
EFX Allocations for Indivisible Chores:

Matching-Based Approach

Yusuke Kobayashi∗ Ryoga Mahara† Souta Sakamoto‡

Abstract

One of the most important topics in discrete fair division is whether an EFX allocation
exists for any instance. Although the existence of EFX allocations is a standing open problem
for both goods and chores, the understanding of the existence of EFX allocations for chores is
less established compared to goods. We study the existence of EFX allocation for chores under
the assumption that all agent’s cost functions are additive. Specifically, we show the existence
of EFX allocations for the following three cases: (i) the number of chores is at most twice the
number of agents, (ii) the cost functions of all agents except for one are identical ordering, and
(iii) the number of agents is three and each agent has a personalized bi-valued cost function.
Furthermore, we provide a polynomial time algorithm to find an EFX allocation for each case.

1 Introduction

Fair division theory has significant attention across various fields, including economics, mathemat-
ics, and computer science. The classic problem of fairly dividing divisible resources, also known
as the cake-cutting problem, dates back to the 1940s [28] and has a long history [9, 10, 24, 27]. In
contrast, the fair allocation of indivisible items has been a topic of active research in recent decades
(see surveys [2, 4]). Given a set N = {1, 2, . . . , n} of n agents and a set M of m items, the goal is
to allocate M to N in a fair manner. We refer to items as goods if they are beneficial, such as cars
and smartphones, and as chores if they are burdens, such as housework and teaching duties. For
the case of goods, each agent i ∈ N has a valuation function vi : 2M → R≥0, while for the case of
chores, each agent i ∈ N has a cost function ci : 2M → R≥0. In general, vi and ci are assumed to
be monotone non-decreasing.

One of the most popular and well-studied fairness notions is envy-freeness (EF) [19]. Informally
speaking, an allocation is called EF if each agent prefers their own bundle to be at least as good
as that of any other agent. In the case of divisible resources, an EF allocation always exists for
both goods and chores [5, 17], while in the case of indivisible items, it may not exist (for example,
dividing one item among two agents). This has motivated researchers to consider relaxing notions
of EF, such as EF1, EFX, and other related notions.

∗Research Institute for Mathematical Sciences, Kyoto University. E-mail: yusuke@kurims.kyoto-u.ac.jp
†Department of Mathematical Informatics, University of Tokyo. E-mail: mahara@mist.i.u-tokyo.ac.jp
‡Research Institute for Mathematical Sciences, Kyoto University.

1

ar
X

iv
:2

30
5.

04
16

8v
1

 [
cs

.G
T

]
 7

 M
ay

 2
02

3

Envy-freeness up to any item (EFX) for goods One of the most well-studied relaxed notions
of EF is EFX, which was proposed by Caragiannis et al. [13,14]. An allocation A = (A1, A2, . . . , An)
of goods is called EFX if for all pairs of agents i and j, and for any g ∈ Aj , it holds that vi(Ai) ≥
vi(Aj \ {g}). In other words, each agent i prefers their own bundle to be at least as good as the
bundle of agent j after the removal of any good in j’s bundle. EFX is regarded as the best analog
of envy-freeness in the discrete fair division: Caragiannis et al. [12] remarked that “Arguably, EFX
is the best fairness analog of envy-freeness for indivisible items.” However, the existence of EFX
allocations is not well understood, and it is recognized as a significant open problem in the field of
fair division. Procaccia [26] remarked that “This fundamental and deceptively accessible question
(EFX existence) is open. In my view, it is the successor of envy-free cake cutting as fair division’s
biggest problem.”

There has been a significant amount of research to investigate the existence of EFX allocations
in various special cases: For general valuations, i.e., each valuation function vi is only assumed to be
(i) normalized: vi(∅) = 0 and (ii) monotone: S ⊆ T implies vi(S) ≤ vi(T) for any S, T ⊆M , Plaut
and Roughgarden [25] showed that an EFX allocation always exists when there are two agents, or
when all agents have identical valuations. This result was extended to the case where all agents have
one of two general valuations [23]. In addition, Mahara showed the existence of EFX allocations
when m ≤ n+ 3 in [23]. Chaudhury et al. [15] showed that an EFX allocation always exists when
n = 3. This result was extended to the case where all agents have nice-cancelable valuations, which
generalize additive valuations [7]. A further generalization was obtained by Akrami et al. [1], who
showed the existence of EFX allocations when there are three agents with two general valuations
and one MMS-feasible valuation, which generalizes nice-cancelable valuations. The existence of
EFX allocations of goods remains open even when there are four agents with additive valuations.

Envy-freeness up to any item (EFX) for chores We understand even less about the existence
of EFX allocations for chores than for goods. By analogy to goods, EFX for chores can be defined
as follows. An allocation A = (A1, A2, . . . , An) of chores is called EFX if for all pairs of agents i
and j, and for any e ∈ Ai, it holds that ci(Ai \ {e}) ≤ ci(Aj). In other words, each agent i prefers
their own bundle to be at least as good as the bundle of agent j after the removal of any chore in
i’s bundle. Chen and Liu [16] showed the existence of EFX allocations for n agents with identical
valuations and cost functions in the case where goods and chores are mixed. Li et al. [21] showed
that an EFX allocation for chores always exists when all agents have an identical ordering cost
function by using the top-trading envy graph, which is a tool modified from the envy graph. Gafni
et al. [20] showed the existence of EFX allocations when each agent has a leveled cost function
where a larger set of chores is always more burdensome than a smaller set. Zhou and Wu [30]
showed a positive result when n = 3 and the bi-valued instances, in which each agent has at most
two cost values on the chores. Yin and Mehta [29] showed that if two of the three agents’ functions
have an identical ordering of chores, are additive, and evaluate every non-singleton set of chores
as more burdensome than any single chore, then an EFX allocation exists. The existence of EFX
allocations of chores remains open even when there are three agents with additive valuations.

1.1 Our Results

We study the existence of EFX allocations of chores for some special cases under the assumption
that each agent has an additive cost function. We show that an EFX allocation always exists in
each of the following three cases:

2

Result 1.1 (Theorem 3.1). There exists an EFX allocation of chores when m ≤ 2n and each agent
has an additive cost function. Moreover, we can find an EFX allocation in polynomial time.

Result 1.2 (Theorem 4.1). There exists an EFX allocation of chores when n − 1 agents have
identical ordering cost functions. Moreover, we can find an EFX allocation in polynomial time.

