pressed in the target programming language, in our case Eiffel) from counterex-
amples produced by the SMT-based prover. As a consequence, the rest of this
discussion does not distinguish between the notions of counterexample and test.3

The definition of basic block, or just block for short, appeared earlier (2.2).
For simplicity, we assume that the programs are structured, meaning that

they use sequences, loops and conditionals as their only control structures. Also,
we consider that a conditional always includes exactly one “else” part (possibly
empty), and that a loop has two blocks, the loop body and an empty block (cor-
responding to the case of zero iterations). Further, expressions, particularly con-
ditional expressions used in conditional instructions, are side-effect-free. Thanks
to these conventions, instruction coverage (also known as statement coverage)
and branch coverage are the same concept, called just “coverage” from now on.

A (possibly empty) block of a program is reachable if at least one set of input
values will cause it to be executed, and otherwise (if, regardless of the input, it
cannot be executed) unreachable. Reachability is an undecidable property for
any realistic programming language, but that need not bother us since this work
relies on a prover of which we will only require that it be reachability-sound:
if a block is reachable, the prover will indeed characterize it as reachable. (The
prover might, the other way, wrongly characterize a block as reachable when in
fact it is not: with if cos2 (x) + sin2 (x) = 100 then y := 0 else y := 1
end, the prover might consider y = 0 as a possible outcome if it does not have
enough built-in knowledge about trigonometric functions. That too-conservative
determination does not endanger the SC strategy.)

3 Counterexamples that the prover generates at first can use arbitrary values, some-
times too large to be meaningful to programmers; as noted in 2.2, a minimization
strategy is available to produce more intuitive values. The SC technique and its
analysis are independent of such choices of counterexamples.



8 L. Huang, B. Meyer and M. Oriol

A program may contain instructions of the form check C end, with no ef-
fect on execution (as previewed in section 2). Such an instruction is correct
if and only if the condition C will hold on every execution of the instruction.
This property is again undecidable, and again we only need the prover to be
correctness-sound: if it tells us that an instruction is correct, it is. (We hope
the other way around too, but do not require it.) For the SC strategy we are
interested in the trivial case for which C is False.

Also for simplicity, we assume that all correctness properties are expressed in
the form of check instructions; in particular, we replace any contract elements
(preconditions, postconditions, loop invariants and variants, class invariants) by
such instructions added at the appropriate places in the program text.

With this convention, a block is correct if all its check instructions are, and
a program is correct if all its blocks are. For a normally written program, this
definition means that the program is correct in the usual sense; in particular, if it
has any contracts, it satisfies them, for example by having every routine ensure
its postcondition. The SC strategy, by adding check False end to individual
blocks, makes these blocks — and hence the program as a whole — incorrect.

A test suite is a collection of test cases for a program.
A test suite achieves exhaustive coverage if for every reachable block in

the program at least one of its test cases causes that block to be executed.
(Note the importance of having a reachability-sound prover: if it could wrongly
mark some reachable blocks as unreachable, it could wrongly report exhaustive
coverage, which is not acceptable. On the other hand, if it is reachability-sound,
it may pessimistically report less-than-exhaustive coverage for a test suite whose
coverage is in fact exhaustive, a disappointing but not lethal result. This case
does not occur in our examples thanks to the high quality of the prover.)

A test-suite-generation method (such as Seeding Contradiction) is coverage-
complete if the generated test suite achieves exhaustive coverage for any correct
program. In other words, for each reachable basic block of a correct program, at
least one test in the suite will execute the block.

Finally, consider a prover that can generate counterexamples for programs it
cannot prove correct. The prover is counterexample-complete if it generates a
counterexample for every block that it determines to be reachable and incorrect.

With these conventions, the correctness of the Seeding Contradiction method
is the property (proven next) that

If the prover is reachability-sound, correctness-sound and counterexample-
complete, SC is coverage-complete.

3.2 Proof of correctness

To establish that correctness holds, on the basis of the preceding definitions, we
first establish the following two lemmas:

1 Any test case of a seeded program (the program modified by addition of check
instructions as described above) yields, by omitting the bn variable, a test case
of the original program, exercising the same basic block.



