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Abstract

In fair division problems, the notion of price of fairness measures the loss in welfare due to
a fairness constraint. Prior work on the price of fairness has focused primarily on envy-freeness
up to one good (EF1) as the fairness constraint, and on the utilitarian and egalitarian welfare
measures. Our work instead focuses on the price of equitability up to one good (EQ1) (which
we term price of equity) and considers the broad class of generalized p-mean welfare measures
(which includes utilitarian, egalitarian, and Nash welfare as special cases). We derive fine-
grained bounds on the price of equity in terms of the number of agent types (i.e., the maximum
number of agents with distinct valuations), which allows us to identify scenarios where the
existing bounds in terms of the number of agents are overly pessimistic.

Our work focuses on the setting with binary additive valuations, and obtains upper and
lower bounds on the price of equity for p-mean welfare for all p ⩽ 1. For any fixed p, our
bounds are tight up to constant factors. A useful insight of our work is to identify the structure
of allocations that underlie the upper (respectively, the lower) bounds simultaneously for all
p-mean welfare measures, thus providing a unified structural understanding of price of fairness
in this setting. This structural understanding, in fact, extends to the more general class of
binary submodular (or matroid rank) valuations. We also show that, unlike binary additive
valuations, for binary submodular valuations the number of agent types does not provide
bounds on the price of equity.

1 Introduction
Tradeoffs are inevitable when we pursue multiple optimization objectives that are typically not
simultaneously achievable. Quantifying such tradeoffs is a fundamental problem in computation,
game theory, and economics. Our focus in this work is on the “price of fairness” in the context of
fair division problems, which is a notion that captures tradeoffs between fairness and welfare.

Recall that a fair division instance in the discrete setting involves a set of n agents N =

{1, 2, . . . , n}, m indivisible goods M = {g1, . . . , gm}, and V := {v1, v2, . . . , vn}, a valuation profile
consisting of each agent’s valuation of the goods. For any agent i ∈ N, its valuation function
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vi : 2M → N ∪ {0} specifies its numerical value (or utility) for every subset of goods in M. We
will assume that the valuations are normalised, that is, for all i ∈ N, vi(M) = W, where W is
the normalisation constant. Our goal is to devise an allocation of goods to agents; defined as
an ordered partition1 of the m goods into n “bundles”, where the bundles are (possibly empty)
subsets of M, and the convention is that the ith bundle in the partition is the set of goods assigned
to the agent i.

The welfare of an allocation is a measure of the utility that the agents derive from the allocation.
For additive valuations, the individual utility that an agent i derives from their bundle Ai is simply
the sum of the values that they have for the goods in Ai. The overall welfare of an allocation A is
typically defined by aggregating individual utilities in various ways. Not surprisingly, there are
several notions of welfare corresponding to different approaches to consolidating the individual
utilities. For instance, the utilitarian social welfare is the sum of utilities of agents under A; the
egalitarian social welfare is the lowest utility achieved by any agent with respect to A; and the Nash
social welfare is the geometric mean of utilities of agents under A. One may view all of these welfare
notions as special cases of the p-mean welfare (where p ∈ (−∞, 0) ∪ (0, 1]), which is defined as

the generalized p-mean of utilities of agents under A, i.e., Wp(A) :=
(

1
n ∑i∈N

(
vi(Ai)

)p
)1/p

. Note
that for p > 1, the p-mean optimal allocation tends to concentrate the distribution among fewer
agents (consider the simple case of two identical agents with additive valuations who value each
of two goods at 1), which is contrary to the spirit of fairness. Hence we focus on p ⩽ 1.

A natural goal for a fair division problem is to obtain an allocation that maximizes the
overall welfare. However, observe that optimizing exclusively for welfare can lead to undesirable
allocations. To see this, consider an instance with additive valuations where all the valuation
functions are the same, i.e., the utility of any good g is the same for all agents in N. In this case,
every allocation has the same utilitarian welfare. So, when we only optimize for—in this example,
utilitarian—welfare, we have no way of distinguishing between, say, the allocation that allocates
all goods to one agent and one that distributes the goods more evenly among the agents. To
remedy this, one is typically interested in allocations that not only maximize welfare, but are also
“fair”.

There are several notions of fairness studied in the literature. Consider an allocation A =

(A1, . . . , An). We say that A is envy-free (EF) if for any pair of agents i and k, we have that i
values Ai at least as much as they value Ak, i.e., vi(Ai) ⩾ vi(Ak); and equitable (EQ) if every pair
of agents i and k value their respective bundles equally, i.e., vi(Ai) = vk(Ak). While both these
fairness goals are natural, they may not be achievable, such as in a trivial instance with one good
valued positively by two agents. This has motivated several approximations, and in particular, the
notions of envy-freeness up to one good and equitability up to one good have been widely studied. The
allocation A is envy-free up to one good (EF1) if for any pair of agents i, k ∈ N such that Ak ̸= ∅,
there is a good g ∈ Ak such that vi(Ai) ⩾ vi(Ak \ {g}). Analogously, A is equitable up to one
good (EQ1) if for any pair of agents i, k ∈ N such that Ak ̸= ∅, there is a good g ∈ Ak such that
vi(Ai) ⩾ vk(Ak \ {g}). For instances with additive valuations (and somewhat beyond), EF1 (and,
similarly, EQ1) allocations are guaranteed to exist.

The price of fairness is informally the cost of achieving a specific fairness notion, where the
cost is viewed through the lens of a particular welfare concept. For a fairness notion F (such

1Unless otherwise specified, we implicitly assume that allocations are complete, i.e., every good is assigned to some
agent.
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as EQ1 or EF1) and a welfare notion W (such as egalitarian or utilitarian welfare), the price of
fairness is the “worst-case ratio” of the maximum welfare (measured by W) that can be obtained
by any allocation, to the maximum welfare that can be obtained among allocations that are fair
according to F . For example, it is known from the work of Caragiannis et al. [2019] that under
additive valuations, any allocation that maximizes the Nash social welfare satisfies EF1. Thus,
the price of fairness of EF1 with respect to Nash social welfare is 1. Further, Barman et al. [2020]
show that the price of EF1 with respect to utilitarian welfare is O(

√
n) for normalised subadditive

valuations.
In this contribution, we focus on bounds for the price of fairness in the context of EQ1, a notion

that we will henceforth refer to as the price of equity (PoE) when there is no ambiguity. Much of the
existing literature on price of fairness analysis focuses on specific welfare measures (e.g., utilitarian,
egalitarian, and Nash social welfare). Our work deviates from this trend by analyzing the entire
family of generalized p-mean welfare measures (i.e., for all p ⩽ 1); recall that this captures the
notions of egalitarian, utilitarian, and Nash welfare as special cases. Our results therefore address
the behavior of the price of equity for a wide spectrum of welfare notions.

Further, we obtain bounds in terms of the number of agent types — which we denote by r —
rather than the total number of agents. The number of agent types of a fair division instance is the
largest number of agents whose valuations are mutually distinct: in other words, it is the number
of distinct valuation functions in the instance. Note that the number of agent types is potentially
much smaller than the total number of agents. The notion of agent types has been popular in
the fair division literature for the reason that it is a natural quantification of the “simplicity” of
the structure of the instance as given by the valuations. Note that the well-studied special case
of identical valuations is equivalent to the class of instances for which r = 1, and therefore one
might interpret parameterizing by r as a smooth generalization of the case of identical valuations.
For a representative selection of studies that focus on instances with a bounded number of agent
types, we refer the reader to [Bliem et al., 2016, Bouveret et al., 2017, Garg et al., 2021, Brânzei
et al., 2016].