Result 1.3 (Theorem 5.1). There exists an EFX allocation of chores when n = 3 and each agent
has a personalized bi-valued cost function. Moreover, we can find an EFX allocation in polynomial
time.

The first result is the case where the number of chores is small compared to the number of
agents. If m is at most n, then there is an obvious EFX allocation (each agent should be allocated
at most one chore). To the best of our knowledge, Result 1.1 is the first nontrivial result for a
small number of chores. Interestingly, as mentioned before, for the case of goods, positive results
are shown only when m is at most n+ 3 [23].

Result 1.2 generalizes the result of the case where n agents have identical ordering cost functions
in [21]. Informally speaking, an identical ordering means that the agents have the same ordinal
preference for the chores. See Section 4 for the formal definition of identical ordering. It should
be emphasized that, in Result 1.2, the remaining agent can have a general cost function. Note
that our result also extends the result in [29], in which they considered a more restricted case as
mentioned above.

In the last result, we consider personalized bi-valued instances, in which each agent has two
values for chores that may be different. Thus, personalized bi-valued instances include the bi-valued
instances but not vice versa. Result 1.3 extends the result in [30], where a positive result was shown
when n = 3 and each agent has a bi-valued cost function.

1.2 Related Work

Envy-freeness up to one item (EF1) for goods One of the most popular relaxed notions
of EF is EF1, which was introduced by Budish [11]. EF1 requires that each agent i prefers their
own bundle to be at least as good as the bundle of agent j after the removal of some good in j’s
bundle. Thus, EF1 is a weaker notion than EFX. While the existence of EFX allocations remains
open in general, an EF1 allocation can be computed in polynomial time for any instance [14, 22].
There are several studies that find not only EF1, but also efficient (particularly Pareto optimal)
allocation. It is known that the maximum Nash social welfare solution satisfies both EF1 and PO
(Pareto optimal) [14]. Barman et al. [6] show that an allocation satisfying both EF1 and PO can
be computed in pseudo-polynomial time. It remains an open problem whether a polynomial-time
algorithm exists to find an allocation that satisfies both EF1 and PO.

Envy-freeness up to one item (EF1) for chores By analogy to goods, EF1 for chores can
be defined as follows. An allocation A = (A1, A2, . . . , An) of chores is called EF1 if for all pairs of
agents i and j with Ai 6= ∅, and for some e ∈ Ai, it holds that ci(Ai \{e}) ≤ ci(Aj). In other words,
each agent i prefers their own bundle to be at least as good as the bundle of agent j after the
removal of some chore in i’s bundle. Bhaskar et al. [8] showed an EF1 allocation of chores always
exists and can be computed in polynomial time. It remains open whether there always exists an
allocation that satisfies both EF1 and PO for chores.

3

Approximate EFX Allocations There are several studies on approximate EFX allocations.
In the case of goods, the definition of α-EFX is obtained by replacing vi(Ai) ≥ vi(Aj \ {g}) with
vi(Ai) ≥ α · vi(Aj \ {g}) in the definition of EFX, where α ∈ [0, 1]. It is known that there are
1/2-EFX allocations for subadditive valuations [25]. For additive valuations, there are polynomial
time algorithms to compute 0.618-EFX allocations [3, 18]. As for chores, there has been little
research done so far. In the case of chores, the definition of α-EFX is obtained by replacing
ci(Ai \{e}) ≤ ci(Aj) with ci(Ai \{e}) ≤ α · ci(Aj) in the definition of EFX, where α ≥ 1. Zhou and
Wu [30] showed that there exists a polynomial time algorithm to compute a 5-EFX allocation for
3 agents and a 3n2-EFX allocation for n ≥ 4 agents. It remains open whether there exist constant
approximations of EFX allocation for any number of agents.

1.3 Organization

Section 2 provides definitions for terminology and notations, defines the EFX-graph, and discusses
its basic properties. In Section 3, it is shown that an EFX allocation exists when the number of
chores is at most twice the number of agents. In Section 4, we consider the case where the cost
functions of all agents except for one are identical ordering. In Section 5, we consider the case
where n = 3 and each agent has a personalized bi-valued cost function.

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of n agents and M be a set of m indivisible chores. Each agent
i ∈ N has a cost function ci : 2M → R≥0. We assume that (i) any cost function ci is normalized:
ci(∅) = 0, (ii) it is monotone: S ⊆ T implies ci(S) ≤ ci(T) for any S, T ⊆M , and (iii) it is additive:
ci(S) =

∑
e∈S ci(e) for any S ⊆M .

To simplify notation, we denote {1, . . . , k} by [k]. For any i ∈ N , e ∈M , and S ⊆M , we write
ci(e) to denote ci({e}), and use S \ e, S ∪ e to denote S \ {e}, S ∪ {e}, respectively.

For M ′ ⊆M , an allocation A = (A1, A2, . . . , An) of M ′ is an n-partition of M ′, where Ai∩Aj = ∅
for all i and j with i 6= j, and

⋃
i∈N Ai = M ′. In an allocation A, Ai is called a bundle given to

agent i ∈ N . Given an allocation A, we say that agent i envies agent j if ci(Ai) > ci(Aj), and agent
i strongly envies agent j if there exists a chore e in Ai such that ci(Ai \ e) > ci(Aj). An allocation
A is called EFX if no agent strongly envies another, i.e., for any pair of agents i, j ∈ N and e ∈ Ai,
ci(Ai \ e) ≤ ci(Aj). It is easy to see that an allocation A is EFX if and only if for any agent i ∈ N ,
we have maxe∈Ai ci(Ai \ e) ≤ minj∈[n] ci(Aj).

Let G = (V,E) be a graph. A matching in G is a set of pairwise disjoint edges of G. A perfect
matching in G is a matching covering all the vertices of G. For a matching X in G and a vertex v
incident to an edge in X, we write X(v) as the vertex adjacent to v in X. For a subgraph H of G,
let V [H] denote all vertices in H and E[H] denote all edges in H. Similarly, V [H] and E[H] are
defined also for a digraph H. For finite sets A and B, we denote the symmetric difference of A and
B as A4B = (A \B) ∪ (B \A).

EFX-graph In this paper, we use a bipartite graph called an EFX-graph, which plays an im-
portant role to show Results 1.1 to 1.3. We now define the EFX-graph and provide its basic
properties.