Seeding Contradiction: fast generation of full-coverage test suites 9

2 Any reachable block of the original program is reachable in the seeded one.

The proof of both lemmas follows from the observation that the seeded program
has the same variables as the original except for the addition of the bn variable,
which only appears in the conditional check instructions and hence does not
affect the behavior of the program other than by possibly causing execution of
one of these instructions in the corresponding block. If bn has value i in such an
execution, the execution of all blocks other than the block numbered i (if any —
remember that we accept the value 0 for bn), in particular the execution of any
block in an execution path preceding the possible execution of block i, proceeds
exactly as in the original unseeded program. As a result:

• Any test executing block number i in the seeded program for any i has, for
all other variables (those of the original program), values that cause execution
of block i in the original program too, yielding Lemma 1.

• Consider a reachable block, numbered i, of the original program. Since it is
reachable, there exists a variable assignment, for the variables of the original
program, that causes its execution. That variable assignment complemented
by bn = i causes execution of block i in the seeded program, which is therefore
reachable, yielding Lemma 2.

To prove that SC satisfies the definition of correctness (given at the end of 3.1):

• Assume that the original program is correct; then the only incorrect instruc-
tions in the seeded program are the added conditional check instructions (the
if C then check False end at the beginning of every block).

• Consider an arbitrary reachable basic block B, of the original program. Because
of Lemma 2, it is also reachable in the seeded program.

• If the prover is reachability-sound, it indeed determines that block B is (in the
seeded program) reachable.

• If the prover is also correctness-sound,it determines that B’s seeded check
instruction is incorrect, and hence (by definition) that B itself is incorrect.

• Then if it is counter-example-complete it will generate a counterexample that
executes B in the seeded program.

• By Lemma 1, that counterexample yields a test that executes block B in the
original program.

• As a consequence, by the definition of correctness above, the Seeding Contra-
diction strategy is correct.

3.3 Correctness in practice

To determine that SC as implemented is correct, we depend on properties of the
prover: the definition assumes that the prover is reachability-sound, correctness-
sound and counterexample-complete.

To our knowledge, no formal specification exists for the relevant tools in our
actual tool stack (Fig. 1), particularly Z3 and Boogie. In their actual behavior
as observed pragmatically, however, the tools satisfy the required properties.



10 L. Huang, B. Meyer and M. Oriol

4 Implementation

We have implemented Seeding Contradiction strategy in the form of a new option
of the AutoProof program-proving framework, called “Full-coverage Test Gen-
eration” (FTG) 4. The implementation relies on the FP-FT [13] [14] feature of
AutoProof, which enables automatic generation of failed tests from failed proofs.
The objective is to add the incorrect check instructions at the appropriate pro-
gram locations so that the verification of the seeded program results in proof
failures, yielding an exhaustive-coverage test suite as described above.

Like the rest of AutoProof, seeding is modular: routine by routine. It is
applied at the Boogie level, so that the Eiffel program remains untouched. The
Boogie equivalent of the check instruction is written assert. Depending on the
structure of the code for a routine r, five cases arise, reviewed now.

A - Plain Block. If the body of r includes no conditional and hence has only
one path, the SC strategy inserts a single assert false at the beginning of the
body. Verification of r results in failure of the assertion; by applying FP-FT, we
obtain a valid test case of r (whose test input satisfies the precondition).

B - Implicit else branch. If r contains a conditional whose else branch is
implicit, SC makes it explicit and produces a test case covering the branch. Fig.
2 shows an example: SC inserts two assert clauses, one in the then branch and
the other in the else branch that it creates. Running the proof produces two
counterexamples for the two injected assert clauses, hence two tests.

Fig. 2: Instrumentation for r with implicit else branch. Left: original Eiffel code of
r. Right, seeded Boogie code. Bi (i ∈ {0, 1, 2}) is a basic block in Eiffel, c a branch
predicate evaluating to true or false, T (Bi) the Boogie translation of Bi.

C - Cascading Branches. If r has a series of branches placed sequentially, as
in Fig. 3, the SC algorithm inserts an assert false clause in each branch. The
resulting tests cover all branches.

D - Nested branches. When conditionals are nested, SC only generates tests
targeting the leaf branches — those with no embedded conditionals. This ap-
proach is sound since any program execution that exercises a leaf branch must
also go through all the branches leading to it. Fig. 4 has three leaf branches for
4 AutoProof including the FTG option is available for download at

github.com/huangl223/ES-AP-Installation.