We restrict ourselves to the setting of binary submodular (also known as matroid rank) valuations.
A valuation function vi is submodular if for any subsets of goods S, S′ ⊆ M such that S ⊆ S′, and
for any good g ̸∈ S′, vi(S ∪ g)− vi(S) ⩾ vi(S′ ∪ g)− vi(S′). That is, the marginal value of adding
g to S is at least that of adding g to a superset of S. Valuation vi is binary submodular if for any
subset of goods S ⊆ M and any good g, the marginal value vi(S ∪ g)− vi(S) ∈ {0, 1}. Binary
submodular valuations are frequently studied in fair division and are considered to be a useful
special case such as in allocating items under a budget, or with exogenous quotas [Benabbou et al.,
2021, Viswanathan and Zick, 2023]. It also provides algorithmic leverage: many computational
questions of interest that are hard in general turn out to be tractable once we restrict our attention
to binary submodular valuations. As an example, while it is NP-hard to compute a Nash social
welfare maximizing allocation even for identical additive valuations [Roos and Rothe, 2010],
such an allocation can be computed in polynomial time under binary submodular valuations in
conjunction with other desirable properties such as strategyproofness, envy-freeness up to any
good, and ex-ante envy-freeness [Babaioff et al., 2021].

A strict subset of binary submodular valuations is the class of binary additive valuations—this
is a subclass of additive valuations wherein each value vi(g) is either 0 or 1. Binary additive
valuations provide a simple way for agents to express their preferences as they naturally align
with the idea of agents “approving” or “rejecting” goods. These are also widely studied in the
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PoE
Agent types (r)

Lower bound Upper bound

Utilitarian welfare (p = 1) r − 1 r

Nash welfare (p = 0) (r−1)/e
ln(r−1)

(r−1)
ln(r−1)/e

Egalitarian welfare (p → −∞) 1 1 [Sun et al., 2023]

p ∈ (0, 1) p(r − 1)/e 2r − 1

p ∈ (−1, 0) 21/p(r − 1)1/(1−p) 2−1/p(−p)1/p(1−p)(r − 1)1/(1−p)

p ⩽ −1 21/p(r − 1)1/(1−p) 2(r − 1)1/(1−p)

Table 1: Summary of results for the price of equity (PoE). Each cell indicates either the lower or
the upper bound (columns) on PoE for a specific welfare measure (rows) as a function of the
number of agent types r. Our contributions are highlighted by shaded boxes. The lower bounds
are from Theorem 2, while the upper bounds are shown in Theorem 3 and Theorem 4. Section 9.3
in the appendix presents the upper and lower bounds graphically as a function of r, for p = 1,
p = 0, p = −1, and p = −10.

literature on fair division, for example, see [Ortega, 2020, Kyropoulou et al., 2020, Babaioff et al.,
2021, Amanatidis et al., 2021, Aziz and Rey, 2021]. In the case of voting too, binary additive
valuations play a role. Darmann and Schauer [2015] consider the complexity of maximizing Nash
social welfare when scores inherent in classical voting procedures are used to associate utilities
with the agents’ preferences, and find that the case of approval ballots — which happen to lead to
binary additive valuations — are a tractable subclass.

Our Contributions and Techniques

We now turn to a discussion of our findings (see Table 1 for a summary of our results for binary
additive valuations). Given an instance of fair division with binary submodular valuations,
let A⋆ be an allocation that maximizes the Nash social welfare. It is implicit from the results
of Benabbou et al. [2021] that A⋆ also has maximum p-mean welfare for all p ⩽ 1 (for details,
refer to Section 3.1). We show an analogous result for EQ1 allocations, by demonstrating that
there exists an EQ1 allocation (which we call B, or the truncated allocation) that maximizes the
p-mean welfare for all p. To this end, in allocation A⋆, let i be an agent with minimum value, and
let ℓ = vi(A⋆

i ). If the allocation is not already EQ1, then we reallocate “excess” goods from the
bundles of agents who value their bundles at more than ℓ+ 1 and give them to agent i. Notice
that agent i must have marginal value 0 for all these excess goods, otherwise this reallocation
would improve the Nash welfare. It turns out that this allocation B is EQ1 and also has — among
EQ1 allocations — the highest p-mean welfare.
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Theorem 1. For any p ∈ R ∪ {−∞} and binary submodular valuations, the p-mean welfare of the
truncated allocation B is at least that of any other EQ1 allocation.

Notice that together with the result of Benabbou et al. [2021], Theorem 1 allows us to focus
only on the maximum Nash social welfare allocation A⋆ and the truncated allocation B to obtain
upper bounds on the PoE for all p ⩽ 1 simultaneously.

We now describe our bounds on the PoE for binary additive valuations. Our lower bounds
are based on varying parameters in a single basic instance. The parameters are r, the number of
agent types, and W, the normalisation constant for the agents. Given r and W, the instance has
m = rW goods, divided into r groups of W goods each. The groups are M1, M2, . . ., Mr. There
are W + 1 agents who value all the goods in M1 at 1 each and everything else at 0. Further, for
each 2 ⩽ i ⩽ r, we have exactly one agent who values the goods in Mi and nothing else.

To summarize, we have W + 1 agents of the first type, who have a common interest in W goods.
Any allocation must leave one of these agents with zero value. Beyond these coveted goods, each
of the remaining goods is valued by exactly one agent. A welfare maximizing allocation will
allocate each good in M2 ∪ · · · ∪ Mr to the unique agent who values it; however, an EQ1 allocation
is constrained by the fact that an agent of the first type must get value 0.2 It turns out that using
this family of instances, we can obtain the following bounds.

Theorem 2 (PoE lower bounds). Let s := r − 1. The price of equity for binary additive valuations is at
least:

1. s, for p = 1,

2. p
e s, for p ∈ (0, 1),

3. s
e ln s , for p = 0,

4. 21/ps1/(1−p), for p < 0.

We now turn to the upper bounds for binary additive valuations. It turns out that the PoE for
utilitarian welfare is bounded by the rank of the instance, where the rank is simply the rank of
the n × m matrix {vi(gj)}1⩽i⩽n;1⩽j⩽m. Observe that the rank is a lower bound for the number of
agent types, so this result also implies an upper bound of r on the PoE. In fact, the rank could be
logarithmic in the number of agent types, and hence this is a significantly tighter bound than the
number of agent types.

To obtain this upper bound, in allocation B (which, as shown in Theorem 1, maximizes the
utilitarian welfare among EQ1 allocations) we show that the number of wasted goods is at most
m(1 − 1

k ), where k is the rank of the instance. This implies the theorem.

Theorem 3 (Utilitarian PoE upper bound). Under binary additive valuations and utilitarian welfare as
the objective, the price of equity is at most the rank of the instance.

For other values of p, we obtain the following upper bounds.

2For p ⩽ 0, we use the standard convention that allocation A is a p-mean optimal allocation if (a) it maximizes
number of agents with positive value, and (b) among all allocations that satisfy (a), maximizes the p-mean welfare
when restricted to agents with positive value.
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Theorem 4 (PoE upper bounds). Let s := r − 1. The price of equity for binary additive valuations is at
most

1. 1 + s for p = 1

2. 1 + 2s for p ∈ (0, 1)

3. s
ln(s/e) for p = 0 (i.e., the Nash social welfare)

4. s1/(1−p)2−1/p(−1/p)1/p(p−1) for p ∈ (−1, 0)

5. 2s1/(1−p) for p ⩽ −1

We note that for any fixed p, the lower bounds (Theorem 2) and upper bounds (Theorem 4)
are within a constant factor of each other.