4

Let U be a set of size n and M ′ ⊆M . We say that A = (Au)u∈U is an allocation to U of M ′ if
it is an n-partition of M ′, where each set is indexed by an element in U , i.e., Au ∩Au′ = ∅ for all u
and u′ with u 6= u′, and

⋃
u∈U Au = M ′. For an allocation A = (Au)u∈U to U , we define a bipartite

graph GA = (N,U ;EA) called EFX-graph as follows. The vertex set consists of N and U , and the
edge set EA is defined by

(i, u) ∈ EA ⇐⇒ max
e∈Au

ci(Au \ e) ≤ min
k∈U

ci(Ak)

for any i ∈ N and u ∈ U . That is, an edge (i, u) means that agent i can receive Au without violating
the EFX conditions. We define Emin

A by the set of all edges corresponding to the minimum cost
chore set in A, i.e., Emin

A = {(i, u) ∈ EA | ci(Au) = mink∈U ci(Ak), i ∈ N}. See also Example 2.1.

Example 2.1. Let N = {1, 2, 3} and M = {e1, e2, e3, e4, e5, e6}, and suppose that each cost function
is represented as in Table 1. Consider an allocation A = ({e1, e2}, {e3, e4}, {e5, e6}) to U . Then,
the corresponding EFX-graph GA is represented as in Figure 1.

e1 e2 e3 e4 e5 e6
agent 1 2 0 5 2 5 2
agent 2 2 4 3 3 0 3
agent 3 1 1 1 1 1 1

Table 1: The cost of each agent’s chores

𝑁 𝑈
-

-

-

-

-

-

1

𝐺"

c𝑒!

2

3

c𝑒"

c𝑒# c𝑒$

c𝑒% c𝑒&

Figure 1: EFX-graph GA. The black and gray
edges are in EA, and the gray edges are in Emin

A .

By simple observation, we see the following properties hold.

Observation 2.2. Let GA = (N,U ;EA) be an EFX-graph for an allocation A = (Au)u∈U . Then,
the following properties hold.

(i) For u ∈ U with |Au| ≤ 1, it holds that (i, u) ∈ EA for any i ∈ N .

(ii) For any i ∈ N , there exists u ∈ U such that (i, u) ∈ Emin
A .

(iii) If GA has a perfect matching, then GA has a perfect matching X such that (i,X(i)) ∈ Emin
A

for some i ∈ N .

Proof. (i) If |Au| = 0, the claim is obvious. If |Au| = 1, then maxe∈Au ci(Au\e) = 0 ≤ mink∈U ci(Ak)
for any i ∈ N . Thus, we have (i, u) ∈ EA.

(ii) For i ∈ N , let Au ∈ arg min
k∈U

ci(Ak). Then, we have (i, u) ∈ Emin
A .

(iii) Let Y be any perfect matching in GA. If (i, Y (i)) ∈ Emin
A for some i ∈ N , then we

are done. Suppose that (i, Y (i)) 6∈ Emin
A for any i ∈ N . We consider a directed bipartite graph

DA = (N,U ;F), where the vertex set consists of N and U , and the arc set F is defined by

F = {(i, u) | (i, u) ∈ Emin
A , i ∈ N} ∪ {(u, Y (u)) | u ∈ U}.

5

Since all vertices in DA have at least one outgoing arc by (ii), DA has a directed cycle
−→
C of length

more than two by our assumption. Let C be the underlying undirected cycle of
−→
C . We define a

new perfect matching X = Y 4 E[C] in GA. Then, there exists an edge (i,X(i)) ∈ Emin
A for some

i ∈ N .

It is easy to see that if an EFX-graph has a perfect matching, then an EFX allocation can be
obtained as follows.

Observation 2.3. Let M ′ ⊆ M and A = (Au)u∈U be an allocation to U of M ′. Suppose that
EFX-graph GA has a perfect matching. Then, there exists an EFX allocation of M ′, and it can be
found in polynomial time.

Proof. Let X be a perfect matching in GA. We construct an allocation A′ = (A′1, . . . , A
′
n) to N as

follows. For each agent i ∈ N , A′i is defined as AX(i), where AX(i) is the chore set corresponding
to the vertex matched to i in X. By the definition of EA, it holds that maxe∈A′i ci(A

′
i \ e) =

maxe∈AX(i)
ci(AX(i) \ e) ≤ mink∈U ci(Ak) ≤ minj∈[n] ci(A

′
j) for any i ∈ N . Thus, A′ is an EFX

allocation of M ′.

Let M ′ (M and A = (Au)u∈U be an allocation to U of M ′. Let e ∈M \M ′ be an unallocated
chore and Av be some chore set in A. We say that an allocation A′ = (A′u)u∈U to U of M ′ ∪ e is
obtained from A by adding e to Av if

A′u =

{
Av ∪ e if u = v,
Au otherwise.

The following lemma is a fundamental one that will be used repeatedly later.

Lemma 2.4. Let M ′ (M and A = (Au)u∈U be an allocation to U of M ′. Suppose that there exist
i ∈ N and e ∈M \M ′ such that ci(e) ≤ ci(e′) for any e′ ∈M ′. Let (i, ui) ∈ Emin

A and A′ = (A′u)u∈U
be an allocation obtained from A by adding e to Aui. Then, the following two statements hold.

(i) (i, ui) ∈ EA′.

(ii) (j, u) ∈ EA ⇒ (j, u) ∈ EA′ for any j ∈ N and u ∈ U \ ui.

Proof. (i) Since ci(e) ≤ ci(e′) for any e′ ∈M ′, maxf∈A′ui
ci(A

′
ui \ f) = ci(A

′
ui \ e) = ci(Aui). By the

fact that (i, ui) ∈ Emin
A , ci(Aui) = mink∈U ci(Ak) ≤ mink∈U ci(A

′
k). Therefore, maxf∈A′ui

ci(A
′
ui \

f) ≤ mink∈U ci(A
′
k), which implies (i, ui) ∈ EA′ .

(ii) Fix any j ∈ N and u ∈ U \ ui with (j, u) ∈ EA. Since u ∈ U \ ui, we have A′u = Au.
Thus, maxf∈A′u cj(A

′
u \ f) = maxf∈Au cj(Au \ f) ≤ mink∈U cj(Ak) ≤ mink∈U cj(A

′
k), where the first

inequality follows from (j, u) ∈ EA. This implies (j, u) ∈ EA′ .

The following corollary can be obtained by applying Lemma 2.4 for i, e, and ui = X(i).