Seeding Contradiction: fast generation of full-coverage test suites 11

Fig. 3: Instrumentation for cascading branches: three assert false clauses are in-
serted for the three branches in r; note that the elseif instruction in Eiffel, together
with the last else instruction, is mapped to a nested if−else instruction in Boogie.

blocks B2, B3 and B5. Any execution going through B2 and B3 will exercise B1;
SC only inserts assert instructions for leaves (none for B1).

Fig. 4: Instrumentation for nested branches

E - Sequential decisions. If r has multiple successive decision instructions,
as in Fig. 5, SC inserts the conditional assert false instructions as explained
in 2.2. It declares a variable bn for the block number and adds “if (bn == i)
assert false;”. Since the value of bn is between 0 and N (number of target
blocks), it adds a clause “requires bn≥0 && bn≤N” to the precondition of r.

5 Evaluation and comparison with dynamic techniques

We performed a performance evaluation of Seeding Contradiction as imple-
mented in AutoProof per the preceding section, comparing it to two existing
test generation tools: IntelliTest [25] (previously known as Pex, a symbolic ex-
ecution test-generation tool for .NET) and AutoTest [4], a test generation tool
for Eiffel using Adaptive Random Testing, specifically ARTOO [10]).



12 L. Huang, B. Meyer and M. Oriol

Fig. 5: Instrumentation for sequential conditionals

5.1 Comparison criteria and overview of the results

The experiment applies all three tools to generate tests for 20 programs adapted
from examples in the AutoProof tutorial5 and benchmarks of previous software
verification competitions [27] [6] [15]. Table 1 lists their characteristics, including
implementation size (number of Lines Of Code) and number of branches.

Table 1: Examples
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and
max

Arithmetic

LOC 214 153 102 95 49 64 122 62 56 56 204

Branches 14 10 8 8 3 5 5 5 5 4 14

Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

Total

74 89 188 49 85 232 167 165 183 2409
5 7 11 4 6 9 5 5 8 141

The comparison addresses three metrics: coverage; time needed to generate the
tests; size of the test suite. All code and results are available at https://github.
com/huangl223/ICTSS2023.

The examples are originally in Eiffel; we translated them manually into C#
for IntelliTest. The experiment includes a test generation session for every ex-
ample in every tool. For AutoTest, whose algorithms keeps generating tests until
a preset time limit, it uses 10 minutes (600 seconds) as that limit; there is no
time limit for the other two approaches.

All sessions took place on a machine with a 2.1 GHz Intel 12-Core proces-
sor and 32 GB of memory, running Windows 11 and Microsoft .NET 7.0.203.
Versions used are: EiffelStudio 22.05 (used through AutoProof and AutoTest);
Boogie 2.11.10; Z3 solver 4.8.14; Visual Studio 2022 (integrated with IntelliTest).

Table 2 shows an overview of the results. SC and IntelliTest handle the ex-
amples well, with coverage close to 100%; SC reaches exhaustive coverage (100%
coverage of reachable branches) for all 20 examples and IntelliTest for 19 exam-
ples. AutoTest, due to its random core, achieves the lowest coverage, reaching
exhaustive coverage for only 7 examples.
5 http://autoproof.sit.org/autoproof/tutorial

https://github.com/huangl223/ICTSS2023
https://github.com/huangl223/ICTSS2023


Seeding Contradiction: fast generation of full-coverage test suites 13

Table 2: Overall result
Metrics SC IntelliTest AutoTest

Avg. branch coverage 99.37% 97.15% 81.2%

Number of examples reaching exhaustive coverage 20 19 7

Avg. time for reaching exhaustive coverage (s) 0.487 27 259

Avg. number of generated tests for reaching exhaustive coverage 6.26 10.47 623.28

To reach exhaustive coverage, SC performs significantly faster than the other
two: it needs less than 0.5 seconds on average — about 50 times less than Intel-
liTest and 500 times than AutoTest. SC also generates the smallest test suite;
the average size of the exhaustive-coverage test suite from IntelliTest is slightly
larger than SC, and both are much smaller than AutoTest. The importance of
minimizing the size of test suites has become a crucial concern [22].

