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Abstract

Recently, strategic games inspired by Schelling’s influential model of residential segregation
have been studied in the TCS and AI literature. In these games, agents of k different types occupy
the nodes of a network topology aiming to maximize their utility, which is a function of the fraction
of same-type agents they are adjacent to in the network. As such, the agents exhibit similarity-
seeking strategic behavior. In this paper, we introduce a class of strategic jump games in which the
agents are diversity-seeking: The utility of an agent is defined as the fraction of its neighbors that
are of different type than itself. We show that in general it is computationally hard to determine the
existence of an equilibrium in such games. However, when the network is a tree, diversity-seeking
jump games always admit an equilibrium assignment. For regular graphs and spider graphs with
a single empty node, we prove a stronger result: The game is potential, that is, the improving
response dynamics always converge to an equilibrium from any initial placement of the agents.
We also show (nearly tight) bounds on the price of anarchy and price of stability in terms of the
social welfare (the total utility of the agents).

1 Introduction

In his seminal work [37, 38], the economist Thomas Schelling proposed an elegant model to explain
the phenomenon of residential segregation in American cities. In his model, agents of two types are
placed uniformly at random on the nodes of a network. An agent is happy if at least some fraction
τ of its neighbors are of the same type as itself, and unhappy otherwise. An unhappy agent will
jump to an unoccupied node in the network, or exchange positions with another unhappy agent of
a different type. Schelling showed experimentally that this random process would lead to segregated
neighborhoods, even for τ ≈ 1/3. His work showed that even small and local individual preferences
for one’s own type can lead to large-scale and global phenomena such as residential segregation. As
such, it inspired a significant number of follow-up studies in sociology and economics [5, 33, 36], with
many empirical studies being conducted to study the influence of different parameters on segregation
models [4, 10, 13, 22, 41].

Inspired by Schelling’s model, there have been a few lines of inquiry pursued by computer scientists
as well. Some researchers attempted to prove analytically the conditions under which segregation
takes place [9, 26], while a more recent line of research used game-theoretic tools to study the problem
[12, 11, 15, 18, 20, 27]. In the latter setting, strategic agents are placed at arbitrary positions in the
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network and move to new positions to improve their utility, defined as a function of the fraction of their
neighbors which are of the same type as themselves. Two main classes of games have been considered.
In jump games, the agents can move to previously unoccupied locations aiming to improve their utility,
while in swap games, unhappy agents of different types can swap their locations if this increases the
utility of both of them. Researchers have mainly studied questions related to the existence, quality,
and computational complexity of equilibria, which are stable assignments of agents to the nodes of the
network such that no agent wants or can deviate.

1.1 Our Contribution

In this paper, we introduce a new class of strategic games, called diversity-seeking jump games. In such
games, the utility of an agent is the fraction of its neighbors of a different type than itself. To the
best of our knowledge, this is the first time such a utility function has been studied in the context of
jump games on networks that are inspired by Schelling’s model. Data from the General Social Survey
[39] show that people prefer diverse neighborhoods rather than segregated ones. This survey, which
is regularly conducted in the US since 1950, shows that the percentage of people preferring diverse
neighborhoods has been steadily increasing. There are also other settings that could be modeled using
this new utility function; e.g., teams composed of people with diverse backgrounds and skill sets to
bring a broader range of perspectives to their business, or research groups composed of people bringing
expertise from different disciplines. Indeed, many studies show that ethnically and gender-wise diverse
teams lead to better outcomes for business [3, 17, 19, 21, 23, 30, 34, 35, 40].

It may seem at first glance that Schelling jump games are intimately related to our diversity-seeking
jump games, but the relationship is not obvious. Observe that the utility of an agent in a Schelling
similarity-seeking jump game is not always equal to the complement of its utility in the diversity-
seeking setting. To see this, consider an agent placed at a node of degree 1 that is adjacent to an empty
node. Such an isolated agent has utility 0 in both similarity-seeking and diversity-seeking settings,
thus showing that the models are not simply complements of each other.

We present a series of results related to the computational complexity, the existence, and quality
of equilibrium assignments in diversity-seeking jump games. We first show that given a network
topology and a number of agents drawn from a set of types, it is NP-hard to determine whether there
exists an equilibrium if some of the agents are stubborn (and do not ever move from the nodes they are
initially placed). This hardness reduction can be found in Section 3.

In terms of positive existence results, in Sections 4 and 5, we show that there are always equilibrium
assignments in games where the network topology is a tree graph with any number of empty nodes,
if all agents are strategic. For some classes of graphs, we show a stronger result: The diversity-seeking
jump game is a potential game when the topology is a regular graph or a spider graph with a single
empty node, or a line with any number of empty nodes. This means that from, any initial placement
of agents to the nodes of the topology, improving response dynamics (IRD) by the agents always con-
verges to an equilibrium. Our positive results show a sharp difference between diversity-seeking jump
games and similarity-seeking jump games, for which there are instances with tree topologoes that do
not admit equilibria [20], and instances with spider graph topologies which are not potential games.

Finally, we show that there is not much loss of efficiency at equilibrium assignments in diversity-
seeking jump games in terms of social welfare, defined as the total utility of all agents. In particular,
we show that the price of anarchy (that is, the worst-case ratio of the optimal social welfare over
the minimum social welfare achieved at equilibrium) is at most n/(k − 1) when there are n strategic
agents partitioned into k ≥ 2 types, and at most k/(k − 1) when the agents are partitioned into
k symmetric types consisting of n/k agents each. These bounds are (nearly) tight even for simple
topologies, such as a line graph in some cases or a star graph in other cases. We remark that, in
contrast to similarity-seeking games where the price of anarchy has been shown to be increasing in k
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for symmetric types [20, 28], it is decreasing in k for diversity-seeking games and tends to 1. Intuitively,
this is because in the games we study here, the social welfare is a measure of integration which is easier
to achieve when there are a lot of different types of agents, whereas the social welfare is a measure of
segregation in the model of Elkind et al. [20] which is harder to achieve when there are many types.
We also prove a lower bound of 65/62 ≈ 1.048 on the price of stability (which is the worst-case ratio
of the optimal social welfare over the maximum social welfare achieved at equilibrium), thus showing
that optimal assignments are not necessarily equilibria. These results can be found in Section 6.

1.2 Related Work

In the last decade, there have been attempts in the computer science literature [9, 26] to theoretically
analyze the random process described by Schelling. It was shown that the expected size of the resulting
segregated neighborhoods is polynomial in the size of the neighborhood on a line topology [9] and
exponential in its size on a grid topology [26]; however, in both cases it is independent of the overall
number of agents.

The study of the above process as a strategic game played by two types of agents rather than as
random process appears to have been initiated by Zhang [42], who introduced a game-theoretic model
where agents have a noisy single-peaked utility function that depends on the ratio of the numbers of
agents of two agent types in any local neighborhood. Chauhan et al. [15] introduced a game-theoretic
model that incorporates Schelling’s notion of a tolerance threshold. In their model, each agent has a
threshold parameter τ ∈ (0, 1) and may have a preferred location. The primary goal of an agent is to
find a location where the happiness ratio exceeds τ ; if such a location does not exist, the agent aims to
maximize its happiness ratio. Its secondary goal is to minimize the distance to its preferred location.
Chauhan et al. [15] studied the convergence of best-response dynamics to an equilibrium assignment in
both jump and swap games with two types of agents and for various values of the threshold parameter.
Echzell et al. [18] generalized the model of [15] by considering games with agents of k ≥ 2 different
types, in which the cost of an agent is related to the ratio of agents of its own type over the whole
neighborhood, or the ratio of agents of its own type over the part of the neighborhood that includes
the agents of the majority type different than its own. They showed results related to the converge
of the dynamics and the computational hardness of finding placements that maximize the number of
happy agents.

More related to our model, Elkind et al. [20] studied similarity-seeking jump games (that is, τ = 1)
for k ≥ 2 types of agents that can be either strategic (aiming to maximize their utility) or stubborn
(who stay at their initial location regardless of the composition of the neighborhood). Elkind et al.
showed that, while equilibria always exist when the topology is a star or a graph of degree 2, they
may not exist even for trees of degree 4. They also showed that it is computationally hard to find
equilibrium assignments or assignments with optimal social welfare, and bounded the price of anarchy
and stability for both general and restricted games. Agarwal et al. [1] considered the utility function of
[20], but focused on swap games and, besides the social welfare, also considered a new social objective
called the degree of integration. They showed similar results about the existence and the computational
complexity of equilibrium assignments. An extended version of these two works that includes more
results was later published as [2]. The hardness results of [2] where improved by Kreisel et al. [29],
who showed that the problem of determining the existence of equilibria is NP-hard in both jump and
swap games, even if all agents are strategic. Bilò et al. [6] investigated the influence of the underlying
topology and locality in swap games when agents can only swap with other agents at most a number
of hops away, and also improved some price of anarchy results of [2].

Other variants of the model have been considered by Kanellopoulos et al. [27] who focuses on a
slightly different utility function where an agent is also counted as part of its neighborhood, by Chan
et al. [14] who considered social Schelling games where the agents are not partitioned into type but
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rather are connected via a social network, and by Bilò et al. [7] who considered a model in which the
types are continuous rather than discrete (as in most papers). The computational complexity of finding
assignments with high objective value according to different functions, including the social welfare,
the Nash welfare, and other optimality notions has been considered by Bullinger et al. [11], and also
by Deligkas et al. [16] from the parameterized complexity perspective.