Corollary 2.5. Let M ′ (M and A = (Au)u∈U be an allocation to U of M ′. Suppose that GA has a
perfect matching X such that (i,X(i)) ∈ Emin

A , and there exists e ∈M \M ′ such that ci(e) ≤ ci(e′)
for any e′ ∈M ′. Then, X is a perfect matching also in GA′, where A′ = (A′u)u∈U is the allocation
obtained from A by adding e to AX(i).

6

3 Existence of EFX with at most 2n Chores

In this section, we prove the following theorem by constructing a polynomial-time algorithm to find
an EFX allocation when m ≤ 2n.

Theorem 3.1. There exists an EFX allocation of chores when m ≤ 2n and each agent has an
additive cost function. Moreover, we can find an EFX allocation in polynomial time.

Our algorithm is described in Algorithm 1. If m ≤ n, then an EFX allocation can be obtained
by allocating at most one chore to each agent. Otherwise, we denote m = n + l with 1 ≤ l ≤ n.
Our basic idea is as follows. First, we create an allocation A = (Au)u∈U to U by setting Au = ∅ for
any u ∈ U . Then, we add chores to one of the chore sets in A one by one while maintaining the
condition that GA has a perfect matching. If this condition is satisfied after all chores have been
allocated, we can obtain an EFX allocation of M by Observation 2.3. However, in general, it is not
possible to maintain this condition when adding chores in an arbitrary order. Intuitively, this is
because it becomes difficult to keep an edge in GA if heavy chores are added at the end. To address
this issue, we first let l agents (e.g., agents l, l − 1, . . . , 1) choose the chore with the smallest cost
for themselves in turn and hold it. Then, we create an allocation A = (Au)u∈U for the remaining
n chores, such that |Au| = 1 for any u ∈ U . Next, we add the held chores to the smallest chore
set for each agent in the reverse order (1, 2, . . . , l). By applying induction, we can show that GA
always has a perfect matching during the entire process of adding chores.

Algorithm 1 Case when m ≤ 2n

Input: a set of agents N , a set of chores M of size at most 2n, and a cost function ci for each
i ∈ N

Output: an EFX allocation A∗ of M .
1: R←M . remaining set of chores
2: Au ← ∅ for all u ∈ U , where U is a set of size n.
3: Set l = max{m− n, 0}.
4: for i = l, l − 1, · · · , 1 do
5: Pick up ei ∈ arg min

e∈R
ci(e)

6: R← R \ ei
7: for u ∈ U do
8: Pick up e ∈ R arbitrarily (if it exists).
9: Au ← {e}, R← R \ e

10: for i = 1, 2, · · · , l do
11: Pick up ui ∈ arg min

u∈U
ci(Au)

12: Aui ← Aui ∪ ei
13: Find a perfect matching X on GA.
14: Construct the allocation A∗ by allocating each chore set to the matched agent in X.
15: return A∗

Proof of Theorem 3.1. We first show the correctness of Algorithm 1. By Observation 2.2, it is
sufficient to show that GA has a perfect matching in line 13 of Algorithm 1. If l = 0, that is,
m ≤ n, the first and third for-loops are not executed. After the middle for-loop is executed,

7

𝑒!"#

-

𝑁 𝑈

-
-
-
-
-

-
-
-
-
-
-

-

𝑁 𝑈

-
-
-
-
-

-
-
-
-
-
-

𝑋! 𝑋!"#

1

𝑡

𝑡 + 1
𝑡 + 2

𝑛 𝑛

𝑡 + 2
𝑡 + 1

𝑡

⋮⋮

1

⋮⋮

c c
c c
c c c
c
c
c

c c
c c
c c c
c
c
c

c

Figure 2: Situation in Case 2 of Claim 3.2. The black edge set in the left figure represents Xt, and
the black edge set in the right figure represents Xt+1. The gray edge in the left figure represents
an edge in Emin

At .

|Au| ≤ 1 for any u ∈ U and R = ∅. Hence, A = (Au)u∈U is an allocation of M to U and GA
becomes a perfect bipartite graph by Observation 2.2 (i). Thus, GA has a perfect matching.

Suppose next that l > 0. For t ∈ {0} ∪ [l], we call the t-th execution of the third for-loop round
t. Let At = (Atu)u∈U be the allocation to U immediately after adding a chore in round t. We show
the existence of a perfect matching in GAt by induction on t. More precisely, we show the following
claim.

Claim 3.2. For any round t ∈ {0} ∪ [l], there exists a perfect matching Xt in GAt such that

(i, u) ∈ Xt ⇒ |Atu| = 1 for any i ∈ {t+ 1, . . . , n}. (1)

Proof of Claim 3.2. We show the claim by induction on t. For the base case t = 0, after the middle
for-loop is executed, |Au| = 1 holds for any u ∈ U . Hence, GA has a perfect matching and condition
(1) obviously holds. For the inductive step, we assume that Claim 3.2 holds for t ∈ {0} ∪ [l]. Let
Xt be a perfect matching in GAt satisfying (1). Since the first and third for-loops are executed in
the reverse order with respect to i, it holds that

ct+1(et+1) ≤ ct+1(e
′) for any e′ ∈

⋃
u∈U

Atu.

Thus, by applying Lemma 2.4 for i = t+ 1 and e = et+1, we obtain the following, where we recall
that ut+1 ∈ arg min

u∈U
ct+1(A

t
u).

(i) (t+ 1, ut+1) ∈ EAt+1 .

(ii) (j, u) ∈ EAt ⇒ (j, u) ∈ EAt+1 for any j ∈ N and u ∈ U \ ut+1.

We consider two cases separately.

Case 1: (t+ 1, ut+1) ∈ Xt

Let Xt+1 = Xt. By (i) and (ii) above, we obtain Xt+1 ⊆ EAt+1 . In addition, for i ∈
{t+2, . . . , n}, if (i, u) ∈ Xt+1 = Xt, then |At+1

u | = |Atu| = 1 holds by the induction hypothesis.
Thus, Xt+1 is a perfect matching in EAt+1 satisfying condition (1).