Conceptually, for the proof of the upper bounds, we show that the worst case for the PoE is in
fact the family of instances used for showing our lower bounds in Theorem 2. In particular, any
instance can be transformed into one belonging to the lower bound family, without improving the
PoE. Note that for the PoE, we can focus on the allocations A⋆ and B irrespective of the p-mean
welfare measure, since these maximize the p-mean welfare for all p ⩽ 1 simultaneously. For a
given instance, let l be the minimum value of any agent in A⋆. We divide the agent types into
two groups: types for which every agent has value at most l + 1 in A⋆, and types for which an
agent has value > l + 1. Note that for a type in the first group, each agent of this type retains its
value in B, while for a type in the second group, the value of each agent of this type is truncated
to l + 1. Our proof shows that agents in the first group must have total value at least W, as in the
lower bound example. We also use W as an upper bound for the total value of each agent type in
the second group. Then letting α be the fraction of agents in the first group, and optimizing over
α, gives us the required upper bounds.

We then consider the PoE for binary additive valuations with the additional structure that both
the rows and the columns are normalised. That is, each agent values exactly W goods, and each
good is valued by exactly Wc agents. For such doubly normalised instances, we show the PoE is 1.

Theorem 5. For doubly normalised instances under binary additive valuations, the PoE for the p-mean
welfare is 1 for all p ⩽ 1.

Finally, we obtain bounds on the PoE for binary submodular valuations. For identical
valuations, it follows from similar results for EF1 that the PoE is 1.

Proposition 6. When all agents have identical binary submodular valuations, the PoE is 1 for p-mean
welfare measure for all p ⩽ 1.

However, this is the best that can be obtained, in the sense that even with just two agent types,
the PoE for utilitarian welfare is at least n/6, where n is the number of agents. Hence we cannot
obtain bounds on the PoE that depend on the number of agent types, as we did for binary additive
valuations.

Theorem 7. The PoE for utilitarian welfare when agents have binary submodular valuations is at least
n/6 (where n is the number of agents), even when there are just two types of agents.

Nonetheless, we do obtain an upper bound of 2n on the PoE for binary submodular valuations.

Theorem 8. For binary submodular valuations and any p ⩽ 1, the PoE for p-mean welfare is at most 2n.
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Related Work

The notion of price of fairness was proposed in the works of Bertsimas et al. [2011] and Caragiannis
et al. [2012]. These formulations were inspired from similar notions in game theory—specifically,
price of stability and price of anarchy—that capture the loss in social welfare due to strategic
behavior.3 Caragiannis et al. [2012] studied the price of fairness for divisible and indivisible
resources under three fairness notions: proportionality [Steinhaus, 1948], envy-freeness [Gamow and
Stern, 1958, Foley, 1967], and equitability [Dubins and Spanier, 1961]. For indivisible resources,
they defined price of fairness only with respect to those instances that admit some allocation
satisfying the fairness criterion.

Recently, Bei et al. [2021] studied price of fairness for indivisible goods for fairness notions
whose existence is guaranteed; in particular, they studied envy-freeness up to one good (EF1) and
maximum Nash welfare allocations.4 In a similar vein, Sun et al. [2021] studied price of fairness for
allocating indivisible chores for different relaxations of envy-freeness and maximin share. Perhaps
closest to our work is a recent paper by Sun et al. [2023]. This work studies price of equity and
price of equitability for any item (EQX) for indivisible goods as well as indivisible chores under
utilitarian and egalitarian welfare. The valuations are assumed to be additive but not necessarily
binary. For indivisible goods, the price of equity is shown to be between n − 1 and 3n, where n is
the number of agents, while for egalitarian welfare, a tight bound of 1 is provided.

2 Preliminaries
Problem instance. An instance of the fair division problem is specified by a tuple ⟨N, M,V⟩,
where N = {1, 2, . . . . , n} is a set of n ∈ N agents, M = {g1, . . . , gm} is a set of m indivisible goods,
and V := {v1, v2, . . . , vn} is the valuation profile consisting of each agent’s valuation function. For
any agent i ∈ N, its valuation function vi : 2M → N ∪ {0} specifies its numerical value (or utility)
for every subset of goods in M. For simplicity, for a valuation function v, we will denote v({g})
as v(g).

Agents i and j are said to be of the same type if their valuation functions are identical, i.e., if
for every subset of goods S ⊆ M, vi(s) = vj(S). We will use r to denote the number of distinct
agent types in an instance. Further, an instance is normalised if for some constant W, vi(M) = W
for all agents i. Our work focuses on instances with normalised valuations, since there are
trivial instances where the price of equity for any p-mean welfare for p ∈ R is large without this
assumption (e.g., the simple instance with 2 agents and k goods, where agent 1 has value 1 for the
first good and zero for the others, and agent 2 has value 1 for all goods, has price of equity k/3
for the utilitarian welfare).

Classes of valuation functions. A valuation function v is:

• monotone if for any two subsets of goods S and T such that S ⊆ T, we have v(S) ⩽ v(T),

• monotone submodular (or simply submodular) if it is monotone and for any two subsets of
goods S and T such that S ⊆ T and any good g ∈ M \ T, we have v(S ∪ {g})− v(S) ⩾

3Price of anarchy was defined by Koutsoupias and Papadimitriou [2009] and subsequently studied in the notable
work of Roughgarden and Tardos [2002], while price of stability was defined by Anshelevich et al. [2008].

4The EF1 notion was formulated by Budish [2011] although subsequently it was observed that an algorithm of Lipton
et al. [2004] achieves this guarantee for monotone valuations. The Nash social welfare function was originally proposed
in the context of the bargaining problem [Nash Jr, 1950] and subsequently studied for resource allocation problems
by Eisenberg and Gale [1959].
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v(T ∪ {g})− v(T),

• additive if for any subset of goods S ⊆ M, we have v(S) = ∑g∈S v(g),

• binary submodular (or matroid rank) if it is submodular and for any subset S ⊆ M and any
good g ∈ M \ S, we have v(S ∪ {g})− v(S) ∈ {0, 1}, and

• binary additive if it is additive and for any good g ∈ M, v({g}) ∈ {0, 1}.

The containment relations between these classes are as follows:

Binary additive ⊆ Additive ⊆ Submodular ⊆ Monotone

and
Binary additive ⊆ Binary submodular ⊆ Submodular ⊆ Monotone.

The domains of additive and binary submodular valuations are incomparable in the sense that an
instance belonging to one class may not belong to the other.

We will primarily focus on binary submodular valuations in Section 3 and 7, and on binary
additive valuations in Section 4, 5, and 6.

Allocation. A bundle refers to any (possibly empty) subset of goods. An allocation A :=
(A1, . . . , An) is a partition of the set of goods M into n bundles; here, Ai denotes the bundle
assigned to agent i.

Given an allocation A, we say that agent i values good g if vi(Ai ∪ {g}) > vi(Ai \ {g}). Thus
if g ∈ Ai, then removing g decreases i’s value. Else, assigning g to Ai increases i’s value. For
additive valuations, specifying an allocation is unnecessary, and we say i values g if vi({g}) = 1.