5.2 Detailed results

Table 3 shows coverage results. For each example, we executed the generated test
suite and calculated coverage as the ratio of number of exercised branches over
number of branches. SC always reaches exhaustive coverage (the maximum pos-
sible for Lamp is 87.5% as it contains an unreachable branch). IntelliTest reaches
exhaustive coverage for most examples but misses it for Account and Lamp. Au-
toTest’s coverage varies from 50% to 100%. Occasionally, it performs better than
IntelliTest, reaching the maximum 87.5% for Lamp against IntelliTest’s 50%.

Table 3: Result: branch coverage
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and max

SC 100% 100% 100% 87.5% 100% 100% 100% 100% 100% 100%

IntelliTest 92.85% 100 % 100% 50% 100% 100% 100% 100% 100% 100%

AutoTest 78.6% 70% 62.5% 87.5% 66.7% 100% 80% 60% 100% 100%

Arithmetic Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
100% 100% 85.7 % 72.7 % 75% 83.3% 100% 80% 80% 50%

Table 4 gives the time needed to produce the test suite in the various approaches,
using the following conventions:

• For SC, time for test generation includes two parts: proof time (for AutoProof)
and time for extracting tests from failed proofs (time for FP-FT).

• For AutoTest, the time is always the 10-minute timeout, chosen from experi-
ence: within that time, test generation of examples usually reaches a plateau.

• IntelliTest does not directly provide time information. We measure duration
manually by recording the the timestamps of session start and termination.

In Table 4 results, SC is the fastest of the three, with all its test generation
runs taking less than 1 second. For IntelliTest, test generation takes less than



14 L. Huang, B. Meyer and M. Oriol

40 seconds for most examples, but three of them out of 20 require more than
one minute. For AutoTest, test generation time varies from 1.71 seconds for
Square root to more than 20 minutes for Sum and max.

Table 4: Result: time (in seconds) to reach maximum coverage
Account Clock Heater Lamp Max Linear

Search
Insertion
Sort

Gnome
Sort

Square
root

Sum and max

SC 0.56 0.44 0.85 0.39 0.37 0.36 0.42 0.52 0.26 0.37

IntelliTest 9.58 7.44 8.06 – 8.19 9.63 11.77 10.89 12.86 10.99

AutoTest – – – 233.03 – 21.95 – – 1.71 1322.61

Arithmetic Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

0.415 0.44 0.48 0.43 0.52 0.39 0.90 0.50 0.59 0.54
32.98 99.29 13.07 31.36 9.59 80.91 111.57 17.81 14.74 12.32
14.49 150.86 – 330.89 – – 78.37 – – –

Another important criterion, when a tool covers all the branches of a program,
is how many redundant tests it produces. Table 5 presents the sizes of the gen-
erated test suites of the three tools when reaching exhaustive coverage. From a
software engineering viewpoint, particularly for the long-term health of a project,
a smaller size achieving the same coverage is better, since it results in a more
manageable test suite giving the project the same benefits as a larger one.

Among the three tools, SC generates the fewest tests. In most cases, the
number of tests is the same as the number of blocks: as each generated test results
from a proof failure of an incorrect instruction, seeded at one program location,
each test covers just the corresponding block and introduces no redundancy. If
nested branches are present, the size of the test suite can actually be less than the
number of branches: SC only generates tests targeting the innermost branches
(the leaf nodes of the control structure), as explained in section 4; each test going
through these branches automatically covers all its enclosing branches. Intellitest
also generates small test suites, but is slower. The reason is Intellitest’s use of
concolic testing [24], which tests all feasible execution paths: since a a branch
can occur in several paths, a test will often identify a branch that was already
covered by a different path. AutoTest, for its part, produces much larger test
suites: as an Adaptive Random Testing tool, it often generates multiple test
cases covering the same branches.
Tables 2 to 5 provide evidence of the benefits of the approach (subject to the
limitations examined in the next section): SC is fast and efficient; it uses less than
1 second to produce an exhaustive-coverage test suite with the fewest number
of test cases. Other observations:

• AutoTest does not guarantee that the test inputs satisfy the routine’s precon-
dition, while SC and IntelliTest always generate precondition-satisfying test
inputs. The reason is that SC and IntelliTest rely on the results of constraint
solving, where the routine’s precondition is encoded as an assumption and will
always be satisfied.