Some other recent papers that are related to ours are that of Bilò et al. [8], Friedrich et al. [24] and
Kanellopoulos et al. [28], which are also motivated by the observation that real-world agents might
favor diverse neighborhoods to some extend. Bilò et al. [8] and Friedrich et al. [24] considered swap
and jump games, respectively, in which agents of two types have single-peaked utility functions that
increase monotonically with the fraction of same-type neighbors in the interval [0,Λ] for some Λ ∈
(0, 1), and then decrease monotonically afterward; this is in contrast to our model here, where the
utility is a monotone function. Kanellopoulos et al. [28] considered the case where there are k ≥ 2
types of agents and there is an implicit ordering of the types such that the distance between the types
according to this ordering determines how much different types affect the utility of an agent whenever
there are agents of those types in its neighborhood. All these papers showed instances where equilibria
do not always exist, but also identified restricted classes of games for which existence of equilibria is
guaranteed either by explicit constructive algorithms, or because IRD converges. They also present
tight bounds on the price of anarchy and the price of stability in terms of the social welfare or the
degree of integration.

2 The Model and Notation

In an instance I = (R,S, T , G, λ) of the diversity-seeking jump game , there is a setR of strategic agents
and a set S of stubborn agents with |R ∪ S| = n ≥ 2. The agents are further partitioned into k ≥ 2
different types T = (T1, . . . , Tk). Each agent occupies a node of an undirected graph G = (V,E)
that satisfies |V | > n; G is referred to as the topology. The locations (nodes of G) of the stubborn
agents are fixed and given by an injective mapping λ from S to V . In contrast, the strategic agents can
choose their locations freely, subject to the constraint that no two agents can share the same node. An
assignment C determines the node vA(C) that each agent A (strategic or stubborn) occupies on the
topology, that is, it is an injective mapping of agents to the nodes that respects λ; let C(I) be the set of
all possible assignments for game I .

We define nT (v, C) to be the number of neighbors of node v that are occupied by agents of type
T ∈ T according to assignment C . Let n(v, C) =

∑
T∈T nT (v, C) be the total number of agents

in v’s neighborhood according to assignment C . The satisfaction of the agents for an assignment C
is measured by a utility function. In particular, the utility of an agent A of type T that occupies node
vA(C) in assignmentC is defined as the fraction of agents of type different thanT inA’s neighborhood.
That is,

uA(C) =

∑
t̸=T nt(vA(C), C)

n(vA(C), C)

Observe that uA(C) ∈ [0, 1]. By convention, the utility of an agent without neighbors is 0.

2.1 Equilibria and Improving Response Dynamics

We are interested in stable assignments of diversity-seeking jump games, in which strategic agents do
not have incentive to deviate by jumping to empty nodes of the topology to increase their utility.

Definition 1. An assignment C is said to be a pure Nash equilibrium (or, simply, equilibrium; NE) if
uA(C) ≥ uA(C

′) for every strategic agent A and any assignment C ′ according to which A jumps to
a node that is empty in C while all other agents occupy the same nodes as in C . We will denote by
NE(I) the set of all equilibrium assignments of game I .
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More specifically, we study the convergence of improving response dynamics (IRD) to equilibrium
assignments in diversity-seeking jump games: In each step, a single strategic agent tries to move to an
unoccupied node where it gets higher utility. We say such a move of an agent A from assignment C
to assignment C ′ is an improving move if uA(C) < uA(C

′). Note that in assignment C , a single agent
may have many different improving moves, and multiple agents may have improving moves. We do
not make any assumptions about which improving move will take place if multiple ones are available.
Clearly, the IRD converges to an equilibrium assignment if no agent has an improving move.

A game is a potential game if and only if there exists a generalized ordinal potential function, that is, a
non-negative real-valued functionΦ on the set of assignments such that for any two assignmentsC and
C ′ where there is an improving move from C to C ′, we have Φ(C ′) < Φ(C). As observed by Monderer
and Shapley [31], such games always admit an equilibrium, and furthermore, regardless of the starting
assignment, any sequence of improving moves is finite and will terminate in an equilibrium.

Not all games are potential ones in case there is an improving response cycle (IRC) is a sequence of
improving moves that leads to a repeating assignment. In particular, the existence of an IRC implies
that the IRD does not always converge to an equilibrium, but it does not imply the non-existence of an
equilibrium.

For particular topologies that we will consider in later sections, we will show that the following
function is a generalized ordinal potential function. Similar potential functions have been used before
in different models [15, 18, 20].

Definition 2. For an assignment C and some value m ∈ (0, 1), let Φ(C) =
∑

ewC(e), where the
weight wC(e) of any edge e = {u, v} ∈ E is defined as:

wC(e) =


1 if u and v are occupied by agents of the same type
m if either u or v is unoccupied
0 otherwise.

The following lemma shows that, if a diversity-seeking jump game without stubborn agents is a
potential game for a particular class of topologies, then it is also a potential game if some of the agents
are stubborn. This will allow us to consider only the case when all agents are strategic when showing
that a game is a potential one for a class of networks.

Lemma 2.1. For any given k ≥ 2 and topology G, if the game I = (R,∅, T,G, λ) is a potential game,
then every game I ′ = (R′, S′, T,G, λ) in which S′ andR′ form a partition ofR, is also a potential game.

Proof. Suppose I = (R,∅, T,G, λ) is a potential game for a given topology G, and let C be the set of
valid assignments for I . Now consider the game I ′ = (R′, S′, T,G, λ) where S′ ̸= ∅, R′ ⊂ R and
S′ ⊂ R, and let C′ be the set of valid assignments for I ′. Since R′ ⊂ R, clearly C ⊂ C′. Also any move
between two assignments in I ′ is also possible in I , though the converse does not hold. It follows that
if there is no IRC in I , there cannot be one in I ′.

2.2 Price of Anarchy and Stability

We are also interested in the welfare guarantees of equilibrium assignments in terms of the social
welfare that is defined as the total utility of all strategic agents. In particular, for an assignment C , the
social welfare is

SW(C) =
∑
A∈R

uA(C).

For a given game I , let OPT(I) = maxC∈C(I) SW(C) be the optimal social welfare that can be achieved
among all possible assignments of I . The price of anarchy is a pessimistic measure of the loss of welfare
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at equilibrium and is defined as the worst-case ratio, over all possible games I with NE(I) ̸= ∅, of
the optimal social welfare OPT(I) over the minimum social welfare achieved among all equilibrium
assignments, that is,

PoA = sup
I:NE(I )̸=∅

OPT(I)
minC∈NE(I) SW(C)

.

On the other hand, the price of stability is an optimistic measure of the loss of welfare at equilibrium
and is defined as the worst-case ratio of the optimal social welfare over the maximum social welfare at
equilibrium, that is,

PoS = sup
I:NE(I )̸=∅

OPT(I)
maxC∈NE(I) SW(C)

.

Clearly, the price of anarchy and the price of stability are both always at least 1; the closer they are to
1, the smaller the loss of welfare at equilibrium. Besides showing bounds on these two measures for
all possible games, we will also focus on specific classes of games with particular topologies.

3 Complexity of Computing Equilibria

In this section, we study the computational complexity of determining if a given diversity-seeking
jump game admits an equilibrium assignment.

Theorem 3.1. For any k ≥ 2, it is NP-complete to decide whether a given a diversity-seeking jump
game I = (R,S, T,G, λ) admits an equilibrium assignment.

Proof. We give a proof for k = 2; it is straightforward to extend it to k ≥ 2. We can clearly verify if
a given assignment is an equilibrium, so the decision problem belongs to NP. To show hardness, we
will use a reduction from the Independent Set (IS) decision problem [25]. Recall that an independent
set in a graph is a subset of vertices of the graph such that no two vertices in the subset are connected
by an edge. An instance of the IS problem is an undirected graph H = (X,Y ), where X and Y are
the set of vertices and edges respectively, and an integer s; it is a yes-instance if and only if H has
an independent set of size ≥ s. We construct a diversity-seeking jump game I as follows (see also
Figure 1):

1. There are two agent types: red and blue.

2. There are a total of 8s + 16 agents; s + 1 of them are strategic red agents, 2s + 4 are stubborn
red agents, and 5s+ 11 are stubborn blue agents.

3. The topology G = (V,E) consists of two components G1 and G2, as follows:

• G1 = (V1, E1), whereV1 = X∪W , |W | = 7s+1, andE1 = Y ∪{{v, w} : v ∈ X,w ∈ W};
5s+ 1 stubborn blue agents and 2s stubborn red agents are placed at the nodes of W .

• G2 has exactly three nodes (denoted x, y, and z) available to strategic agents, while all
the other nodes are occupied by stubborn agents. Node x is connected to y and one blue
agent. Node y is connected to six nodes, containing one red agent and five blue agents.
Finally, z is connected to 7 nodes containing 4 blue agents and 3 red agents. Observe that
when the other two nodes in G2 are unoccupied, x, y, and z offer utilities 1, 5/6 and 4/7,
respectively.

• There is an edge between two (arbitrarily chosen) nodes containing stubborn agents in G1

and G2, thereby connecting the graph.
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Figure 1: G1 and G2 are the two components of G, connected by a single edge. Every node in H
is connected to every node in W . The blue (red) triangle connected to x denotes a set of neighbors
of x with blue (red) agents, and the number next to a triangle denotes the number of nodes in the
corresponding set.

The main idea of the reduction is as follows: We will show that, if an IS of size ≥ s exists in H ,
then placing s strategic agents at the nodes of the IS and the remaining strategic agent at node x is an
equilibrium assignment in I . Conversely, if no IS of size at least s exists in H , then we will show with
a case analysis that there cannot be an equilibrium assignment in I .