Further, for an allocation A, we say a good g ∈ Ai is wasted if vi(Ai \ {g}) = vi(Ai), i.e.,
if removing it does not change the value of agent i. For additive valuations, this implies that
vi(g) = 0. We say an allocation (possibly partial) is wasteful if some good is wasted (and is
non-wasteful or clean otherwise). If A is a clean allocation, then for binary submodular valuations,
for each agent i, vi(Ai) = |Ai|.
Fairness notions. An allocation A = (A1, . . . , An) is said to be:

• envy-free (EF) if for any pair of agents i, k ∈ N, we have vi(Ai) ⩾ vi(Ak) [Gamow and Stern,
1958, Foley, 1967],

• envy-free up to one good (EF1) if for any pair of agents i, k ∈ N such that Ak ̸= ∅, there is a
good g ∈ Ak such that vi(Ai) ⩾ vi(Ak \ {g}) [Budish, 2011, Lipton et al., 2004],

• equitable (EQ) if for any pair of agents i, k ∈ N, we have vi(Ai) = vk(Ak) [Dubins and Spanier,
1961], and

• equitable up to one good (EQ1) if for any pair of agents i, k ∈ N such that Ak ̸= ∅, there is a
good g ∈ Ak such that vi(Ai) ⩾ vk(Ak \ {g}) [Gourvès et al., 2014, Freeman et al., 2019].

Note that if all agents are identical (i.e., they are of the same type), then the notions of EF1
and EQ1 (and similarly, EF and EQ) coincide.
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Pareto optimality. An allocation A = (A1, . . . , An) is said to be Pareto dominated by another
allocation B = (B1, . . . , Bn) if for every agent i ∈ N, vi(Bi) ⩾ vi(Ai) and for some agent k ∈ N,
vk(Bk) > vk(Ak). A Pareto optimal allocation is one that is not Pareto dominated by any other
allocation.

Welfare measures. We will now discuss various welfare measures associated with an allocation
A.

• Utilitarian social welfare is the sum of utilities of agents under A, i.e., Wutil(A) := ∑i∈N vi(Ai).

• Egalitarian social welfare is the utility of the least-happy agent under A, i.e., Wegal(A) :=
mini∈N vi(Ai).

• Nash social welfare is the geometric mean of utilities of agents under A, i.e., WNash(A) :=
(Πi∈Nvi(Ai))

1/n, and

• for any p ∈ R, the p-mean welfare is the generalized p-mean of utilities of agents under A,
i.e., Wp(A) :=

( 1
n ∑i∈N vp

i (Ai)
)1/p

.

For any p ∈ R, the p-mean welfare is a strictly increasing, symmetric function of the agent
values. It can be observed that utilitarian, egalitarian, and Nash welfare are all special cases of
p-mean welfare for p = 1, p → −∞, and p → 0, respectively [Moulin, 2004].

Given an instance, it may be that in every allocation, some agent gets zero value. In this case,
we need to redefine the p-mean welfare. We fix a largest subset of agents S that can simultaneously

get positive value in an allocation, and then define Wp(A) =
(

1
|S| ∑i∈S vp

i (Ai)
)1/p

. This follows
prior work on the Nash welfare, e.g., [Caragiannis et al., 2019, Benabbou et al., 2021].

A leximin allocation is one which maximizes the minimum utility, then subject to that, it
maximizes the second minimum, and so on. Thus a leximin allocation also maximizes the
egalitarian welfare.

Price of fairness. Given a fairness notion F (e.g., EF1, EQ1) and a p-mean welfare measure, the
price of fairness of F with respect to a welfare measure Wp is the supremum over all fair division
instances with n agents and m goods of the ratio of the maximum welfare (according to Wp) of
any allocation and the maximum welfare of any allocation that satisfies F .

Formally, let In,m denote the set of all fair division instances with n agents and m items. Let
A(I) denote the set of all allocations in the instance I, and further let AF (I) denote the set of all
allocations in the instance I that satisfy the fairness notion F .

Then, the price of fairness (PoF) of the fairness notion F with respect to the welfare measure
Wp is defined as:

PoF(F ,Wp) := sup
I∈In,m

maxA∗∈A(I) Wp(A∗)

maxB∈AF (I) Wp(B)
.

As indicated earlier, throughout this paper we will focus on equitability up to one good (EQ1)
as the fairness notion of choice (i.e., F is EQ1). For notational simplicity, we will just write PoF
instead of PoF(F ,W) whenever the welfare measure W is clear from context, and we will refer to
this ratio as the price of equity (PoE) whenever the fairness notion in question is EQ1.

9



2.1 Some properties of p-mean welfare

We state here some basic properties of the p-mean welfare that will be useful in due course.

Claim 9. For all p < 1, the p-mean welfare is a concave function of the agent valuations.

This proof was shown by Ahle. We reproduce it here for completeness.

Proof. Consider f (x) =
(
Σix

p
i

)1/p
. The Hessian matrix H is then given by:

Hij = (1 − p) f 1−2p A where Aij =

{
−xp−2

i Σk ̸=ix
p
k if i = j

xp−1
i xp−1

j if i ̸= j

For p ⩽ 1, the matrix H is negative semidefinite, since the initial coefficient (1 − p) f 1−2p ⩾ 0, and
for any vector v,

vT Av =

(
n

∑
i=1

vix
p−1
i

)2

−
n

∑
i=1

v2
i xp−2

i ∑
j

xp
i ⩽ 0

where the last inequality follows by applying the Cauchy-Schwarz inequality5 to
(
vixp/2−1) ·(

xp/2
i

)
. Hence, the function f is concave.

Corollary 10. Given a vector of values for n agents x ∈ Rn
+ and a subset S ⊆ N of agents, let x′ be the

vector where x′i = xi if i ̸∈ S, and x′i = ∑j∈S xj/|S| if i ∈ S. Then for all p ⩽ 1,(
1
n

n

∑
i=1

(xi)
p

)1/p

⩽

(
1
n

n

∑
i=1

(x′i)
p

)1/p

,

i.e., averaging out the value for a subset of agents weakly increases the p-mean welfare.

Claim 11. Given l ∈ N, and a vector (x1, . . . , xl) ∈ Rl
+, for p ∈ [0, 1],

1
l

l

∑
i=1

x1−p
i ⩽

(
1
l

l

∑
i=1

xi

)1−p

,

while for p < 0, the opposite inequality holds.

Proof. For p ∈ {0, 1}, the claim can be seen by simply substituting these values. For p ∈ (0, 1), the
function f (x) = x1−p is concave, hence an application of Jensen’s inequality gives us the claim. For
p < 0, the function f (x) = x1−p is convex, hence again, Jensen’s inequality gives us the claim.

3 Optimal allocations for binary submodular valuations
We first show that for obtaining bounds on the price of equity for the class of binary submodular
valuations (and hence, for binary additive valuations), we can focus on two allocations: the first is
the Nash welfare optimal allocation A⋆, which obtains the optimal p-mean welfare for all p ⩽ 1,
and the second is the truncated allocation B, which obtains the optimal p-mean welfare among all
EQ1 allocations for all p ∈ R ∪ {−∞}.

5For any vectors a, b, (∑i aibi)
2 ⩽ (∑i a2

i )× (∑i b2
i )
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3.1 An optimal p-mean welfare allocation

Benabbou et al. [2021] show the following results.