Seeding Contradiction: fast generation of full-coverage test suites 15
Table 5: Result: number of generated tests to reach exhaustive coverage

Account Clock Heater Lamp Max Linear
Search

Insertion
Sort

Gnome
Sort

Square
root

Sum and max

SC 13 10 8 7 3 3 3 3 4 3

IntelliTest 13 13 8 – 4 7 5 7 5 5

AutoTest – – – 656 – 127 – – 18 1784

Arithmetic Binary
search

Recursive
binary search

Dutch
flag

Two way
max

Two way
sort

Quick
sort

Selection
Sort

Bubble
Sort

Optimized
gnome sort

14 4 7 9 2 5 9 5 4 7
25 6 15 27 4 9 18 12 8 8
531 905 – – – – 342 – – –

• The SC approach is has a prerequisite: the program under test has to be proved
correct (the proof of the original program has no failure), while AutoTest and
IntelliTest have no such constraint.

• As to the values of the generated test inputs, IntelliTest and AutoTest always
apply small values that are easy to understand. SC initially produces test in-
puts that may contain large values; its “minimization” mechanism [14] corrects
the problem.

6 Limitations and threats to validity

The setup of the SC approach assumes a Hoare-style verification framework
(of which Boogie is but one example), and the availability of a test generation
mechanism that supports generating test cases from proof failures. We have not
studied the possible application of the ideas to different verification frameworks,
based for example on abstract interpretation or model checking.

The current version of SC is subject to the following limitations:

• SC is not able to handle programs with non-linear computations (such as
derivation and exponentiation); this restriction comes from the underlying
SMT solver.

• SC does not support the more advanced parts of the Eiffel system, in particular
generic classes. Data structures are limited to arrays and sequences.

These limitations will need to be removed for SC to be applicable to industrial-
grade programs.

The following considerations may influence the generalization of the results
achieved so far:

• The number of repeated experiments increased the potential threats to internal
validity. We hope that further experiments with large number of iterations will
provide more conclusive evidence.

• Although a few of the examples classes that we processed so far are complex
and sophisticated, most are of a small size and not necessarily representative of
industrial-grade object-oriented programs. In the future, we intend to use the
EiffelBase library6, which has yielded extensive, representative results in the

6 EiffelBase Data Structures: https://www.eiffel.org/doc/solutions/EiffelBase_
Data_Structures_Overview

https://www.eiffel.org/doc/solutions/EiffelBase_Data_Structures_Overview
https://www.eiffel.org/doc/solutions/EiffelBase_Data_Structures_Overview


16 L. Huang, B. Meyer and M. Oriol

evaluation of AutoProof and AutoTest, and exhibits considerable variety and
complexity in terms of size (according to various metrics), richness of program
semantics, and sophistication of algorithms and software architecture.

7 Related work

Previous work has taken advantage of counterexamples generated by failing
proofs, but for other purposes, in particular automatic program repair [21] and
generation of failing tests [20] [13]. These techniques work on the original pro-
gram and not, as here, on a transformed program in which incorrect instructions
have been inserted with the express purpose of making the proof fail.

The earliest work we know to have applied this idea [1] [2] generates tests
for low-level C programs using Bounded Model Checking (BMC) [16], produc-
ing test suites with exhaustive branch coverage. A more recent variant, for Java
bytecode, is JBMC [8]. In contrast with SC, each verification run only activates
one assertion at a time, producing one counterexample. This approach is concep-
tually similar, in the terminology of the present work (2.2), to the “MSP” (Mul-
tiple Seeded Programs) technique, although the C version [1] uses compile-time
macros, one for each block, to avoid the actual generation of multiple programs.
In contrast, the present work uses RSSP (Repeatedly Seeded Single Program),
relying on a single run-time variable representing the block number. BMC-based
approaches rely on the correctness of the bound of the execution trace: if the
bound is not set correctly, some branches might not be covered, requiring more
verification runs to obtain a better bound.

Other techniques that apply constraint solving for generating inputs in-
cludes test generations based on symbolic execution, such as Pex/IntelliTest
[25], KLEE [9], PathCrawler[28]. None of the strategies proposed guarantees ex-
haustive branch coverage; they can achieve it when a systematic test generation
strategy, rather than one based on heuristics or randomization, is applied.