We proceed with the proof that I admits an equilibrium if and only if H has an IS of size at least
s. First, suppose that H contains an IS of size at least s. Consider the following assignment in I : s red
agents occupy the nodes of the IS in X and one red agent occupies node x in G2. We argue this is an
equilibrium. The utility of each agent at a nodes the IS is 5s+1

7s+1 . Note that any remaining empty node in
G1 offers a utility that is at most 5s+1

7s+1 < 1, while the utility of the agent at x is 1. Therefore, the agent
at x does not benefit by moving to an empty node in G1. Also, note that when node x is occupied, the
highest utility a red agent can achieve in G2 is 5/7 by moving to y. We have 5s+1

7s+1 > 5/7, therefore no
agent in G1 has an improving move to an empty node in G2, and the assignment is an equilibrium.

On the other hand, suppose that H does not contain an IS of size at least s. Suppose towards a
contradiction that I admits an equilibrium assignment. There are four possible cases:

1. All available nodes in G2 are empty. Then since there is no IS of size s in H , and therefore in G1,
at least one strategic red agent is adjacent to another strategic red agent and has utility at most
5s+1
7s+2 . Since 5s+1

7s+2 < 1, that agent can increase its utility by moving to node x in G2. Therefore,
this cannot be an equilibrium assignment.

2. Exactly one available node in G2 is occupied by a strategic agent. Then this agent must occupy
x as it provides the highest utility. As in the previous case, since there is no IS of size s, at least
one strategic red agent is adjacent to another strategic red agent in G1 and has utility at most
5s+1
7s+2 . Since 5s+1

7s+2 < 5/7, that agent can improve its utility by moving to node y in G2. Therefore,
this also cannot be an equilibrium assignment.

3. Exactly two available nodes in G2 are occupied. If x and y are occupied, the agent at x has utility
1/2 and is motivated to move to z to get utility 4/7. If x and z are occupied, the agent at z has
utility 4/7 and is motivated to move to y to get utility 5/7. If y and z are occupied, the agent at

7



y has utility 5/6 and is motivated to move to x to get utility 1. In all cases, there is an agent that
wants to move to increase its utility, so this cannot be an equilibrium assignment.

4. All available nodes in G2 are occupied. Every empty node in G1 offers a utility that is at least
5s+1

(7s+1)+(s−2) =
5s+1
8s−1 . Note that the agent at x has utility 1/2 < 5s+1

8s−1 . Therefore, the agent at x is
motivated to move to an empty node in G1. Therefore, this cannot be an equilibrium assignment.

We have shown by contradiction that, if H does not contain an IS of size s, there is no equilibrium
assignment in I . This completes the proof of the NP-hardness.

The proof of the above hardness resilt above relies heavily on the existence of stubborn agents, as
in the proofs of similar results for similarity-seeking jump games in [20]. In a recent paper, Kreisel et al.
[29] showed that deciding the existence of an equilibrium in a similarity-seeking game is NP-complete,
even when all agents are strategic. Their techniques are not immediately applicable to our setting, and
in fact we have not been able to construct a diversity-seeking jump game with only strategic agents
that does not have an equilibrium.

4 Seeking Diversity in Tree Topologies

In this section, we consider diversity-seeking jump games with tree topologies. We first show that
IRD do not always converge such games, even with a single empty node. However, there is always
an equilibrium assignment; we give a polynomial-time algorithm to find one. In contrast, recall that
similarity-seeking games do not always admit an equilibrium when the topology is a tree [20]. In
Section 4.1, we will show that the game is a potential game when the topology is a spider graph (i.e.,
a tree in which there is a single node of degree at least 3).

Figure 2: An IRC in a game with a tree topology. The blue (red) triangle connected to x denotes a set of
neighbors of x with blue (red) agents, and the number next to a triangle denotes the number of nodes
in the corresponding set.

Theorem 4.1. For every k ≥ 2, there exists a diversity-seeking jump game I = (R,S, T,G, λ) such that
G is a tree and I is not a potential game.

Proof. Figure 2 shows an IRC in a diversity-seeking jump game on a tree with a single empty node and
two types of agents. It is easy to verify that each move shown is improving.
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Figure 3: An equilibrium assignment for an instance with k = 3. The red agents are placed first, starting
at level 5, and ending at level 2, followed by yellow, and blue agents respectively. By convention, r is
on level 0.

In fact, if the agents at the nodes of the triangles in Figure 2 are all stubborn and only the agents that
occupy x, y or z are strategic, then this diversity-seeking jump game does not admit an equilibrium.
Thus, equilibria are not guaranteed to exist when the topology is a tree and there exist stubborn agents.
Nevertheless, we show that there is always an equilibrium assignment when the topology is a tree if all
agents are strategic; we give an algorithm to find such an assignment. As a warm-up, we first consider
the case where the tree has a single empty node.

Theorem 4.2. Given k ≥ 2, every diversity-seeking jump game (R,S, T,G, λ) where G is a tree, |V | =
|R|+ 1 and S = ∅ admits an equilibrium assignment.

Proof. Pick a node r of degree one to be the root of the tree and call its unique neighbor as v. Assume
the agents are pre-ordered by type. The algorithm proceeds in two phases. In the first phase, starting
with the deepest odd level in the tree, place agents in the current level ℓ, moving from left to right.
When the current level is completely filled, skip a level, go to level ℓ − 2 and repeat, until the unique
node v in level 1 is filled, say by an agent of a type Tx: For convenience, we call it a red agent. This
ends the first phase. In the second phase, move downwards from level 2, filling even levels from left to
right.

See Figure 3 for an example. At the end of this procedure, only the root node is empty. Furthermore,
all non-red agents are guaranteed to have utility one, and have no incentive to move. There may be
red agents that have utility less than 1, but they cannot improve their utility by moving to the root.
This proves that the assignment is an equilibrium.

For the case where the number of empty nodes is more than 1, we first find a connected sub-tree
with one more node than the number of agents, and find an equilibrium assignment for the sub-tree
using the method of Theorem 4.2. Next we adjust this assignment to get an assignment for the original
tree by moving some agents to empty nodes in the original tree that were not present in the sub-tree;
this ensures that no agent will have an improving move. Before we provide the full proof, we present
some few easily seen properties of the assignment for trees described above:

(P1) Every non-red agent is either placed on odd levels or on even levels but not both. This implies
that for every non-red agent A placed on a particular level, there are no agents of its own type
in the previous or next levels.
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(P2) Except possibly for two red agents, that we call mixed agents, a red agent has either all red
children1 or all non-red children. This is because there are only two levels that can have both
red and non-red agents, namely the levels where we start and stop placing red agents.

(P3) Every red agent with a non-red parent can only have non-red children, and therefore has utility
one. To see this, note that the parent and the children of this red agent are either both on odd
levels or both on even levels. Additionally, note that red agents are the last agents to fill the odd
levels and the odd levels are filled from bottom to top so if an odd level does not contain all red
agents, no odd level below that level contain red agents. Similarly, even levels are filled from top
to bottom, with red agents being the first to fill them, so if an even level does not contain all red
agents, no even level below that level contain red agents.

We are now ready to show that there is always an equilibrium when the topology is a tree.

Theorem 4.3. Given k ≥ 2, every diversity-seeking jump game (R,S, T,G, λ) where G is a tree, |V | >
|R|+ 1 and S = ∅ admits an equilibrium assignment.

Proof. Given the tree G = (E, V ), fix a root node of degree one, and repeatedly remove leaf nodes
until we have a tree with exactly |R|+ 1 nodes, call it G′ = (E′, V ′). Let CG′ , denote the equilibrium
assignment in G′ as described in the proof of Theorem 4.2. As before, let us call the type of the agent
assigned to the unique neighbor of the root a red agent.

Now consider the original tree G, and consider the same placement of agents as in CG′ , call this
assignment CG. Clearly the utility of agents in CG is exactly the same as their utility in CG′ , as
acquiring new empty neighbors does not change an agent’s utility. From Property (P1), all non-red
agents have utility 1. As in CG′ , there may be some red agents that have utility less than one in CG,
but in G, they may have improving moves available, i.e., CG may not be an equilibrium.

Next we show how to convert CG into an equilibrium assignment, by changing the locations of
some agents one by one in such a way that the agent being moved increases its utility and no other
agent decreases its utility. We first do some preprocessing with the children of mixed agents. By
property (P2), there are at most 2 red mixed agents. Let A be such an agent; if there are two, we call
the agent closer to the root A and the one further from the root B. Notice that A and B must be on
adjacent levels. Suppose not, then notice that the level below A and the level on which B is located
are both odd or both even. Then B is either on an odd level below the level we start placing red agents
or on an even level below the level we finish placing the red agents. In both cases, B cannot contain
red agents, therefore A and B must be on adjacent levels.

For the preprocessing, we make a local adjustment to the placement of children of A. Let S1 be the
set of red children of A that are adjacent to at least one more agent, and let S2 be its non-red children
with no other agents as neighbors. If S2 = ∅, and the second mixed agent B exists and is a child of
A, we swap2 the position of B with any non-red child of A. Note that the non-red child in its new
position still has utility 1, as do all non-red children of A in this case. Another consequence of this
swap is that B is no longer a mixed agent, so there is only one mixed agent in the tree.

If S2 ̸= ∅, we swap the positions of min(|S1|, |S2|) agents in S2 with the agents in the other set.
If B is a child of A, then we make sure that B participates in the swap.

Claim 4.4. After the preprocessing operation, at least one of the following two conditions holds:

1. All red children of A have utility 0.

2. All of A’s non-red children have children of their own.
1For brevity, we say an agent is a child (neighbor/parent) of another agent to mean an agent is placed at a node that is

the child (neighbor/parent) of the node where the other agent is placed.
2Note that this is a jump game, so the swap referred to here is not to be confused with improving response dynamics.
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Figure 4: Swapping the red children adjacent to at least one more agent (S1) with non-red children
with no other agents as neighbors (S2). (a): |S1| ≤ |S2|. (b): |S1| > |S2|. Red dotted arrows show the
swaps.