Proposition 12 (Benabbou et al., 2021, Theorem 3.14). Let Φ : Zn → R be a symmetric strictly convex
function, and let Ψ : Zn → R be a symmetric strictly concave function. Let A be some allocation. For
binary submodular valuations, the following statements are equivalent:

1. A is a minimizer of Φ over all the utilitarian optimal allocations,

2. A is a maximizer of Ψ over all the utilitarian optimal allocations,

3. A is a leximin allocation, and

4. A maximizes Nash social welfare.

Proposition 13 (Benabbou et al., 2021, Theorem 3.11). For binary submodular valuations, any Pareto
optimal allocation is utilitarian optimal.

For p ⩽ 1, if the p-mean welfare function was strictly concave, then it would follow immediately
that the Nash welfare optimal allocation A⋆ in fact simultaneously maximizes the p-mean welfare
for all p ⩽ 1. However, in general the p-mean welfare is concave (Claim 9), but not strictly
concave. E.g., for any p ⩽ 1 and any vector of values v = (v1, . . . , vn) with vi > 0 for all
agents i, let us overload notation slightly and define Wp(v) =

( 1
n ∑n

i=1 vp
i

)1/p
. Then Wp(2v) =

(Wp(v) +Wp(3v))/2, violating strict concavity. However, we can slightly modify the proof of
Theorem 3.14 from Benabbou et al. [2021], to obtain the following result. The modified proof is in
Section 9.1 in the Appendix.

Proposition 14. For binary submodular valuations, any Nash welfare maximizing allocation (and hence,
leximin allocation) simultaneously maximizes the p-mean welfare for all p ⩽ 1.

3.2 An optimal p-mean welfare EQ1 allocation

We now show that similarly, there exists an EQ1 allocation B that maximizes the p-mean welfare
for all p. Given A⋆, allocation B is obtained as follows, which we call the truncated allocation. Let
l = mini vi(A⋆

i ) be the smallest value that any agent obtains in A⋆, and let il be an agent that has
this minimum value. Note that for any agent i, if vi(A⋆

i ) ⩾ l + 2, then all goods allocated to i
must have marginal value 0 for the agent il , i.e., for all g ∈ A⋆

i , vil (A⋆
il
∪ {g}) = vil (A⋆

il
) (else we

can increase the Nash social welfare by re-allocating any good that violates this to agent il).
For the EQ1 allocation that we would like to construct, for any agent i with vi(A⋆

i ) ⩾ l + 2, we
remove goods from A⋆

i until i’s value for the remaining bundle is l + 1. We allocate the removed
goods to agent il (that has marginal value 0 for these goods). Let B be the resulting allocation.
Then clearly, if vi(A⋆

i ) ∈ {l, l + 1}, then vi(Bi) = vi(A⋆
i ), else vi(Bi) = l + 1. Thus, allocation B,

our truncated NSW allocation, is EQ1.

Theorem 1. For any p ∈ R ∪ {−∞} and binary submodular valuations, the p-mean welfare of the
truncated allocation B is at least that of any other EQ1 allocation.

Proof. Let n1 be the number of agents that have value l in allocation B, and n2 be the number of
agents with value l + 1. Clearly, n = n1 + n2. Consider any other allocation C. We will show that

11



the following statement is true: either (i) there exists an agent i with vi(Ci) ⩽ l − 1, or (ii) if all
agents have value vi(Ci) ⩾ l, then at most n2 agents have value ⩾ l + 1 (and hence at least n1

agents have value ⩽ l).
Assuming the statement is true, if C is an EQ1 allocation, either (i) every agent has value ⩽ l,

or (ii) at most n2 agents have value l + 1, and at least n1 agents have value ⩽ l. It follows that
allocation B maximizes any symmetric non-decreasing function of agent valuations in the set of
EQ1 allocations, and hence B maximizes the p-mean welfare among all EQ1 allocations for all
p ∈ R. Since the minimum agent valuation in B is the same as in A⋆, which by Proposition 12
also maximizes the egalitarian welfare, allocation B maximizes the p-mean welfare for p = −∞ as
well.

Lastly, to prove the statement, by the truncation procedure that yields allocation B, the number
of agents |{i : vi(A⋆

i ) ⩾ l + 1}| that have value at least l + 1 in allocation A⋆ is also n2. Further, by
Proposition 12, A⋆ is also a leximin allocation, and hence no allocation in which every agent has
value at least l, can have more than n2 agents with value at least l + 1. The statement follows.

4 Lower Bounds on the PoE for Binary Additive Valuations
Theorem 2 (PoE lower bounds). Let s := r − 1. The price of equity for binary additive valuations is at
least:

1. s, for p = 1,

2. p
e s, for p ∈ (0, 1),

3. s
e ln s , for p = 0,

4. 21/ps1/(1−p), for p < 0.

Note that as p → −∞, 21/ps1/(1−p) → 1.

Proof. All our lower bounds are based on varying parameters in a single instance. The parameters
are r, the number of agent types, and W, the normalisation constant for the agents. Given r, W,
the instance has m = rW goods, divided into r groups of W goods each. The groups are M1, M2,
. . ., Mr. There are W + 1 agents of the first agent type, and 1 agent each of the remaining r − 1
types (thus, n = W + r). Agents of type t have value 1 for the goods in group Mt, and value 0 for
all other goods. The instance is thus disjoint; no good has positive value for agents of two different
types.

We note that following properties of our lower bound instance:

1. For any p ⩽ 1, an optimal p-mean welfare allocation has value 1 for W agents of the first
type, and value W for each of the remaining r − 1 agents.

2. For any p ⩽ 1, the EQ1 allocation with maximum p-mean welfare gives value 1 to all agents
except for one agent of the first type (since there are W + 1 agents of the first type, and only
W goods for which they have positive value).

We use Λp to denote the PoE for this instance. Then Λp is exactly

12



Λp =

(
1

W+r−1 (W × 1p + (r − 1)× Wp)
1

W+r−1 (W × 1p + (r − 1)× 1p)

)1/p

=

(
W + s × Wp

W + s

)1/p

.

Note that although there are W + r agents, in any allocation one agent must have value 0,
hence the p-mean average is taken over W + r − 1 agents. For each of the cases in the theorem, we
will now show how to choose W, s to obtain the bound claimed.

For p = 1, choose W = s2. Then

Λp ⩾
W + sW
W + s

=
s2 + s3

s2 + s
= s ,

giving the required bound.
For p ∈ (0, 1), choose W = ps. Then

Λp ⩾
(

W + s × Wp

W + s

)1/p

=

(
ps + s × (ps)p

ps + s

)1/p

=

(
p + (ps)p

p + 1

)1/p

⩾ ps(p + 1)−1/p ⩾ ps/e , since 1 + x ⩽ ex .

For p = 0, the p-mean welfare is the Nash social welfare. Note that in the EQ1 allocation, each
of W + s agents has value 1, hence the NSW is 1. In the optimal Nash social welfare allocation, W
agents have value 1, and s agents have value W, hence the NSW is Ws/W+s, which is also the PoE
for this instance. Now choose W = s/ ln s. Then

Λp ⩾ exp
s ln W
s + W

= exp
s(ln s − ln ln s)

s + s/ ln s
= exp

ln s − ln ln s
1 + 1/ ln s

⩾ exp
ln s − ln ln s

1 + 1/(ln s − ln ln s − 1)

= exp (ln s − ln ln s − 1) =
s

e ln s
.