8

Case 2: (t+ 1, ut+1) /∈ Xt

In this case, we create a new perfect matching by swapping two edges in Xt (see Fig-
ure 2). Formally, we define Xt+1 = Xt ∪ {(t + 1, ut+1), (X

t(ut+1), X
t(t + 1))} \ {(t +

1, Xt(t + 1)), (Xt(ut+1), ut+1)}. We see that (t + 1, ut+1) ∈ EAt+1 holds by (i) above and
(Xt(ut+1), X

t(t + 1)) ∈ EAt+1 holds by Observation 2.2 (i). Hence, Xt+1 ⊆ EAt+1 . For any
i ∈ {t+ 2, . . . , n}, if i = Xt(ut+1), then (i,Xt(t+ 1)) ∈ Xt+1, and |At+1

Xt(t+1)| = |A
t
Xt(t+1)| = 1

by the induction hypothesis and Xt(t + 1) 6= ut+1. Otherwise, since At+1
Xt+1(i)

= AtXt(i),

|At+1
Xt+1(i)

| = |AtXt(i)| = 1 by the induction hypothesis. Thus, Xt+1 is a perfect matching in

EAt+1 satisfying condition (1).

By Claim 3.2, there exists a perfect matching X l in GAl . This means that there exists a perfect
matching X in GA in line 13 of Algorithm 1. Therefore, Algorithm 1 returns an EFX allocation.

We next show that Algorithm 1 runs in polynomial time. For the first for-loop, line 5 is executed
in O(m) time for each i. Since l ≤ n, the first for-loop takes O(mn) to execute. The second for-loop
takes O(n) to execute since |U | ≤ n. The last for-loop takes O(mn) to execute. Finally, we can find
a perfect matching X on GA by a maximum matching algorithm on a bipartite graph in O(mn2)
time, because GA has O(n) vertices and O(mn) edges. Therefore, Algorithm 1 returns an EFX
allocation in O(mn2) time. Note that the running time can be improved by using a sophisticated
bipartite matching algorithm, but we do not go into details.

4 When n− 1 Agents Have Identical Ordering Cost Functions

In this section, we consider the case where n− 1 agents have identical ordering cost functions. For
any pair of agents i and j, we call the cost functions of i and j are identical ordering if for any
e and e′ in M , it holds that ci(e) < ci(e

′) ⇐⇒ cj(e) < cj(e
′). In other words, we can sort all

the chores in non-increasing order of cost for both i and j. For k ∈ [n], we say that k agents have
identical ordering cost functions if the cost functions of any two agents among those k agents are
identical ordering. We show the following theorem.

Theorem 4.1. There exists an EFX allocation of chores when n−1 agents have identical ordering
cost functions. Moreover, we can find an EFX allocation in polynomial time.

From now on, we assume that agents 1, 2, . . . n− 1 have identical ordering cost functions. Our
algorithm is described in Algorithm 2. Our basic idea is quite similar to the approach in Section 3.
First, we create an allocation A = (Au)u∈U to U by setting Au = ∅ for any u ∈ U . We sort
the chores in non-increasing order of cost for agents 1, 2, . . . , n− 1, which is possible as they have
identical ordering cost functions. Then, in this order, we add chores to one of the chore sets in A one
by one while maintaining the condition that GA has a perfect matching. If this condition is satisfied
after all chores have been allocated, we can obtain an EFX allocation of M by Observation 2.3. By
applying induction, we can show that GA always has a perfect matching during the entire process
of adding chores.

In order to show that there exists a vertex u∗ satisfying the desired condition in lines 4 and 5
of Algorithm 2, we prove the following lemma, which will be used also in Section 5.

9

Algorithm 2 Case when n− 1 agents have identical ordering cost functions.

Input: a set of agents N , a set of chores M , and a cost function ci for each i ∈ N , where c1, . . . , cn−1
are identical ordering.

Output: an EFX allocation A∗ of M .
1: Au ← ∅ for all u ∈ U , where U is a set of size n.
2: Sort all the chores in M : ci(e1) ≥ ci(e2) ≥ · · · ≥ ci(em) for all i ∈ [n− 1].
3: for t = 1, 2, · · · ,m do
4: Find a vertex u∗ ∈ U such that GA′ has a perfect matching,
5: where A′ is the allocation to U obtained from A by adding et to Au∗ .
6: Au∗ ← Au∗ ∪ et
7: Find a perfect matching X on GA.
8: Construct the allocation A∗ by allocating each chore set to the matched agent in X.
9: return A∗

𝑁 𝑈
-
-
-
-
-

-
-
-
-
-

𝐹

1

𝑛 − 1
𝑛

⋮

c
c

c c
c
c
c

c
c
c

𝑁 𝑈
-
-
-
-
-

-
-
-
-
-

𝐹

1

𝑛 − 1
𝑛

⋮

c
c

c c
c
c
c

c
c
c

𝑢∗

𝑢∗

Figure 3: Two cases in Lemma 4.2: DA has a directed cycle (left) and DA has no directed cycles
(right).

Lemma 4.2. Let M ′ (M and e ∈M \M ′ such that ci(e) ≤ ci(e′) for any i ∈ [n− 1] and e′ ∈M ′.
Let A = (Au)u∈U be an allocation to U of M ′ such that GA has a perfect matching. Then, there
exists a vertex u∗ ∈ U such that GA′ has a perfect matching, where A′ is the allocation to U of
M ′ ∪ e obtained from A by adding e to Au∗.

Proof. Let X be a perfect matching on GA, and e ∈ M \M ′ be an unallocated chore such that
ci(e) ≤ ci(e

′) for any i ∈ [n − 1] and e′ ∈ M ′. For an allocation A = (Au)u∈U to U of M ′, we
consider a directed bipartite graph DA = (N,U ;F), where the vertex set consists of N and U , and
the arc set F is defined by

F = {(i, u) | (i, u) ∈ Emin
A , i ∈ [n− 1]} ∪ {(u,X(u)) | u ∈ U}.

We consider two cases separately. See also Figure 3.

Case 1: DA has a directed cycle.

Let
−→
C be any directed cycle in DA. Since the vertex n ∈ N has no outgoing arc in DA, we

have n 6∈ V [
−→
C]. If |V [

−→
C]| = 2, define a perfect matching X ′ = X in GA. Otherwise, define a

new perfect matching X ′ = X 4 E[C] in GA, where C is the underlying (undirected) cycle

of
−→
C . In both cases, we pick up i ∈ V [

−→
C] ∩ [n − 1] and choose X ′(i) as u∗. Then, by the

definition of F , it holds that (i,X ′(i)) ∈ Emin
A . By applying Corollaly 2.5, GA′ has a perfect

matching X ′, where A′ is the allocation to U of M ′∪e obtained from A by adding e to AX′(i).