Proof. If |S1| ≤ |S2|, by (P2), the agents in S2 that swapped positions now have children of a different
color than themselves, and still have utility 1. The remaining agents in S2 have no neighbors other
than A and retain utility 1. Also, all the red children of A, have no neighbors other than A and have
utility 0. See Figure 4 (a).

Otherwise, if |S1| > |S2|, all non-red children ofA have children of a different type than themselves
and, by property (P1), have utility 1. So, if A moves from its position, these non-red agents would still
have utility 1. Some of the red children of A may have red children, and others may have non-red
children. See Figure 4 (b).

If there remains another mixed agent in the tree, then this agent B is not a child of A, and we
perform the same pre-processing operation for B’s children as well.

We now create an ordered list of candidate red agents to move: starting with level 1, moving down
level by level, we put in red agents that have utility 0 in this list. It remains to consider agents of utility
strictly between 0 and 1: these are either agents that are mixed, or their children red agents who have
non-red children.

First consider agent A. If Condition (1) holds, then all of A’s red children are already in the list of
candidates. If they all move, then A’s utility will change to 1, so we do not put A into the candidate list.
Otherwise, if Condition (2) of Claim 4.4 holds, we put A in the list of candidates. Next, suppose there
was a second mixed agent B. As observed earlier, B cannot be a child of A. Because our placement
algorithm for the tree G′ placed agents from left to right, it can be verified that all of A’s red children
can only have red children (see Figure 5). Therefore, condition (1) of Claim 4.4 is satisfied, and A was
not placed in the candidate list. We follow the same procedure to decide if B should be placed in the
candidate list. We see that there is at most one mixed agent in the candidate list, and it is the last agent
in the list.

Next we describe where to move the candidate agents. Before we move any agent, note that all
empty nodes have the property that they are adjacent to at most a single node containing an agent. This
follows from the manner in which G′ was extracted from G by repeatedly removing leaves. Therefore,
all empty nodes either offer utility 0 or 1 to a red agent. When moving agents, we will maintain this
property of the set of empty nodes.

Call a node available if it is empty and adjacent only to a non-red agent, and perhaps other empty
nodes. Observe that if a candidate red agent moves to an available node, we have the following prop-
erties: (a) the utility of the candidate increases to 1; (b) the utility of all other agents stays the same
or increases; (c) the number of available nodes decreases by 1; (d) the newly vacated node is adjacent

11



Figure 5: All the red children of A can only have red children (if any) : (a) B is on the even level at
which we finish placing the red agents, then all the red agents that are to the right of B on the same
level (thus children of A) can only have red children (if any) (b) B is on the odd level at which we start
placing the red agents, then all the red agents that are to the left of B on the same level (thus children
of A) can only have red children (if any). The cross hashed levels may or may not exist, but if they do,
they are occupied by non-red agents.

only to red agents and possibly empty nodes3 and therefore offers utility 0 to any red agent; (e) any
empty neighbor of the newly occupied node offers utility 0 to any red agent. Thus, we maintain the
desired property of empty nodes.

We are now ready to describe our procedure to convert CG into an equilibrium assignment. We
repeatedly take the first candidate from the ordered list of candidates and move it to an available node.
This process ends when there are no more available nodes or there are no more candidates. If there
are no more available nodes, we have an equilibrium assignment, as all other empty nodes offer utility
0 to a red agent. If there are no more candidates, then all red agents have utility 1, and we have an
equilibrium assignment.

4.1 Spider Topologies

A spider graph, also called a starlike graph, is a tree in which all nodes besides one, called the center
node c, have degree of at most 2 (see Figure 6 for an example); the degree of c is δ(c) ≥ 3. We will show
that any diversity-seeking jump game in which the topology is a spider graph with a single empty
node is a potential game. Unfortunately the function Φ from Definition 2 is not a generalized ordinal
potential function for any value of m ∈ (0, 1), as there are some improving moves for agents that
increases the value of the function. However, we will show that any long enough sequence of improving
moves is guaranteed to result in a lower value of the function. This will suffice to show convergence of
IRD.

We start with a lemma providing upper bounds on the change in potential caused by different types
of moves.

Lemma 4.5. For k ≥ 2, in every diversity-seeking jump game (R,S, T,G, λ) whereG is a spider graph,
for an improving move of an agentA of type T in assignment C0 that results in assignment C1, we have:

3Property (d) is not true if a mixed agent vacates its spot, but this happens only in the last step, when there are no more
candidates.
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1. Φ(C1)− Φ(C0) ≤ −m if the improving move does not involve the center node;

2. Φ(C1)−Φ(C0) ≤ 2m− 1+nT (c, C1)−mδ(c) if the improving move is from a degree-2 node to
the center node;

3. Φ(C1)−Φ(C0) ≤ m−mδ(c)+nT (c, C0) if the improving move is from a leaf to the center node;

4. Φ(C1)−Φ(C0) ≤ 1− 2m+mδ(c)− nT (c, C0) if the improving move is from the center node to
any other node.

Proof. We consider the following exhaustive cases:

1. The improving move does not involve the center node c.

(a) Agent A jumps from a degree-2 node to another degree-2 node:
i. uA(C0) = 0 and uA(C1) =

1
2 . Then Φ(C1)− Φ(C0) = (1 + 2m)− (2 + 2m) = −1.

ii. uA(C0) =
1
2 and uA(C1) = 1. Then Φ(C1)− Φ(C0) = (2m)− (1 + 2m) = −1.

iii. uA(C0) = 0 and uA(C1) = 1 and source and target nodes are not adjacent. Then
Φ(C1)− Φ(C0) = (2m)− (2 + 2m) = −2.

iv. uA(C0) = 0 and uA(C1) = 1 and source and target nodes are adjacent. Then Φ(C1)−
Φ(C0) = (2m)− (2m+ 1) = −1.

(b) Agent A jumps from degree-2 node to leaf node:
i. uA(C0) = 0 and uA(C1) = 1. Then Φ(C1)− Φ(C0) = (2m)− (2 +m) = m− 2.

ii. uA(C0) =
1
2 and uA(C1) = 1. Then Φ(C1)− Φ(C0) = (2m)− (1 +m) = m− 1.

(c) Agent A jumps from leaf node to degree-2 node:
i. uA(C0) = 0 and uA(C1) =

1
2 . Then Φ(C1)− Φ(C0) = (m+ 1)− (1 + 2m) = −m.

ii. uA(C0) = 0 and uA(C1) = 1 and source and target nodes are not adjacent. Then
Φ(C1)− Φ(C0) = (m)− (1 + 2m) = −1−m.

iii. uA(C0) = 0 and uA(C1) = 1 and source and target nodes are adjacent. Then Φ(C1)−
Φ(C0) = (m)− (2m) = −m.

(d) Agent A jumps from leaf node to leaf node: Φ(C1)− Φ(C0) = (m)− (1 +m) = −1.

2. The improving move is from a degree-2 node to center node:

(a) uA(C0) =
1
2 and uA(C1) >

1
2 : Φ(C1)− Φ(C0) = (2m+ nT (c, C1))− (1 +mδ(c)).

(b) uA(C0) = 0 and uA(C1) > 0 and source and target nodes are not adjacent: Φ(C1) −
Φ(C0) = (2m+ nT (c, C1))− (2 +mδ(c)).

(c) uA(C0) = 0 and uA(C1) > 0 and source and target nodes are adjacent: Φ(C1)−Φ(C0) =
(2m+ nT (c, C1))− (1 +mδ(c)).

3. The improving move is from a leaf to center node:

(a) Source and target nodes are not adjacent: Φ(C1)−Φ(C0) = (m+nT (c, C1))−(1+mδ(c)).
(b) Source and target nodes are adjacent: Φ(C1)− Φ(C0) = (m+ nT (c, C1))− (mδ(c)).

4. The improving move is from center node to any other node:

(a) Agent A jumps from center node to degree-2 node:
i. uA(C0) <

1
2 anduA(C1) =

1
2 . ThenΦ(C1)−Φ(C0) = (1+mδ(c))−(nT (c, C0)+2m).
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ii. uA(C0) < 1 and uA(C1) = 1 and source and target nodes are not adjacent. Then
Φ(C1)− Φ(C0) = (mδ(c))− (nT (c, C0) + 2m).

iii. uA(C0) < 1 and uA(C1) = 1 and source and target nodes are adjacent. Then Φ(C1)−
Φ(C0) = (mδ(c))− (nT (c, C0) + 2m).

(b) AgentA jumps from center node to leaf node: Φ(C1)−Φ(C0) = (mδ(c))−(nT (c, C0)+m).

Tables 1 and 2 provide a more detailed counting of the change in potential based on the source and
target node of a move.

Type of move Source utility Target utility ∆Φ ≤

degree 2 to degree 2
0 1/2 −1
0 1 −1
1/2 1 −1

degree 2 to leaf 0 1 m− 2
1/2 1 m− 1

Leaf to degree 2 0 1/2 −m
0 1 −m

Leaf to leaf 0 1 −1

Table 1: Summary of the change in the potential change when the topology is a spider graph, resulting
from improving moves that do not involve the center node. Note that m < 1/2.