A very recent development (published just as the present work was being
submitted) is DTest, a toolkit [12] for generating unit tests for Dafny programs,
applying ideas similar to those of SC. As the generated Dafny tests are not
directly executable, test generation requires transformation of Dafny programs
and tests into a mainstream language. In contrast, the present approach works
directly on Eiffel programs. The DTest coverage results cited in the referenced
article are 100% on only 2 of its examples, and go down to as low as 58% on
the others. One should not draw definite conclusions from these figures, since
the examples are different, their program sizes too (more precisely, most of the
examples are of comparable sizes, but the cited work has three between 1100 and
1900 LOCs, which we have not handled yet), and the article does not mention
any presence of unreachable code (which makes it impossible to distinguish be-
tween full coverage and exhaustive coverage). It should be noted, however, that
the article also makes no mention of the “Seeded Unreachability” issue discussed
in section 2.2; in fact, it states that “DTest enters a loop where it systemati-
cally injects trivially failing trap assertions (meaning assert false)”, a technique



Seeding Contradiction: fast generation of full-coverage test suites 17

which generally leads, for any program with a non-trivial control structure, to
Seeded Unreachability and hence to decreased coverage. That omission may be
the reason for the relatively low coverage results reported in the article. The
Conditional Seeding technique of SC, introduced by the present work, addresses
Seeded Unreachability and has made it possible to reach exhaustive coverage
in all examples so far. In addition, to obtain small test suites, DTest seems to
require a separate minimization strategy, which takes from 8 to 1860 seconds on
the cited examples, far beyond the times of running SC. In discussing minimiza-
tion, the authors appear to come close to recognizing the Seeded Unreachability
issue, without using the Conditional Seeding technique, when they write that
“we determine the feasibility of a path via a query to the SMT solver, in which a
trap assertion is added that fails only if all the blocks along the path are visited ”,
a technique that is “exponential in the number of SMT queries (running on all
benchmarks [cited in the article] would take weeks)”. SC does not appear to need
any such technique.

8 Conclusions and future work

The approach presented here, Seeding Contradiction (SC), automatically gener-
ates test suites that achieve exhaustive branch coverage very fast. The presen-
tation of the approach comes with a proof of correctness, defined as the guar-
antee that the generated test suite achieves exhaustive coverage (full coverage
of reachable branches). While technical limitations remain, the evaluation so far
demonstrates the effectiveness and efficiency of the SC approach through the
comparison with two existing test generators IntelliTest and AutoTest, in terms
of achieved coverage, generation time, and size of the test suite.

Ongoing work includes handling larger examples, processing entire classes
instead of single routines, providing a mechanism to generate tests covering
branches that a given test suite fails to cover, and taking advantage of the SC
strategy to identify dead code.

Acknowledgements. We are particularly grateful, for their extensive and pa-
tient help, to Yi Wei (AutoTest) and Jocelyn Fiat (EiffelStudio and AutoProof).
The paper benefitted from perceptive comments by the anonymous referees on
the original version.

References

1. Angeletti, D., Giunchiglia, E., Narizzano, M., Palma, G., Puddu, A., Sabina, S.:
Improving the Automatic Test Generation Process for Coverage Analysis Using
CBMC. In: International RCRA Workshop (2009)

2. Angeletti, D., Giunchiglia, E., Narizzano, M., Puddu, A., Sabina, S.: Automatic
Test Generation for Coverage Analysis Using CBMC. In: International Conference
on Computer Aided Systems Theory (EUROCAST). pp. 287–294. Springer (2009)

3. AutoProof, http://autoproof.sit.org/

http://autoproof.sit.org/


18 L. Huang, B. Meyer and M. Oriol

4. AutoTest, https://www.eiffel.org/doc/eiffelstudio/Using_AutoTest
5. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A

Modular Reusable Verifier for Object-Oriented Programs. In: Int. Symposium on
Formal Methods for Components and Objects. pp. 364–387. Springer (2005)

6. Bormer, T., Brockschmidt, M., Distefano, D., et al.: The COST IC0701 Verifica-
tion Competition. In: International Conference on Formal Verification of Object-
Oriented Software (FoVeOO). pp. 3–21. Springer (2011)