10

Case 2: DA has no directed cycles.
We choose X(n) as u∗. Let A′ be an allocation to U of M ′ ∪ e obtained from A by adding e
to AX(n). By the same argument as in Lemma 2.4 (ii), we can see that

(j, u) ∈ EA ⇒ (j, u) ∈ EA′ for any j ∈ N and u ∈ U \X(n). (2)

If (n,X(n)) ∈ EA′ , then X ′ = X is a perfect matching in GA′ by (2). Otherwise, there exists
u 6= X(n) with (n, u) ∈ Emin

A′ by Observation 2.2 (ii). Since all vertices except n have at least
one outgoing arc in the acyclic digraph DA, all vertices have a directed path to n in DA. Let−→
P be a directed path from u to n in DA and P be the underlying path of

−→
P . Note that

P ∪ (n, u) forms a cycle, and it traverses edges in X and ones not in X alternately by the
definition of F . This shows that X ′ := X 4 (P ∪ (n, u)) is a perfect matching in EA ∪ (n, u)
such that (X ′(u∗), u∗) ∈ Emin

A . Since each edge in X ′ \ {(n, u), (X ′(u∗), u∗)} is in EA′ by (2),
(X ′(u∗), u∗) is in EA′ by Lemma 2.4 (i), and (n, u) ∈ Emin

A′ , X ′ is a perfect matching in GA′ .

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We first show the correctness of Algortihm 2. By Lemma 4.2, we can pick
up u∗ satisfying the desired condition in lines 4 and 5 of Algorithm 2. During the execution of the
for-loop, we maintain the condition that GA has a perfect matching. Thus, there exists a perfect
matching in line 7 of Algorithm 2. Therefore, we can find an EFX allocation by Observation 2.3.

We next show that Algorithm 2 runs in polynomial time. Line 2 is easily done in polynomial
time using a sorting algorithm. Lines 4 and 5 can be executed in polynomial time since we can
check the condition by using a maximum matching algorithm for all u∗ ∈ U , which can be done in
polynomial time. Thus, the for-loop runs in polynomial time. By applying a maximum matching
algorithm again, we can find a perfect matching in line 7 in polynomial time. Therefore, Algorithm 2
runs in polynomial time.

We give a remark here that, in our proofs of Lemma 4.2 and Theorem 4.1, we do not use the
explicit form of the cost function of the remaining agent (agent n). Therefore, we can slightly
generalize Theorem 4.1 so that the remaining agent can have a general (i.e., non-additive) cost
function.

5 Personalized Bi-valued Instances

In this section, we consider the case where the number of agents is three and each agent has a
personalized bi-valued cost function, which means that, for any i ∈ N(= [3]), there exist ai, bi ≥ 0
with ai 6= bi such that ci(e) ∈ {ai, bi} for any e ∈M . We prove the following theorem.

Theorem 5.1. There exists an EFX allocation of chores when n = 3 and each agent has a person-
alized bi-valued cost function. Moreover, we can find an EFX allocation in polynomial time.

By scaling each cost function, we assume that ci(e) ∈ {εi, 1} for any i ∈ N(= [3]) and e ∈ M ,
where εi ∈ [0, 1). We first give some definitions. We call chore e ∈ M a consistently large chore
if ci(e) = 1 for all i ∈ N , and a consistently small chore if ci(e) = εi for all i ∈ N . We call chore
e ∈ M a large (resp. small) chore only for one agent if ci(e) = 1 (resp. ci(e) = εi) for some agent

11

i and cj(e) = εj (resp. cj(e) = 1) for any other agents j ∈ N \ i. Note that every chore can be
categorized into one of the following four types: consistently large, consistently small, large only
for one agent, and small only for one agent.

Round-Robin Algorithm In our algorithm, we use the round-robin algorithm as in [30] in
several parts. See Algorithm 3 for the description of the round-robin algorithm. Note that the
algorithm is now described for general n, while it will be used for n = 3 in this section. The
algorithm takes as input an ordering of agents (σ1, σ2, . . . , σn), a set of chores, and a cost function
for each agent. In the order of σ, the agents choose the minimum cost chore for her perspective
until all chores are allocated. We index the rounds by 1, . . . ,m, where exactly one chore is allocated
in each round. For every agent i, denote by ri the last round in which agent i received a chore. To
simplify the notation, let ri = 0 if i received no chore. Note that each ri depends on the ordering
σ of the agents. We call the output of Algorithm 3 the round-robin allocation with respect to σ. If
σ is not specified, it is simply called a round-robin allocation.

Algorithm 3 Round-Robin Algorithm

Input: an ordering of the agents (σ1, . . . , σn), a set of chores M , and a cost function ci for each
i ∈ N .

1: Initialize Ai ← ∅ for all i ∈ N , R←M , and i← 1
2: while R 6= ∅ do
3: Pick up e ∈ arg min

e′∈R
{cσi(e′)}

4: Aσi ← Aσi ∪ e, R← R \ e
5: Set i← (i mod n) + 1

6: return A = (A1, . . . , An)

Note that for a round-robin allocation A, it holds that ||Ai| − |Aj || ≤ 1 for any i, j ∈ N . The
following lemma is a fundamental property of the output of Algorithm 3.

Lemma 5.2 (Lemma 5.3. in [30]). Let A be an allocation obtained by Algorithm 3. For any distinct
agents i, j with ri < rj, we have ci(Ai) ≤ ci(Aj) and cj(Aj \ e) ≤ cj(Ai) for some e ∈ Aj.

Overview Our algorithm to find an EFX allocation is described in Algorithm 4. Our basic idea
is to recursively compute an EFX allocation with respect to the number of chores. If |M | ≤ 3, then
the algorithm returns an allocation in which every agent receives at most one chore. Otherwise, we
deal with the following two cases separately.

Suppose first that there exists a chore e which is consistently small or large only for one agent.
In this case, we compute an EFX allocation A to N of M \ e recursively. By regarding A as an
allocation to U , we construct the EFX-graph GA. We show that e can be added to a certain vertex
u∗ ∈ U so that the resulting EFX-graph has a perfect matching. The algorithm computes a perfect
matching in the new EFX-graph, which gives an EFX allocation to N of M .