Type of move Source utility Target utility ∆Φ ≤
degree 2 to center (adjacent) 0 > 0 2m− 1 + nT (c, C1)−mδ(c)

degree 2 to center (non-adjacent) 0 > 0 2m− 2 + nT (c, C1)−mδ(c)
1/2 > 1/2 2m− 1 + nT (c, C1)−mδ(c)

Center to degree 2 < 1/2 1/2 1− 2m+mδ(c)− nT (c, C0)
< 1 1 −2m+mδ(c)− nT (c, C0)

Leaf to center (adjacent) 0 > 0 m+ nT (c, C1)−mδ(c)
Leaf to center (non-adjacent) 0 > 0 m− 1 + nT (c, C1)−mδ(c)

Center to leaf < 1 1 −m+mδ(c)− nT (c, C0)

Table 2: Summary of change in when the topology is a spider graph, resulting from improving moves
that involve the center node. Note that m < 1/2.

For the remainder of the section we will assume that m < 1
2 . Lemma 4.5 then implies that any

improving move of an agent that does not involve the center node always decreases the value of the
potential function Φ. However, an improving move of an agent that moves to or out of the center can
increase the potential by a non-constant amount. The change in potential is related to the degree of
the center node and the number of neighbors of the same type as the agent that moved to or from the
center node. We claim, however, that such a move that increases the potential must be followed by
moves that collectively decrease the potential below its value before the move in question, and thus
that the game is a potential game.

Suppose towards a contradiction that there is an IRC. Consider the smallest IRC of length p, and
denote the assignments that it involves by C0, C1, . . . Cp−1. Since any improving move of an agent
that does not involve the center node always decreases the potential, our IRC must involve moves to
or out of the center node. Since every move of an agent A to the center node must be followed by a
move of agent A out of the center node, we calculate the change in potential resulting from the set of
moves that includes the move to the center, move out of the center, and any moves in between. Let
Cj0 , Cj1 , . . . Cjw , be the assignments in the cycle in which the center node c is unoccupied, listed in
increasing order. Furthermore, define C+

ji
, C−

ji
, where 0 ≤ i ≤ w to be the immediate successor and
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predecessor of Cji . We will show that for every i, the difference in potential between Cji and Cji+1

is always at most 0; For readability, we use i+ 1 to mean (i+ 1) mod (w + 1) when referring to the
indices of the assignments. Furthermore, we will show that it impossible for the difference to be 0 for
every such pair, which yields a contradiction to the existence of an IRC.

The following lemma gives an upper bound on the change in potential caused by moves inbetween
a move of an agent A to the center node and the subsequent move out of the center node, that is
between the assignments C+

ji
and C−

ji+1
, for any 0 ≤ i ≤ w. Let the center node c be occupied by an

agent A of type T in both these assignments and all assignments in between. Assume that A moved
from a source node s in Cji to the center node and subsequently moved to a target node t in Cji+1 . Let
∆T = nT (c, C

−
ji+1

)− nT (c, C
+
ji
).

Lemma 4.6. We have

Φ(C−
ji+1

)− Φ(C+
ji
) ≤


−|∆T | if s, t are not adjacent to c (1)
−|∆T |+m if only t is adjacent to c (2)
−|∆T |+m− 1 if only s is adjacent to c. (3)
−|∆T |+ 2m− 1 if s, t are adjacent to c. (4)

Proof. We will start with the easiest case when neither s nor t is adjacent to the center. It is clear that
every change in the number of neighbors of the center that are occupied by agents of type T requires
a pair of improving moves, an agent of type T to move out of the neighborhood and an agent of some
other type to move to its place (thereby decreasing the number of neighbors of type T ), or an agent of a
different type to move out of the neighborhood and an agent of type T to move to its place (increasing
the number of neighbors of type T ). From Table 1, we get an upper bound on the change in potential
of each such pair of moves. First we note that it is impossible for both such moves to be (leaf to degree
2), or both such moves to be (degree 2 to leaf). It is straightforward to verify that all other pairs of
moves have a net change in potential of at least −1. Inequality (1) follows.

Now suppose that s is not adjacent to the center, but t is. Then, the agent B at node t in the
assignment before C−

ji+1
moved out to leave t vacant in C−

ji+1
. If B is not of type T , it did not contribute

to a change in the number of neighbors of type T of the center, and the same reasoning as in the
previous case applies to give us Inequality (1), which implies Inequality (2). If B instead is of type T ,
then its move out of t does change the number of neighbors of type T , but does not have a matching
move back to the center. Noting that t cannot be a leaf since A would not jump to it in the next step,
the move of B out of t causes a potential change of at most m − 1 (using Table 1). Together with the
potential change due to the remaining ∆T − 1 pairs of improving moves, we get Inequality (2).

If s is adjacent to the center and t is not, observe that the agent that moves to s immediately after
A moves to the center is not of type T and does not contribute to the change in neighbors of type T .
The change in the potential resulting from this improving move is at most m− 1 as shown in Table 1,
and together with the change in potential caused by ∆T pairs of improving moves as in the first case,
we get Inequality (3).

Last we consider the case when both s and t are adjacent to the center. The first move does not
contribute to the change in neighbors of type T and changes the potential by at most m − 1, while
the last move may contribute to this change, and in that case, would not have a matching move of an
agent back to a neighbor of the center. The total change in potential is at most m−1 for the first move,
at most m− 1 for the last move, and |∆T | − 1 for pairs of improving moves contributing to change in
neighbors of type T . Thus, we get Inequality (4).

Now we consider the difference in potential between Cji+1 and Cji . We analyze separately the
cases when s is a degree-2 node or a leaf node.

Lemma 4.7. If s is a degree-2 node, then Φ(Cji+1)− Φ(Cji) < 0
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Proof. The source utility of A at node s could be either 0 or 1/2 and the target utility at node t could
be 1/2 or 1. We consider all possible combinations below:

1. uA(Cji) = 0, uA(Cji+1) = 1/2 and the source node s is not adjacent to the center. In assign-
ment Cji , agent A is located at s and has two neighbors of the same type. Since uA(Cji) = 0,
uA(C

+
ji
) > 0. Eventually agent A moves out of the center node to the target node t to reach

assignment Cji+1 where it has a neighbor of the same type and a neighbor of different type. Note
that t must be a degree-2 node and it cannot be adjacent to the center node. Since uA(Cji+1) =
1/2, uA(C−

ji+1
) < 1/2. Therefore, in assignment C−

ji+1
, more than half of the neighbors of agent

A are of type T . From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) + 2m− 2 (5)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

) + 1− 2m. (6)

Then, since any improving move between C+
ji

and C−
ji+1

decreases the potential as shown in
Lemma 4.5, we obtain an upper bound on the net potential change from Cji to Cji+1 by adding
Inequalities (1), (5), and (6):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

)− 1− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0.

2. uA(Cji) = 0, uA(Cji+1) = 1/2, and the source node s is adjacent to the center. In assignment
Cji , agent A is located at s and is adjacent to an agent of the same type and the empty center
node. Since uA(Cji) = 0, uA(C+

ji
) > 0. Eventually agent A moves out of the center node to

node t to reach assignment Cji+1 where it has a neighbor of the same type and a neighbor of
different type. Note that t must be a degree-2 node and it cannot be adjacent to the center node.
Since uA(Cji+1) = 1/2, uA(C−

ji+1
) < 1/2. Therefore, in assignment C−

ji+1
, more than half of the

neighbors of agent A are of type T . From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nTx(c, C

+
ji
) + 2m− 1 (7)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nTx(c, C
−
ji+1

) + 1− 2m. (8)

Then, since any improving move between C+
ji

and C−
ji+1

decreases the potential as shown in
Lemma 4.5, we obtain an upper bound on the net potential change from Cji to Cji+1 by adding
Inequalities (3), (7), and (8):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

) +m− 1− |(nT (c, C
+
ji
)− nTx(c, C

−
ji+1

))| < 0.

Note that, if nT (c, C
+
ji
) > nT (c, C

−
ji+1

), then the number of agents of type T that are adjacent to
the center node should have decreased, i.e., replaced by agents of other types. Each replacement
requires a pair of moves: a move out of the neighborhood by an agent of type T and a move into
the neighborhood by an agent of other type. As such, the agent that moves to s after A moves to
the center is not part of the replacement pair and causes an additional decrease in the potential.
Therefore, the net potential is negative.

16



3. uA(Cji) = 0 and uA(Cji+1) = 1. In assignment Cji , agent A is located at s and either both its
neighbors are of same type, or it is adjacent to an agent of the same type and the empty center
node. Since uA(Cji) = 0, uA(C+

ji
) > 0. Eventually agent A moves out of the center node to

node t to reach assignment Cji+1 where it has a neighbor of different type. Since uA(Cji+1) = 1,
uA(C

−
ji+1

) < 1. From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) + 2m− 1 (9)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

)−m. (10)

Since any improving move betweenC+
ji

andC−
ji+1

decreases the potential as shown in Lemma 4.5,
we obtain an upper bound on the net potential change from Cji to Cji+1 by adding Inequali-
ties (2), (9), and (10):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

) + 2m− 1− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0.

4. uA(Cji) = 1/2 and uA(Cji+1) = 1/2. In assignment Cji , agent A while located at s has a
neighbor of the same type and a neighbor of different type. Since uA(Cji) = 1/2, uA(C+

ji
) >

1/2. Therefore, in assignment C+
ji

, less than half of the neighbors of agent A are of type T .
Eventually agent A moves out of the center node to the target node t to reach assignment Cji+1

where it has a neighbor of the same type and a neighbor of different type. Note that t must be a
degree-2 node. Since uA(Cji+1) = 1/2, uA(C−

ji+1
) < 1

2 . Hence, in assignment C−
ji+1

, more than
half of the neighbors of agent A are of type T , and we obtain

nT (c, C
+
ji
) < nT (c, C

−
ji+1

). (11)

We claim that the net potential change is negative for improving moves that leads from Cji to
C+
ji

, from C−
ji+1

to Cji+1 , and from C+
ji

to C−
ji+1

. Since agent A must improve its utility from 1/2

in Cji to strictly more than 1/2 in C+
ji

, from Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) + 2m− 1. (12)

Similarly, since agent A must improve its utility from strictly less than 1/2 in C−
ji+1

to 1/2 in
Cji+1 , from Table 2, we obtain:

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

) + 1− 2m. (13)

So, since all any improving move between C+
ji

and C−
ji+1

, decreases the potential as shown in
Lemma 4.5, we obtain an upper bound on the net potential change from Cji to Cji+1 by adding
Inequalities (1), (12), and (13):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

)− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0

where the last inequality follows from Inequality (11).