Lastly, for p < 0, choose W so that W = sWp, or W = s1/(1−p). Then

Λp =

(
W + s × Wp

W + s

)1/p

=

(
2W

W + s

)1/p

= 21/p
(

Wp

1 + Wp

)1/p

⩾ 21/ps1/(1−p) ,

where the last inequality is because p < 0.
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5 Upper Bounds on the PoE for Binary Additive Valuations
We first consider the case of utilitarian welfare, and then present our results for p < 1.

5.1 Upper bounds on the PoE for p = 1

We assume that each good has value 1 for at least one agent, else the good can be removed without
consequence. Given an instance with binary additive valuations for the agents, for an agent i, we
overload notation and let vi := (vi(g))g∈M denote the vector of values for the individual goods.
Define V to be the matrix whose ith row is given by vi.

We say that an instance has rank k if the matrix V has rank k (equivalently, there are k linearly
independent valuation vectors among the agents). Note that the rank is a lower bound on both
the number of agent types, as well as the number of good types. Finally, since the rank is k,
we assume the agents are ordered so that the vectors v1, . . ., vk are linearly independent; the
corresponding agents are called basis agents.

Theorem 3 (Utilitarian PoE upper bound). Under binary additive valuations and utilitarian welfare as
the objective, the price of equity is at most the rank of the instance.

Proof. Let k denote the rank of the instance, and consider allocation B that maximizes the utilitarian
welfare among all EQ1 allocations. Recall that a good g is wasted if it is assigned to agent i such
that vi(g) = 0. We will show that the number of wasted goods is at most m(1 − 1

k ). Thus,
allocation A has social welfare at least m/k. Since the optimal social welfare is at most m, this
would be sufficient to prove the theorem.

Since allocation A is EQ1, there exists a utility level ℓ such that for each agent i, vi(Ai) ∈
{ℓ, ℓ+ 1}. We say an agent i is poor if vi(Ai) = ℓ, else agent i is rich. If vi(Ai) = ℓ for all agents,
then all agents are poor.

Suppose for a contradiction that strictly more than m(1 − 1
k ) goods are wasted. Consider a

wasted good g and a poor agent i. It must be true that vi(g) = 0, else we could assign g to i and
increase the utilitarian welfare while maintaining EQ1. Hence if agent i is poor, then vi(g) = 0 for
each wasted good g. Hence, vi(g) = 1 for strictly less than m/k goods. Then due to normalisation,
every agent has value 1 for strictly less than m/k goods. In particular, the k basis agents have
value 1 for strictly less than m/k goods each. Thus, there is a good — say g∗ — for which each
basis agent has value 0.

By definition, the value of each agent for g∗ is a linear combination of the values of the basis
agents for g∗. Since the basis agents have value 0 for g∗, it follows that every agent must have
value 0 for g∗, yielding the required contradiction.

It follows immediately from the theorem that the price of equity is also bounded by the number
of agent types.

Corollary 15. Under binary additive valuations and utilitarian welfare as the objective, the price of equity
is at most r, the number of agent types.

5.2 Upper bounds on the PoE for p < 1

From Proposition 12 and Theorem 1, to bound the PoE for any p < 1, it suffices to obtain an upper
bound on the ratio of the p-mean welfare for the two allocations A⋆ (which maximizes the Nash
welfare) and B (the truncated allocation).
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We will use various properties of the allocations A⋆ and B in the following proofs. To state
these, define Tk as the set of agents of type k, and let Sk be the set of goods allocated to agents
in Tk by A⋆. That is, Sk := ∪i∈Tk A⋆

i . Let mk := |Sk|, and nk := |Tk|. Then note that for each agent
i ∈ Tk,

vi(A⋆
i ) = |A⋆

i | ∈
{⌊mk

nk

⌋
,
⌈

mk

nk

⌉}
.

We reindex the types in increasing order of the averaged number of goods assigned by A⋆, so
that mi/ni ⩽ mi+1/ni+1. Now define

λ :=

{
⌈m1

n1
⌉ if m1/n1 is fractional

1 + m1
n1

if m1/n1 is integral .

Thus λ is integral, λ > m1/n1, and λ ⩾ 2 (since the p-mean welfare is only taken over agents
with positive valuation, m1 ⩾ n1). Note that in A⋆, the smallest value of any agent is ⌊m1/n1⌋, and
λ ⩽ 1 + ⌊m1/n1⌋. Hence agents with value at most λ in A⋆ will retain their value in allocation B,
by definition of B, while other agents will have their values truncated to λ.

Now let ρ be the highest index so that λ ⩾ mρ/nρ. Thus,

λ ⩾
∑

ρ
i=1 mi

∑
ρ
i=1 ni

. (1)

As stated above, any agent of type k ⩽ ρ will retain their value, i.e., vi(Bi) = vi(A⋆
i ) for an

agent i of type k ⩽ ρ.
We claim that agents of the first ρ types must have at least W goods assigned to them in A⋆.

Claim 16. ∑
ρ
i=1 mi ⩾ W.

Proof. For a contradiction, let ∑
ρ
i=1 mi < W. Since λ > m1/n1, there is an agent i⋆ of type 1 with

value vi(A⋆
i ) = λ− 1. Since ∑

ρ
i=1 mi < W, a good g that has value 1 for agents of type 1 is allocated

in A⋆ to an agent i′ of type k > ρ. Since mk/nk > λ by definition of ρ, there is an agent i′′ of type
k with value vi′′(A⋆

i′′) ⩾ λ + 1. Since A⋆ maximizes the Nash social welfare, any good h ∈ A⋆
i′′ has

value 1 for both agents i′′ and i′. Then it is easy to see that transferring any good from i′′ to i′, and
then transferring good g from i′ to i⋆, will increase the Nash social welfare. Since A⋆ maximizes
the Nash social welfare, we have a contradiction.

Then from (1) and Claim 16, we obtain

λ ⩾ W/
ρ

∑
i=1

ni . (2)

We now obtain a general expression for bounding the PoE for all p ⩽ 1. We will then optimize
this expression for different ranges of p, to obtain upper bounds on the PoE.

Lemma 17. The price of equity for p-mean welfare for instances with r types is at most

1. supα∈[0,1]

(
α + αpsp(1 − α)1−p)1/p for p < 0

2. supα∈[0,1]

( sα
1−α

)(1−α) for p = 0,
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3. supα∈[0,1]

(
α + 2pαpsp(1 − α)1−p)1/p for p ∈ (0, 1).

where as before, s = r − 1.

Proof. The p-mean welfare for the NSW optimal allocation A⋆ is

Wp(A⋆) =

(
1
n

n

∑
i=1

vi(A⋆
i )

p

)1/p

=

(
1
n

r

∑
k=1

∑
i∈Tk

vi(A⋆
i )

p

)1/p

,

where in the last expression, we partition the agents by their respective types.
We now consider the agent types k ⩽ ρ and k > ρ separately. For agents of type k > ρ,

we average out the values and replace their individual values by the average value mk/nk, and
use Corollary 10 to obtain

Wp(A⋆) ⩽

(
1
n

(
ρ

∑
k=1

∑
i∈Tk

vi(A⋆
i )

p +
r

∑
k=ρ+1

nk

(
mk

nk

)p
))1/p

.