Suppose next that there exists neither consistently small chore nor large chore only for one
agent, that is, the instance consists of consistently large chores and small chores only for one agent.
If all chores are consistently large, then a round-robin allocation gives an EFX allocation in this
case. If there is a small chore e only for one agent (say agent 1) and there are no small chores only
for agent 2 or 3, then the algorithm computes a round-robin allocation (S1, S2, S3) on the instance

12

with e removed such that r1 < min{r2, r3}. In this case, we can show that (S1 ∪ e, S2, S3) is an
EFX-allocation of M . If there are a small chore e only for one agent (say agent 1) and a small
chore e′ for another agent (say agent 2), then the algorithm computes the round-robin allocation
(S1, S2, S3) on the instance with e and e′ removed such that r1 < r2 < r3. In this case, we can
show that (S1 ∪ e, S2 ∪ e′, S3) is an EFX-allocation of M .

Algorithm 4 Case when n = 3 and each agent has a personalized bi-valued cost function.

1: procedure EFX(N , M , {ci}i∈N)
2: if |M | ≤ 3 then
3: return an allocation in which every agent receives at most one chore.
4: else
5: if there exists a chore e which is consistently small or large only for one agent then
6: A← EFX(N , M \ e, {ci}i∈N)
7: Regard A as an allocation to U with |U | = 3.
8: Find a vertex u∗ ∈ U such that GA′ has a perfect matching,
9: where A′ is the allocation to U obtained from A by adding e to Au∗ .

10: Au∗ ← Au∗ ∪ e
11: Find a perfect matching X on GA.
12: Construct the allocation A∗ by allocating each chore set to the matched agent in X.
13: return A∗

14: else if there are no small chores only for one agent in M then
15: return a round-robin allocation A∗ of M with respect to an arbitrary ordering
16: else
17: We assume that there exists e ∈M such that c1(e) = ε1 and c2(e) = c3(e) = 1,
18: renumbering if necessary.
19: if there are no small chores only for agent 2 or 3 in M \ e then
20: Compute a round-robin allocation S = (S1, S2, S3) on M \e s.t. r1 < min{r2, r3}.
21: Set A∗1 ← S1 ∪ e, A∗2 ← S2, A

∗
3 ← S3.

22: return A∗

23: else
24: We assume that there exists e′ ∈M \ e s.t. c1(e

′) = c3(e
′) = 1 and c2(e

′) = ε2.
25: Compute a round-robin allocation S = (S1, S2, S3) on M \{e, e′} s.t. r1 < r2 < r3.
26: Set A∗1 ← S1 ∪ e, A∗2 ← S2 ∪ e′, A∗3 ← S3.
27: return A∗

Proof of Theorem 5.1. We first show the correctness of Algorithm 4 by induction on m. For the
base case of m ≤ 3, the algorithm trivially returns an EFX allocation. For the inductive step, we
assume that the algorithm returns an EFX allocation when the number of chores is less than m.

Case 1: There exists a chore e which is consistently small or large only for one agent in M .
Let A = (Ai)i∈N be an EFX allocation of M\e, whose existence is guaranteed by the induction
hypothesis. We regard A as an allocation to U by using an arbitrary bijection between N and
U . Note that EFX-graph GA has a perfect matching since A = (Ai)i∈N is an EFX allocation.

Case 1-1: e is a consistently small chore.
By Observation 2.2 (iii), there exists a perfect matching X in GA such that (i,X(i)) ∈

13

e1 e2 e3 · · ·
agent 1 1 1 1 · · ·
agent 2 1 1 1 · · ·
agent 3 1 1 1 · · ·

Table 2: Situation in Case 2

e · · ·
agent 1 ε1 · · ·
agent 2 1 1 1 · · ·
agent 3 1 1 1 · · ·

Table 3: Situation in Case 3-1

e e′ · · ·
agent 1 ε1 1 · · ·
agent 2 1 ε2 · · ·
agent 3 1 1 · · ·

Table 4: Situation in Case 3-2

Emin
A for some i ∈ N . Since e is a consistently small chore, we have ci(e) = εi ≤ ci(e

′)
for any e′ ∈ M \ e. Thus, by applying Corollary 2.5, GA′ has a perfect matching X ′,
where A′ is the allocation to U of M obtained from A by adding e to AX(i).

Case 1-2: e is a large chore only for one agent.
We assume that c1(e) = ε1, c2(e) = ε2, and c3(e) = 1, renumbering if necessary. This
means that ci(e) ≤ ci(e′) for any i ∈ {1, 2} and e′ ∈M \e. Thus, by applying Lemma 4.2
for M ′ = M \ e, there exists a vertex u∗ ∈ U such that GA′ has a perfect matching,
where A′ is the allocation to U of M obtained from A by adding e to Au∗ .

In both cases, GA′ has a perfect matching. Therefore, the algorithm returns an EFX allocation
by Observation 2.3.

Case 2: All chores in M are consistently large (see Table 2).
In this case, any round-robin allocation A∗ gives an EFX allocation since it satisfies that
||A∗i | − |A∗j || ≤ 1 for any i, j ∈ N .

Case 3: Otherwise.
In this case, M consists of consistently large chores and small chores only for one agent, and
there is at least one small chore only for one agent. We assume that there exists e ∈M such
that c1(e) = ε1 and c2(e) = c3(e) = 1, renumbering if necessary.

Case 3-1: There are no small chores only for agent 2 or 3 in M \ e (see Table 3).
In this case, all chores in M \ e are consistently large or small only for agent 1. This
means that c2(e

′) = c3(e
′) = 1 for any e′ ∈ M \ e. Let S = (S1, S2, S3) be a

round-robin allocation of M \ e such that r1 < min{r2, r3}. Note that we can achieve
r1 < min{r2, r3} by choosing the ordering σ of the agents appropriately, because M \ e
contains at least three chores. We show that A∗ = (A∗1, A

∗
2, A

∗
3) is an EFX allo-

cation of M , where A∗1 = S1 ∪ e, A∗2 = S2, A
∗
3 = S3. By Lemma 5.2, we have

c1(S1) ≤ min{c1(S2), c1(S3)}. Thus, it holds that maxf∈A∗1 c1(A
∗
1 \ f) = c1(S1) ≤

min{c1(S2), c1(S3)} = min{c1(A∗2), c1(A∗3)}, which implies that agent 1 does not strongly
envy anyone. We also see that maxf∈A∗2 c2(A

∗
2 \ f) = |S2| − 1 ≤ |S3| = c2(A

∗
3) and

maxf∈A∗3 c3(A
∗
3 \ f) = |S3| − 1 ≤ |S2| = c3(A

∗
2), because ||S2| − |S3|| ≤ 1. Thus,

agents 2 and 3 do not strongly envy each other. Finally, for i ∈ {2, 3}, we have
ci(A

∗
i) = |Si| ≤ |S1| + 1 = ci(A

∗
1 ∪ e), which implies that agents 2 and 3 do not envy

agent 1. Therefore, A∗ = (A∗1, A
∗
2, A

∗
3) is an EFX allocation of M .