5. uA(Cji) = 1/2 and uA(Cji+1) = 1. In assignment Cji , agent A while located at s has a neighbor
of the same type and a neighbor of different type. Since uA(Cji) =

1
2 , uA(C+

ji
) > 1

2 . Eventually
agentAmoves out of the center node to node t to reach assignmentCji+1 where it has a neighbor
of different type. Since uA(Cji+1) = 1, uA(C−

ji+1
) < 1. From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) + 2m− 1 (14)
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and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

)−m. (15)

Since any improving move betweenC+
ji

andC−
ji+1

decreases the potential as shown in Lemma 4.5,
we obtain an upper bound on the net potential change from Cji to Cji+1 by adding Inequali-
ties (2), (14), and (15):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

) + 2m− 1− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0.

This completes the proof for the case when there exists an assignment Cji where A occupies a degree-2
node.

Lemma 4.8. If s is a leaf node, then Φ(Cji+1)−Φ(Cji) ≤ 0. Furthermore, Φ(Cji+1)−Φ(Cji) = 0 if s
is adjacent to the center and uA(Cji+1) = 1/2.

Proof. The source utility of A at node s should be 0 and the target utility at node t could be 1/2 or 1.
We consider the four possible cases below:

1. uA(Cji+1) = 1 and s is not adjacent to the center. In this case, agent A moves out of the
center node to node t to reach assignment Cji+1 where it has a neighbor of different type. Since
uA(Cji+1) = 1, uA(C−

ji+1
) < 1. From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) +m− 1 (16)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

)−m. (17)

Since any improving move betweenC+
ji

andC−
ji+1

decreases the potential as shown in Lemma 4.5,
we obtain an upper bound on the net potential change from Cji to Cji+1 by adding Inequali-
ties (2), (16), and (17):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

) +m− 1− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0.

2. uA(Cji+1) = 1 and s is adjacent to center. In this case, agent A moves out of the center node to
node t to reach assignment Cji+1 where it has a neighbor of different type. Since uA(Cji+1) = 1,
uA(C

−
ji+1

) < 1. From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) +m (18)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

)−m. (19)

Since any improving move betweenC+
ji

andC−
ji+1

decreases the potential as shown in Lemma 4.5,
we obtain an upper bound on the net potential change from Cji to Cji+1 by adding Inequali-
ties (4), (18), and (19):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

) + 2m− 1− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0.
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3. uA(Cji+1) = 1/2 and s is not adjacent to center. In this case, agent A moves out of the center
node to node t to reach assignment Cji+1 where it has one neighbor of the same type and one
neighbor of different type. Since uA(Cji+1) = 1/2, uA(C−

ji+1
) < 1

2 . From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) +m− 1 (20)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

) + 1− 2m. (21)

Since any improving move betweenC+
ji

andC−
ji+1

decreases the potential as shown in Lemma 4.5,
we obtain an upper bound on the net potential change from Cji to Cji+1 by adding Inequali-
ties (1), (20), and (21):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

)−m− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| < 0.

(22)

4. uA(Cji+1) = 1/2 and s is adjacent to center. In this case, agent A moves out of the center node
to node t to reach assignment Cji+1 where it has one neighbor of the same type and one neighbor
of different type. Since uA(Cji+1) = 1/2, uA(C−

ji+1
) < 1/2. From Table 2, we obtain:

Φ(C+
ji
)− Φ(Cji) ≤ −mδ(c) + nT (c, C

+
ji
) +m (23)

and

Φ(Cji+1)− Φ(C−
ji+1

) ≤ mδ(c)− nT (c, C
−
ji+1

) + 1− 2m. (24)

Since any improving move betweenC+
ji

andC−
ji+1

decreases the potential as shown in Lemma 4.5,
we obtain an upper bound on the net potential change from Cji to Cji+1 by adding Inequali-
ties (3), (23), and (24):

Φ(Cji+1)− Φ(Cji) ≤ nT (c, C
+
ji
)− nT (c, C

−
ji+1

)− |(nT (c, C
+
ji
)− nT (c, C

−
ji+1

))| ≤ 0.

The proof is complete.

We are now ready to prove the main result of this section.

Theorem 4.9. For k ≥ 2, every diversity-seeking jump game (R,S, T,G, λ) where G is a spider graph
and |V | = |R ∪ S|+ 1 is a potential game.

Proof. Suppose instead that there is a game that is not a potential game. Then, there exists an IRC, and
the net potential change of the moves in this cycle must be 0. By Lemma 4.5, every improving move
that does not involve the center node decreases the potential. It follows that the cycle must involve
moves to and out of the center node. Let Cj0 , Cj1 , . . . Cjw , be the assignments in the cycle in which
the center node c is empty, listed in increasing order. Lemmas 4.7 and 4.8 show that for every i, the
difference in potential between Cji and Cji+1 is at most 0. Since the potential never increases, and the
net potential change must be 0, it must in fact be that, for every i, Φ(Cji+1) − Φ(Cji) = 0. It follows
from Lemma 4.8 that, for every i, an agent moves to the center node from a leaf node adjacent to the
center, and subsequently moves out to a degree-2 node to get a utility 1/2.

Assume without loss of generality that an agent A of type T makes a move from such a leaf node
s neighbor of the center to occupy the center in C+

j0
. Before A moves out of the center node, clearly

no agent of type T would move to s, as it would get a utility 0. It follows that, if every agent that move
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to the center in the cycle is of the same type T , then the number of neighbors of the center of type T
must decrease during the moves comprising the cycle, which is a contradiction.

Therefore, it must be the case that, for some ji, an agentA of type T occupies the center node inC+
ji

,
and an agent B of type T ′ ̸= T occupies the center in C+

ji+1
. By Lemma 4.8, we have uA(Cji+1) = 1/2,

therefore uA(C
−
ji+1

) < 1/2. Since B is of a different type to A, it must be that uB(C+
ji+1

) > 1/2.
Since the change in potential between Cji+1 and Cji+2 is also 0, by Lemma 4.8, it must be that B

moves to a node t to get a utility 1/2, and thus uB(C−
ji+2

) < 1/2. This means that the number of agents
of type T ′ that occupy the nodes adjacent to the center must have increased, that is, nT ′(c, C+

ji+1
) −

nT ′(c, C−
ji+2

) < 0. Now, as in the proof of case 3 in Lemma 4.8, we have:

Φ(Cji+2)− Φ(Cji+1) ≤ nT ′(c, C+
ji+1

)− nT ′(c, C−
ji+2

)− |(nT ′(c, C+
ji+1

)− nT ′(c, C−
ji+2

))| < 0,

which is a contradiction. As such, there can be no cycle in the assignment graph, and we conclude that
the game must be potential.

We remark that our proof assumes that there is a single empty node. It is unclear what happens
when there are more empty nodes in the graph. In contrast to the above result, the similarity-seeking
jump games studied in [20] are not potential; see the example given in Figure 6.

Figure 6: An IRC in a spider graph with similarity-seeking strategic agents.

5 Networks of Bounded Degree

In this section, we consider diversity-seeking jump games on networks of fixed degree. We first show
that diversity-seeking jump games are potential games whenever the topology is a regular graph and
there is there is a single empty node.

Theorem5.1. For any k, δ ≥ 2, every diversity-seeking jump game (R,S, T,G, λ)whereG is a δ-regular
graph and |V | = |R ∪ S|+ 1 is a potential game.

Proof. Assume that there are no stubborn agents. We show that the function Φ from Definition 2 is
a generalized ordinal potential function. Consider an improving move of an agent A in assignment
C0 and call the resulting assignment C1. If A does not move to a neighboring node, then we have
uA(C0) = x0/δ and uA(C1) = x1/δ, where uA(C0) < uA(C1) and therefore x0 < x1. Hence,

Φ(C1)− Φ(C0) = mδ + (δ − x1)− (δ − x0)−mδ = x0 − x1 < 0.
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It is easy to verify that the difference in potential is the same if A moves to a neighboring empty node.
This shows that Φ is a generalized ordinal potential function (for any value of m ∈ (0, 1)) which
completes the proof for the case where there are no stubborn agents. By Lemma 2.1, the game is also
a potential game when S ̸= ∅.

Theorem 5.1 does not generally extend to the case where there are more empty nodes in the topol-
ogy. We show next that when there are 4 or more empty nodes, there can be IRCs in the dynamics.

Theorem 5.2. For every δ ≥ 4 and k ≥ 2, there exists a diversity-seeking jump game I = (R,S, T,G, λ)
where G is a δ-regular graph and |V | = |R ∪ S|+ δ such that I is not a potential game.

Proof. For δ = 4, we show an IRC in a regular graph of degree 4 as depicted in Figure 7. It is easy to
verify that the moves shown are improving ones. Indeed, in the first move, the utility of the red agent
improves from 0 to 1/2. In the second move, the utility of the blue agent improves from 3/4 to 1. In
the third move, the utility of the red agent improves from 2/3 to 3/4. In the next three moves, the red
and blue agents interchange roles, with the same changes in utilities.