The truncated allocation B is an EQ1 allocation, and we will consider the ratio Wp(A⋆)/Wp(B).
This is clearly an upper bound on the price of equity. For allocation B, recall that for agents i
of type k ⩽ ρ, vi(Bi) = vi(A⋆

i ) since these are not truncated, while for agents i of type k > ρ,
vi(Bi) = λ. Hence the PoE is

Wp(A⋆)

Wp(B)
⩽

∑
ρ
k=1 ∑i∈Tk

vi(A⋆
i )

p + ∑r
k=ρ+1 nk

(
mk
nk

)p

∑
ρ
k=1 ∑i∈Tk

vi(A⋆
i )

p + λp ∑r
k=ρ+1 nk


1/p

. (3)

We will split the rest of the analysis into three cases: (1) p < 0, (2) p > 0, and (3) p = 0.
Case I: p < 0
Noting that the first term in the numerator and the denominator in (3) is the same, to simplify

this further, we will use Proposition 18. The proposition is easily verified, and we skip a formal
proof.

Proposition 18. Consider non-negative real numbers x, y, a, b such that x ⩾ y, b ⩾ a, and y + a > 0.
Then for any fixed p < 0, (

x + a
x + b

)1/p

⩽
(

y + a
y + b

)1/p

.

In (3) we then let x = ∑
ρ
k=1 ∑i∈Tk

vi(A⋆
i )

p, y = λp ∑
ρ
k=1 nk, a = ∑r

k=ρ+1 nk

(
mk
nk

)p
, and b =

λp ∑r
k=ρ+1 nk. Then since x ⩾ y, b ⩾ a, and y + a > 0, from Proposition 18 we get

Wp(A⋆)

Wp(B)
⩽

λp ∑
ρ
k=1 nk + ∑r

k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

=

∑
ρ
k=1 nk

n
+

∑r
k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

.
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We define α := ∑
ρ
k=1 nk/n, i.e., the ratio of number of types that retain their values in B.

Replacing in the above expression, and using that λ ⩾ W/ ∑
ρ
i=1 ni from (2),

Wp(A⋆)

Wp(B)
⩽

α +
∑r

k=ρ+1 nk

(
mk
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

.

For each type k, mk ⩽ W, since for agents of each type at most W goods have positive value.
Hence

Wp(A⋆)

Wp(B)
⩽

α +
∑r

k=ρ+1 nk

(
W
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

=

α +
∑r

k=ρ+1 n1−p
k

n/
(
∑

ρ
i=1 ni

)p

1/p

=

(
α + αp

r

∑
k=ρ+1

(nk

n

)1−p
)1/p

.

We now use Claim 11, choosing xk = nk/n, which gives us

Wp(A⋆)

Wp(B)
⩽

α + αp(r − ρ)

(
∑r

k=ρ+1 nk

n(r − ρ)

)1−p
1/p

=

α + αp(r − ρ)p

(
n − ∑

ρ
k=1 nk

n

)1−p
1/p

=
(

α + αp(r − ρ)p(1 − α)1−p
)1/p

.

Finally, since ρ ⩾ 1, r − ρ ⩽ s (where we defined s = r − 1), hence we get the claim.
Case II: p > 0
Noting that the first term in the numerator and the denominator in (3) is the same, to simplify

this further, we will use Proposition 19. The proposition is easily verified, and we skip a formal
proof.

Proposition 19. Consider non-negative real numbers x, y, a, b such that x ⩾ y, a ⩾ b and y + b > 0.
Then for any fixed p > 0, (

x + a
x + b

)1/p

⩽
(

y + a
y + b

)1/p

.

Observe that for any agent i ∈ [n] such that vi(A∗
i ) > 0, we have that λ ⩽ 2 · vi(A∗

i ). Indeed,
if λ > 2 · vi(A∗

i ), then from the discussion in Section 5.2, it follows that 2 · vi(A∗
i ) < 1 + vi(A∗

i ),
which, for integral valuations, implies that vi(A∗

i ) = 0.

In (3) we then let x = 2p ∑
ρ
k=1 ∑i∈Tk

vi(A⋆
i )

p, y = λp ∑
ρ
k=1 nk, a = 2p ∑r

k=ρ+1 nk

(
mk
nk

)p
, and
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b = 2pλp ∑r
k=ρ+1 nk. Then since x ⩾ y, a ⩾ b, and y + b > 0, from Proposition 19 we get∑

ρ
k=1 ∑i∈Tk

2pvi(A⋆
i )

p + 2p ∑r
k=ρ+1 nk

(
mk
nk

)p

∑
ρ
k=1 ∑i∈Tk

2pvi(A⋆
i )

p + 2pλp ∑r
k=ρ+1 nk


1/p

⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

λp ∑
ρ
k=1 nk + 2pλp ∑r

k=ρ+1 nk


1/p

⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

λp ∑
ρ
k=1 nk + λp ∑r

k=ρ+1 nk


1/p

⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

.

(4)

The LHS in (4) is equal to the RHS in (3). Thus, we get that

Wp(A⋆)

Wp(B)
⩽

λp ∑
ρ
k=1 nk + 2p ∑r

k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

=

∑
ρ
k=1 nk

n
+

2p ∑r
k=ρ+1 nk

(
mk
nk

)p

nλp


1/p

.

We define α := ∑
ρ
k=1 nk/n, i.e., the ratio of number of types that retain their values in B.

Replacing in the above expression, and using that λ ⩾ W/ ∑
ρ
i=1 ni from (2),

Wp(A⋆)

Wp(B)
⩽

α +
2p ∑r

k=ρ+1 nk

(
mk
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

.

For each type k, mk ⩽ W, since for agents of each type at most W goods have positive value.
Hence

Wp(A⋆)

Wp(B)
⩽

α +
2p ∑r

k=ρ+1 nk

(
W
nk

)p

nWp/
(
∑

ρ
i=1 ni

)p


1/p

=

α +
2p ∑r

k=ρ+1 n1−p
k

n/
(
∑

ρ
i=1 ni

)p

1/p

=

(
α + 2pαp

r

∑
k=ρ+1

(nk

n

)1−p
)1/p

.

We now use Claim 11, choosing xk = nk/n, which gives us

Wp(A⋆)

Wp(B)
⩽

α + 2pαp(r − ρ)

(
∑r

k=ρ+1 nk

n(r − ρ)

)1−p
1/p

=

α + 2pαp(r − ρ)p

(
n − ∑

ρ
k=1 nk

n

)1−p
1/p

=
(

α + 2pαp(r − ρ)p(1 − α)1−p
)1/p

.

Finally, since ρ ⩾ 1, r − ρ ⩽ s (where we defined s = r − 1), hence we get the claim.
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Case III: p = 0. In this case, the Nash welfare of an allocation is the geometric mean of the
values of the agents. By definition of the truncated allocation B, agents of the first ρ types have
the same value in A∗ and B, hence

W0(A⋆)

W0(B)
=

(
Πn

i=1vi(A∗
i )

Πn
i=1vi(Bi)

)1/n

=

(
Πρ

k=1Πi∈Tk vi(A∗
i ) · Πr

k=ρ+1Πi∈Tk vi(A∗
i )

Πρ
k=1Πi∈Tk vi(Bi) · Πr

k=ρ+1Πi∈Tk vi(Bi)

)1/n

=

(
Πr

k=ρ+1Πi∈Tk vi(A∗
i )

Πr
k=ρ+1Πi∈Tk vi(Bi)

)1/n

In A∗, by Corollary 10, for a fixed type k, we can bound Πi∈Tk vi(A∗
i ) from above by (mk/nk)

nk

⩽ (W/nk)
nk . Further, each agent of type > ρ has vi(Bi) = λ, and from (2), λ ≥ W/ ∑

ρ
i=1 ni.