Case 3-2: There is a small chores only for agent 2 or 3 in M \ e.
In this case, we assume that there exists e′ ∈ M \ e such that c1(e

′) = c3(e
′) = 1

and c2(e
′) = ε2, renumbering if necessary (see Table 4). Let S = (S1, S2, S3) be a

round-robin allocation on M \ {e, e′} such that r1 < r2 < r3. Note that we can achieve

14

r1 < r2 < r3 by choosing the ordering σ of the agents appropriately, because M \ {e, e′}
contains at least two chores. We show that A∗ = (A∗1, A

∗
2, A

∗
3) is an EFX allocation of

M , where A∗1 = S1 ∪ e, A∗2 = S2 ∪ e′, A∗3 = S3. We have maxf∈A∗1 c1(A
∗
1 \ f) = c1(S1) ≤

min{c1(S2), c1(S3)} ≤ min{c1(A∗2), c1(A∗3)} by Lemma 5.2, which implies that agent 1
does not strongly envy anyone. We also have maxf∈A∗2 c2(A

∗
2\f) = c2(S2) ≤ min{c2(S1)+

1, c2(S3)} = min{c2(A∗1), c2(A∗3)}, where the inequality follows from Lemma 5.2. This
means that agent 2 does not strongly envy anyone. Finally, we have c3(A

∗
3) = c3(S3) ≤

min{c3(S1) + 1, c3(S2) + 1} = min{c3(A∗1), c3(A∗2)}, where the inequality follows from
Lemma 5.2. This means that agent 3 does not envy anyone. Therefore, A∗ = (A∗1, A

∗
2, A

∗
3)

is an EFX allocation of M .

We next show that Algorithm 4 runs in polynomial time. Each if-statement can be checked in O(m)
time. Finding a perfect matching in GA′ or constructing an allocation from a perfect matching can
be done in polynomial time. The round-robin algorithm also runs in polynomial time. Therefore,
Algorithm 4 runs in polynomial time.

Acknowledgments

This work was partially supported by the joint project of Kyoto University and Toyota Motor
Corporation, titled “Advanced Mathematical Science for Mobility Society” and by JSPS KAKENHI
Grant Number JP20K11692.

References

[1] Hannaneh Akrami, Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, and Ruta Mehta.
EFX allocations: Simplifications and improvements. arXiv preprint arXiv:2205.07638, 2022.

[2] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A. Voudouris.
Fair division of indivisible goods: A survey. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence (IJCAI), pages 5385–5393, 2022.

[3] Georgios Amanatidis, Evangelos Markakis, and Apostolos Ntokos. Multiple birds with one
stone: Beating 1/2 for EFX and GMMS via envy cycle elimination. Theoretical Computer
Science, 841:94–109, 2020.

[4] Haris Aziz, Bo Li, Hervé Moulin, and Xiaowei Wu. Algorithmic fair allocation of indivisible
items: A survey and new questions. ACM SIGecom Exchanges, 20(1):24–40, 2022.

[5] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for
any number of agents. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 416–427. IEEE, 2016.

[6] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation,
pages 557–574, 2018.

15

[7] Ben Berger, Avi Cohen, Michal Feldman, and Amos Fiat. Almost full EFX exists for four
agents. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
4826–4833, 2022.

[8] Umang Bhaskar, AR Sricharan, and Rohit Vaish. On approximate envy-freeness for indivisible
chores and mixed resources. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 2021.

[9] Steven John Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

[10] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook
of computational social choice. Cambridge University Press, 2016.

[11] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[12] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high
Nash welfare: The virtue of donating items. In Proceedings of the 20th ACM Conference on
Economics and Computation, pages 527–545, 2019.

[13] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. In Proceedings of the
2016 ACM Conference on Economics and Computation, pages 305–322, 2016.

[14] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. ACM Transactions on
Economics and Computation (TEAC), 7(3):1–32, 2019.

[15] Bhaskar Ray Chaudhury, Jugal Garg, and Kurt Mehlhorn. EFX exists for three agents. In
Proceedings of the 21st ACM Conference on Economics and Computation (EC), pages 1–19,
2020.

[16] Xingyu Chen and Zijie Liu. The fairness of leximin in allocation of indivisible chores. arXiv
preprint arXiv:2005.04864, 2020.

[17] Sina Dehghani, Alireza Farhadi, MohammadTaghi HajiAghayi, and Hadi Yami. Envy-free
chore division for an arbitrary number of agents. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2564–2583. SIAM, 2018.

[18] Alireza Farhadi, MohammadTaghi Hajiaghayi, Mohamad Latifian, Masoud Seddighin, and
Hadi Yami. Almost envy-freeness, envy-rank, and nash social welfare matchings. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 5355–5362, 2021.

[19] Duncan Karl Foley. Resource allocation and the public sector. Yale University, 1966.

[20] Yotam Gafni, Xin Huang, Ron Lavi, and Inbal Talgam-Cohen. Unified fair allocation of goods
and chores via copies. arXiv preprint arXiv:2109.08671, 2021.

[21] Bo Li, Yingkai Li, and Xiaowei Wu. Almost (weighted) proportional allocations for indivisible
chores. In Proceedings of the ACM Web Conference 2022, pages 122–131, 2022.

16

[22] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately
fair allocations of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic
Commerce, pages 125–131, 2004.

[23] Ryoga Mahara. Extension of additive valuations to general valuations on the existence of EFX.
In 29th Annual European Symposium on Algorithms (ESA), 2021.

[24] Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

[25] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. SIAM
Journal on Discrete Mathematics, 34(2):1039–1068, 2020.

[26] Ariel D Procaccia. Technical perspective: An answer to fair division’s most enigmatic question.
Communications of the ACM, 63(4):118–118, 2020.

[27] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can, 1998.

[28] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

[29] Lang Yin and Ruta Mehta. On the envy-free allocation of chores. arXiv preprint
arXiv:2211.15836, 2022.

[30] Shengwei Zhou and Xiaowei Wu. Approximately EFX allocations for indivisible chores. arXiv
preprint arXiv:2109.07313, 2021.

17

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Existence of EFX with at most 2n Chores
	4 When n-1 Agents Have Identical Ordering Cost Functions
	5 Personalized Bi-valued Instances