We now give an inductive argument for the case of δ > 4. Suppose inductively that there is an
IRC in game I on a δ-regular graph G for some δ ≥ 4. We now construct a (δ + 1)-regular graph H
by creating a duplicate of graph G called G′ and connecting every node in G′ to its counterpart in G.
Consider now the (δ + 1)-regular graph G ∪G′, and the following placement of agents. We keep the
same assignment of agents in G. The counterpart in G′ of the node containing the moving red agent
has no agents assigned to it, while all other nodes in G′ are assigned yellow agents. It can be verified
that the same IRC exists in this graph for the same red agent and blue agent visiting the same nodes as
in G. Indeed, in the first move, the utility of the red agent improves from 0 to d−3

d−2 . In the second move,
the utility of the blue agent improves from d−1

d to 1. In the third move, the utility of the red agent
improves from d−2

d−1 to d−1
d . As before, in the next three moves, the red and blue agents interchange

roles, with the same changes in utilities. This completes the inductive argument.

Note that there is a gap between the results of Theorems 5.1 and 5.2. The question of whether
diversity-seeking jump games are potential games in regular graphs of degree 3, or regular graphs of
degree 4 with 2 or 3 empty nodes remains open. Finally, we remark that an IRC on a regular graph
with k = 2 can be constructed from the tree shown in Figure 2 but the number of empty nodes would
be greater than 4.

Next, we consider topologies of maximum degree 2 (that may not be regular), and show that, re-
gardless of the number of empty nodes, any diversity-seeking jump game is a potential game.

Theorem 5.3. For k ≥ 2, every diversity-seeking jump game (R,S, T,G, λ) where G is a graph of
maximum degree 2 is a potential game.

Proof. Assume that there are no stubborn agents and there are at least 3 nodes in G. Consider an
improving move of an agent A in assignment C0 that leads to assignment C1. Suppose A moves from
node s (in C0) to node t (in C1). We first consider the case where s and t are neighbors: If s has degree
1 and t has degree 2, since this is an improving move for A, t’s other neighbor must have an agent of
a different type from A, and thus Φ(C1) − Φ(C0) = −m. If, instead, s has degree 2 and t has degree
2, it must be that A’s other neighbor in C0 is of the same type as A or empty, while t is adjacent to an
agent of a different type than that of A. Thus, Φ(C1)− Φ(C0) ≤ −m.

Next, we look at the cases where s and t are not neighbors:

• s and t have degree 1. Then, s’s neighbor be an agent of the same type asA or it is an empty node,
while t’s neighbor must be an agent of type different than that of A. Hence, Φ(C1)− Φ(C0) ≤
−m.
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Figure 7: An IRC in a regular graph of degree 4 with 4 empty nodes.

• s has degree 1 and t has degree 2. Then, either A improves its utility from 0 to 1/2 and thus
Φ(C1)− Φ(C0) ≤ 1− 2m, or improves its utility from 0 to 1 and thus Φ(C1)− Φ(C0) ≤ −m.

• s has degree 2 and t has degree 1. Then, either A improves its utility from 0 to 1 and thus
Φ(C1) − Φ(C0) ≤ −m, or improves its utility from 1/2 to 1 and thus Φ(C1) − Φ(C0) =
2m− 1−m = −m− 1.

• s and t have degree 2. Then, either A improves its utility from 0 to 1/2 and thus Φ(C1) −
Φ(C0) ≤ 1 − 2m, or from 0 to 1 and thus Φ(C1) − Φ(C0) ≤ −m, or from 1

2 to 1 and thus
Φ(C1)− Φ(C0) ≤ m− 1.

In all possible cases, Φ(C1) − Φ(C0) < 0 for all values of m ∈ (0, 1). Therefore, Φ is a generalized
ordinal potential function, and the diversity-seeking jump game is a potential game. From Lemma 2.1,
the result is also true when stubborn agents exist.

6 Efficiency at Equilibrium

In this section, we turn our attention to showing welfare guarantees at equilibrium by bounding the
price of anarchy and the price of stability. We show bounds on the price of anarchy for games consisting
of n ≥ 2 strategic agents that are partitioned into k ≥ 2 types. The types might be asymmetric or
symmetric. In the asymmetric case, each type T consists of some number nT ≥ 1 of agents without
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any restriction other than that the types form a partition of the set of all agents. In contrast, in the
symmetric case, each type T consists of the same number nT = n/k of agents. We show that the
price of anarchy is at most n/(k− 1) for asymmetric types and at most k/(k− 1) for symmetric type.
We complement these upper bounds with tight lower bounds, which in some cases are even achieved
in games with a topology as simple as a line. For the price of stability, we provide a lower bound of
65/62 ≈ 1.048 for k = 2 types showing that there are games in which the optimal assignments (in
terms of social welfare) are not always equilibria.

We start be showing the upper bounds on the price of anarchy.

Theorem 6.1. For k ≥ 2 types, the price of anarchy of any diversity-seeking jump game with n agents
is at most n

k−1 if the types are asymmetric, and at most k
k−1 if the types are symmetric.

Proof. Consider an arbitrary game I and denote by C some equilibrium assignment, in which there
is an empty node v that is adjacent to xT agents of type T . Let x =

∑
T xT ≥ 1. First, suppose that

x = xT = 1 for some type T . Then the agents of all types different than T must have utility 1 to not
have incentive to deviate to v, which means that SW(C) ≥

∑
t̸=T nt. Since the maximum utility of

each agent is 1, OPT(I) ≤ n, leading to a price of anarchy of at most n
n−nT

. If the types are asymmetric,
then nT ≤ n − k + 1, and the price of at anarchy is at most n

k−1 . If the types are symmetric, then
nT = n/k, and the price of anarchy is at most k

k−1 .
So, now we assume that x ≥ 2. To not have incentive to deviate to v, any agent of type T that

is adjacent to v must have utility at least
∑

t ̸=T xt

x−1 = x−xT
x−1 , while any agent of type T that is not

adjacent to v must have utility at least
∑

t ̸=T xt

x = x−xT
x , So, the social welfare at equilibrium can be

lower-bounded as follows:

SW(C) ≥
∑
T

(
xT · x− xT

x− 1
+ (nT − xT ) ·

x− xT
x

)
≥ 1

x

∑
T

nT · (x− xT )

= n− 1

x

∑
T

nTxT .

If the types are asymmetric, then nT ≤ n−k+1 for every type T , and the social welfare at equilibrium
is

SW(C) ≥ n− 1

x

∑
T

(n− k + 1)xT = n− (n− k + 1) = k − 1.

If the types are symmetric, then nT = n/k for every type T , and the social welfare at equilibrium is

SW(C) ≥ n− 1

x

∑
T

n

k
xT = n− n

k
= n

k − 1

k
.

Since OPT(I) ≤ n, we conclude that the price of anarchy is at most n
k−1 if the types are asymmetric,

and at most k
k−1 if the types are symmetric.

Next, we investigate under which conditions the upper bounds of Theorem 6.1 are tight. We start
with the case of asymmetric types. We show that for games in which the topology is a line, a better
price of anarchy bound can be shown; in particular, the price of anarchy can be shown to be at most a
function of n that tends to 2, for any number of types and any distribution of agents into types.

Theorem 6.2. The price of anarchy of any diversity-seeking jump game with a line topology and n agents
of k ≥ 2 types is at most 2n

n−1 .
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Proof. Consider an arbitrary game I with a line topology, and let C be some equilibrium assignment.
First, suppose that there is an empty node v in C that is adjacent to only agents of one type, say red.
Then, to not have incentive to deviate to v, the non-red agents must all have utility 1. Observe that
there must exist some red agent with utility at least 1/2; otherwise there would exist some empty node
that is adjacent to non-red agents (since G is a connected line), where the red agents could jump to get
positive utility. So, SW(C) ≥ n − nr + 1/2, where nr is the number of red agents. We consider the
following two cases:

• If nr ≤ ⌊n/2⌋ + 1, then since OPT(I) ≤ n and SW(C) ≥ n − nr + 1/2 ≥ ⌈n/2⌉ − 1/2, the
price of anarchy is at most n

⌈n/2⌉−1/2 . This is at most 2n
n−1 if n is even, and at most 2 if n is odd.

• If nr > ⌊n/2⌋ + 1, then it is not possible to achieve social welfare n since some red agents
cannot have only neighbors of different type. In particular, the maximum possible social welfare
is OPT(I) ≤ 2(n − nr) + 1 = 2(n − nr + 1/2); this can be achieved by creating n − nr pairs
of agents of different type (which, in the optimal assignment, are placed one after the other on
the line) and possibly one more red agent placed at the beginning or the end of the line getting
utility 1. Hence, the price of anarchy is at most 2.

Finally, suppose that the empty node v in C is adjacent to agents of two different types, say red
and blue. Then, to not have incentive to deviate to v, the non-red and non-blue agents must all have
utility 1, the two agents adjacent to v must also have utility 1, and the remaining red and blue agents
must have utility at least 1/2. Therefore, since every agent gets utility at least 1/2 and the maximum
utility is 1, the price of anarchy is at most 2.

We next show that the price of anarchy approaches the upper bound for asymmetric types when
the topology is slightly more general than a line. In particular, we show the following lower bound.

Theorem 6.3. There is a diversity-seeking jump game with a star topology and and n agents of k ≥ 2
asymmetric types such that the price of anarchy at least n−1

k−1 .

Proof. Consider a game with star topology and k ≥ 2 types such that k − 1 types have size 1 while
one type, say red, has size n − k + 1. Any assignment such that the center node of the topology is
occupied by an agent of the first k− 1 types is optimal with social welfare n, whereas the assignment
according to which the center node is occupied by a red agent is an equilibrium with social welfare
k − 1 + k−1

n−1 = (k − 1) n
n−1 . Hence, the price of anarchy is at least n−1

k−1 .