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on java
predicates. ACM SIGSOFT Software Engineering Notes 27(4), 123–133 (2002)

8. Brenguier, R., Cordeiro, L., Kroening, D., Schrammel, P.: JBMC: A Bounded
Model Checking Tool for Java Bytecode. arXiv:2302.02381 (2023)

9. Cadar, C., Dunbar, D., Engler, D.R., et al.: KLEE: Unassisted and Automatic
Generation of High-coverage Tests for Complex Systems Programs. In: USENIX
Symposium on Operating Systems Design and Implementation (OSDI). vol. 8, pp.
209–224 (2008)

10. Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: Adaptive Random Testing for
Object-Oriented Software. In: International Conference on Software Engineering
(ICSE). p. 71–80 (2008)

11. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). pp. 337–340. Springer (2008)

12. Fedchin, A., Dean, T., Foster, J.S., Mercer, E., Rakamaric, Z., Reger, G., Rungta,
N., Salkeld, R., Wagner, L., Waldrip, C.: A Toolkit for Automated Testing of Dafny
(2023)

13. Huang, L., Meyer, B.: A Failed Proof Can Yield a Useful Test. arXiv:2208.09873
(2022)

14. Huang, L., Meyer, B., Oriol, M.: Improving Counterexample Quality from Failed
Program Verification. In: International Symposium on Software Reliability Engi-
neering Workshops (ISSREW). pp. 268–273. IEEE (2022)

15. Klebanov, V., Müller, P., , et al.: The 1st Verified Software Competition: Experi-
ence Report. In: International Symposium on Formal Methods (FM). pp. 154–168.
Springer (2011)

16. Kroening, D., Tautschnig, M.: CBMC–C Bounded Model Checker: (Competition
Contribution). In: International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). pp. 389–391. Springer (2014)

17. Leino, K.R.M.: Program Proofs. MIT Press (2023)
18. Leino, K.R.M., Rümmer, P.: The Boogie 2 Type System: Design and Verification

Condition Generation, https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.146.4277

19. Meyer, B.: Object-Oriented Software Construction, second edition. Prentice Hall
(1997)

20. Nilizadeh, A., Calvo, M., Leavens, G.T., Cok, D.R.: Generating Counterexamples
in the Form of Unit Tests from Hoare-style Verification Attempts. In: International
Conference on Formal Methods in Software Engineering (FormaliSE). pp. 124–128.
IEEE (2022)

21. Nilizadeh, A., Calvo, M., Leavens, G.T., Le, X.B.D.: More Reliable Test Suites
for Dynamic APR by Using Counterexamples. In: International Symposium on
Software Reliability Engineering (ISSRE). pp. 208 – 219. IEEE (2021)

22. Orso, A., Hsu, H.Y.: MINTS: A General Framework and Tool for Supporting Test-
suite Minimization. In: International Conference on Software Engineering (ICSE).
pp. 419–429 (2009)

https://www.eiffel.org/doc/eiffelstudio/Using_AutoTest
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.4277
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.4277


Seeding Contradiction: fast generation of full-coverage test suites 19

23. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for java. In:
Companion to the 22nd ACM SIGPLAN conference on Object-oriented program-
ming systems and applications companion. pp. 815–816 (2007)

24. Sen, K., Marinov, D., Agha, G.: CUTE: a Concolic Unit Testing Engine for C. In:
The ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC-FSE). pp. 213–223 (2005)

25. Tillmann, N., De Halleux, J.: Pex–White Box Test Generation for .Net. In: Inter-
national Conference on Tests and Proofs (TAP). pp. 134–153. Springer (2008)

26. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: Auto-active
Functional Verification of Object-Oriented Programs. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
pp. 566–580. Springer (2015)

27. Weide, B.W., Sitaraman, M., Harton, H.K., Adcock, B., Bucci, P., Bronish, D.,
Heym, W.D., Kirschenbaum, J., Frazier, D.: Incremental Benchmarks for Software
Verification Tools and Techniques. In: Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE). pp. 84–98. Springer (2008)

28. Williams, N.: Towards Exhaustive Branch Coverage with PathCrawler. In: Int.
Conference on Automation of Software Tests (AST). pp. 117–120. IEEE (2021)


	Seeding Contradiction: a fast method for generating full-coverage test suites