We now turn our attention to the case of games with symmetric types. We first show that for k = 2
symmetric types, a slightly better bound than that of Theorem 6.2 can be shown when the topology is
a line; this bound is a different function of n that again tends to the upper bound of 2 when n becomes
large.

Theorem 6.4. For diversity-seeking jump games with line topology and n agents of k = 2 symmetric
types, the price of anarchy is exactly 2n

n+4 .

Proof. For the lower bound, consider a game with a line topology consisting of n + 1 nodes and n
agents of two types, red (r) and blue (b). In the optimal assignment, the agents occupy the nodes of
the line so that each red agent is followed by a blue agent. This guarantees that every agent has only
neighbors of different type and thus achieves a maximum utility of 1, leading to an optimal social
welfare of n. Now consider the assignment in which the agents are ordered according to their types
as follows: (r, b, b, r, r, . . . , r, r, b, b, r, v, b, r), where v is the empty node. This is an equilibrium since
the empty node is adjacent to a red and a blue agent, and every agent has either only neighbors of
different type (and thus utility 1), or one red and one blue neighbor (and thus utility 1/2); hence,
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no agent would have incentive to jump to the empty node since it only offers utility 1/2. There are
exactly 4 agents that achieve utility 1 and n − 4 agent that achieve utility 1/2, for a social welfare of
(n− 4)/2 + 4 = (n+ 4)/2. Consequently, the price of anarchy is at least 2n/(n+ 4).

For the upper bound, let C be an equilibrium assignment. First observe that, if there is an empty
node v in C that is adjacent to a single agent or two agents of the same type, say red, then it has to be
the case that all blue agents have utility 1, and consequently the same holds for the red agents due to
symmetry, leading to price of anarchy of 1. So, we can assume that v is adjacent to one red agent A and
one blue agent B. Since C is an equilibrium, both A and B must have a neighbor of different type and
utility 1 since otherwise they would jump to v to connect to each other. In addition, since the topology
is a line, there must be at least two more agents with a single neighbor and utility 1; otherwise they
would have utility 0 and incentive to jump to v for a utility of 1/2. Similarly, all remaining agents must
already achieve utility at least 1/2 to not have incentive to jump to v. Hence, the social welfare at any
equilibrium assignment must be at least (n−4)/2+4 = (n+4)/2. Since the maximum possible social
welfare is n, the price of anarchy is at most 2n/(n+ 4).

For games with k ≥ 3 symmetric types and line topology, we show a bound of n
(k−1)n

k
+1/2 which

almost matches the upper bound of k/(k − 1).

Theorem 6.5. For diversity-seeking jump games with a line topology and n agents of k ≥ 3 symmetric
types such that the price of anarchy is exactly n

(k−1)n
k
+ 1

2

.

Proof. For the lower bound, consider a game with a line topology consisting of n+ 1 nodes. Suppose
that the k types are identified by the integers {1, . . . , k}. An optimal assignment is to arrange the
agents so that an agent of type T is followed by an agent of type T + 1, for every T ≤ [k− 1]. Hence,
every agent gets utility 1 for an optimal social welfare of n. Now consider the following assignment:
There is a repeated sequence of agents so that an agent of type T is followed by an agent of type T +1,
for every T ∈ {1, . . . , k − 2}. This sequence is followed by all agents of type k and the last node is
left empty. Clearly, all agents of the first k − 1 types have utility 1 and no incentive to deviate to the
empty node, while there is exactly one agent of type k with utility 1/2 and all others have utility 0. So,
this is an equilibrium with social welfare (k − 1)nk + 1/2, leading to the desired lower bound on the
price of anarchy.

For the upper bound, let C be an equilibrium assignment. We consider the following two cases:

• There is an empty node v in C that is adjacent to a single agent or two agents of the same type,
say red. Observe that all non-red agents must have utility 1 so that they do not have incentive to
deviate to v. In addition, at least one of the red agents must be adjacent to an agent of different
type and thus have utility at least 1/2; otherwise, if all red agents are adjacent only to other red
agents or empty nodes, then there must exist a non-red agent that is adjacent to an empty node
where the red agents would like to jump. Hence, the social welfare of this equilibrium is at least
(k − 1)nk + 1/2. Since the optimal social welfare is at most n, we get the desired upper bound
on the price of anarchy.

• There is an empty node v in C that is adjacent to two agents of different type, say red and blue.
Then all non-red and non-blue agents must have utility 1 so that they do not have incentive
to deviate to v. In addition, both agents that are adjacent to v must have utility 1 to not have
incentive to deviate to v and connect to each other, while all other red and blue agents must
have utility at least 1/2. Hence, the social welfare of this equilibrium is at least (k − 2)nk + 2 +
2
(
n
k − 1

)
· 1
2 = (k − 1)nk + 1 ≥ (k − 1)nk + 1/2, leading to the desired upper bound again.

This completes the proof.
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Figure 8: (a) The topology of the game used to show the lower bound on the price of stability; (b) The
optimal assignment with social welfare 65/12; (c) The best equilibrium assignment with social welfare
62/12.

We conclude this section with a lower bound of 65/62 on the price of stability, showing that the
assignment with optimal social welfare is not always an equilibrium.

Theorem 6.6. There is a diversity-seeking jump game with k = 2 types such that the price of stability is
at least 65/62 ≈ 1.048.

Proof. Consider a diversity-seeking jump game with 2 red agents and 4 blue agents. The topology is as
shown in Figure 8(a). The assignment of the agents in Figure 8(b) is the optimal one with social welfare
65/12, while that in Figure 8(c) is the best equilibrium with social welfare 62/12 ≈ 5.16. We will now
argue that any equilibrium assignment C has social welfare at most 62/12, yielding the desired lower
bound on the price of stability. For simplicity in our notation, for any node v, we will denote by A(v)
the agent that occupies it (if any).

First note that if there is an agent with utility 0, or two agents with utility at most 1/2, then the
social welfare is bounded above by 5, and we are done. So, we can assume that C has the following
two properties: (1) No agent has utility 0, and (2) at most one agent has utility ≤ 1/2. Property (1)
implies immediately a third property: (3) Either node a is empty, or a and b are occupied by agents of
different types. This follows since agent A(a) would have utility 0 if node b is empty, or if both a and
b are occupied by agents of the same type.

Next, observe that if the degree-2 nodes d1 and d2 are occupied by agents of different types, then
either they both have utility 1/2 (violating Property (2)) or one of them has utility 0 (violating Property
(1)). Therefore it must be the case that either one of d1 and d2 is left empty, or both are occupied by
agents of the same type. We consider these two cases separately:

Case 1: d2 is empty; the case where d1 is empty is symmetric. If A(d1) is red, then since it must
obtain utility strictly larger than 0 and one of the agents at a or b must be red by Property (3), it must
be the case that c, e1 and e2 are all occupied by blue agents and have utility at least 1/2, a contradiction
to Property (2). If on the other hand A(d1) is blue, then since either a or b must be occupied by a red
agent by Property (3), e1 and e2 must be occupied by agents of different type,say e1 is occupied by a
red agent and e2 is occupied by a blue agent. However, this means that A(d1) and A(e2) have utility
at most 1/2, a contradiction to Property (2).

Case 2: d1 and d2 are occupied by agents of the same type. If the agents A(d1) and A(d2) are red,
then all the blue agents must be at the remaining nodes, which means that at least one of them must
get utility 0, thus contradicting Property (1). So, the agents A(d1) and A(d2) must both be blue. To
satisfy Properties (1) and (2), either both e1 and e2 are both occupied by red agents, or one of them is
empty and the other is occupied by a red agent.
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• BothA(e1) andA(e2) are red. To satisfy Property (3), since it is not possible to assign different-
type agents at a and b, it has to be the case that a is empty. However, such an assignment cannot
be an equilibrium as the red agents at e1 and e2 have utility less than 1 (since they are connected
to each other) and would jump to a to get utility 1.

• One of e1 and e2 is occupied by a red agent, while the other is empty. Suppose without
loss of generality that e1 is empty and e2 is occupied by a red agent. Since a and b must have
agents of different types due to Property (3), only two assignments are possible. The first one is
when A(a) is blue and A(b) is red. This is the optimal assignment with social welfare 65/12,
which however is not an equilibrium since A(b) has utility 2/3 and would prefer to deviate to
the empty node e1 to get utility 3/4; see Figure 8(b). The second one is when A(a) is red and
A(b) is blue. This is the best possible equilibrium with social welfare 62/12; see Figure 8(c).

The proof is now complete.

7 Open Problems

In this paper we proposed a new class of diversity-seeking jump games in networks. We showed that
determining if there exists an equilibrium assignment in a given instance is NP-hard, using a reduction
that relies on the existence of stubborn agents. Do games with only strategic agents always admit an
equilibrium? If not, what is the complexity of deciding if an equilibrium exists in a given diversity-
seeking jump game with only strategic agents?

We also showed that the game is not potential for tree topologies; however, if all agents are strate-
gic, there is always an equilibrium, regardless of the number of empty nodes in the tree. It would be
interesting to know if the game is weakly acyclic in trees. For spider graphs with a single empty node,
we showed that the game is potential. We conjecture the same holds for any number of empty nodes.
While games on δ-regular graphs are always potential games when there is a single empty node, there
are games that are not potential when there are 4 or more empty nodes. It would be very interesting to
know whether the game is potential for up to 3 empty nodes. Similar questions would be interesting
for other classes of graphs, such as bipartite graphs and grids.

Finally, while our price of anarchy bounds are essentially tight, it would be interesting to further
investigate the price of stability and either improve the lower bound of 65/62 that we managed to
show for two types, or show an upper bound for it that is better than the upper bounds shown for the
price of anarchy.
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