Let n′ := ∑
ρ
i=1 ni be the number of agents of the first ρ types. Then substituting these values,

we get

W0(A⋆)

W0(B)
⩽

(
Πr

k=ρ+1(W/nk)
nk

Πr
k=ρ+1(W/n′)nk

)1/n

=

(
(n′)n−n′

Πr
k=ρ+1(nk)nk

)1/n

Noting that ∑r
k=ρ+1 nk = n − n′, and each nk ⩾ 1, the product Πr

k=ρ+1(nk)
nk is maximized

when the nk’s are equal, hence each nk = (n − n′)/(r − ρ). With this substitution,

W0(A⋆)

W0(B)
⩽
(

n′

(n − n′)/(r − ρ)

)(n−n′)/n

Recalling that α = n′/n, and further s = r − 1 ⩾ r − ρ,

W0(A⋆)

W0(B)
⩽
(

s α

(1 − α)

)1−α

which is the required expression.

We are now ready to present our upper bounds.

Theorem 4 (PoE upper bounds). Let s := r − 1. The price of equity for binary additive valuations is at
most

1. 1 + s for p = 1
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2. 1 + 2s for p ∈ (0, 1)

3. s
ln(s/e) for p = 0 (i.e., the Nash social welfare)

4. s1/(1−p)2−1/p(−1/p)1/p(p−1) for p ∈ (−1, 0)

5. 2s1/(1−p) for p ⩽ −1

Proof. Our starting point is Lemma 17. For p → 0, the PoE is at most supα∈[0,1](sα/(1 − α))(1−α).
Let β := α/(1 − α), then 1 − α = 1/(1 + β), and hence the upper bound on the PoE is
supβ⩾0(sβ)1/(β+1).

Some calculus shows that the maximum value of this function is exp (W(s/e)), where W(·)
is the Lambert W function, which is the inverse of the function f (x) = xex. Further, W(x) ⩽
ln x − ln ln x + e ln ln x

(e−1) ln x for x ⩾ e. The last term e ln ln x
(e−1) ln x ⩽ 1 for x ⩾ e. Hence for s ⩾ e2, we get

that the PoE is bounded by

exp (W(s/e)) ⩽ exp (ln(s/e)− ln ln(s/e) + 1) =
s

ln(s/e)

giving the required bound on the PoE.
For p ∈ (0, 1), again from Lemma 17, the upper bound on the PoE can be written as

sup
α∈[0,1]

(α × 1 + (1 − α)× (2sα/(1 − α))p)1/p

Since p ∈ (0, 1), f (x) = x1/p is a convex function, and hence by Jensen’s inequality this is at
most

sup
α∈[0,1]

(
α × 11/p + (1 − α)× (2sα/(1 − α))

)
= sup

α∈[0,1]
(α + 2sα) = 1 + 2s

which is the upper bound claimed, for p ∈ (0, 1).
For p < 0, we separate the two cases α ⩾ 1/2 and α ⩽ 1/2. If α ⩾ 1/2, then the expression

from Lemma 17 evaluates to(
α + αpsp(1 − α)1−p

)1/p
⩽ α1/p ⩽ (1/2)1/p . (5)

If α ⩽ 1/2, then (1 − α) ⩾ 1/2, and hence,(
α + αpsp(1 − α)1−p

)1/p
⩽
(

α + αpsp2−1+p
)1/p

.

Let z := α + αp(2s)p/2 be the parenthesized expression; our goal is to minimize this (since the
exponent 1/p is negative, this will give us an upper bound on the PoE). Differentiating w.r.t. α

gives us

dz
dα

= 1 +
p
2
(2s)pαp−1 .
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Since p is negative, this increases with α, and hence the derivative is a convex function with a
unique minima, obtained at

α∗ =
(−2/p)1/(p−1)

(2s)p/(p−1)

or (α∗2s)p = −2α∗/p. Replacing this value gives us(
α + αpsp(1 − α)1−p

)1/p
⩽ α∗1/p

(1 − 1/p)1/p

For p < 0 , 1 − 1/p ⩾ 1, and hence (1 − 1/p)1/p ⩽ 1. Hence(
α + αpsp(1 − α)1−p

)1/p
⩽ α∗1/p

= (2s)1/(1−p)(−2/p)1/p(p−1)

= s1/(1−p)2−1/p(−1/p)1/p(p−1) .

This is greater than 2−1/p, the expression we obtain for α ⩾ 1/2 in Equation (5), and hence
this is a bound on the PoE for p < 0.

Finally for p ⩽ −1, let us consider the coefficient of s1/(1−p) obtained previously, namely
2−1/p(−1/p)1/p(p−1). This is an increasing function of p, and hence the maximum value obtained
is 2, at p = −1. Hence for p ⩽ −1, the PoE is at most 2s1/(1−p).

6 PoE bounds for Doubly Normalised Instances
So far, we have considered instances with binary additive normalised valuations, where each agent
values the same number W of goods. In this case, for the utilitarian welfare, we have seen that the
PoE can be as bad as r, the number of types of agents. In this section, we consider instances with
further structure. In doubly normalised instances, each good g is valued by the same number Wc of
agents. Thus, vi(M) = W for all i ∈ N, and additionally, ∑i∈N vi(g) = Wc for every good g ∈ M.
The valuation matrix V is thus both row and column normalised. Such instances are intuitively
“balanced,” and we ask if this balance is reflected in the PoE for such instances. This indeed turns
out to be the case.

Theorem 5. For doubly normalised instances under binary additive valuations, the PoE for the p-mean
welfare is 1 for all p ⩽ 1.

For an undirected graph, the edge-incident matrix X has entry Xi,e = 1 if edge e is incident on
vertex i, and Xi,e = 0 otherwise. We will use the following well-known property of edge-incidence
matrices for bipartite graphs.

Proposition 20 (e.g., Schrijver, 1998). If G is a bipartite graph, then the edge-incidence matrix of G is
totally unimodular.

Proof of Theorem 5. Let V be the valuation matrix for a doubly normalised instance, where each row
sums to W and each column sums to Wc. Divide each entry by Wc. Let V f be the resulting matrix.
Then V f satisfies: (i) each entry is either 0 or 1/Wc, (ii) each column sums to 1, and (iii) each row
sums to W/Wc. We will show that the matrix V f can be represented as the convex combination
of nonnegative integer matrices X1, . . ., Xt so that for any matrix Xk in this decomposition,
each column sums to 1 and each row sums to either ⌈W/Wc⌉ or ⌊W/Wc⌋. Assuming such a
decomposition, fix any such matrix Xk in this decomposition. Clearly, due to (ii) and nonnegativity,
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each entry of Xk is either 1 or 0. Further if the entry Xk
i,g = 1, then V f

i,g = 1/Wc since V f is a
convex combination of the M-matrices, and hence Vi,g = 1,

Consider then the allocation A that assigns good g to agent i if Xk
i,g = 1. In this allocation,

following the properties of Xk, each good is assigned to an agent that has value 1 for it, and each
agent is assigned either ⌈W/Wc⌉ or ⌊W/Wc⌋ goods. The allocation is thus EQ1 and maximizes
the utilitarian welfare. Further by Proposition 22 this is also a leximin allocation, and hence
by Proposition 14 and Proposition 12 this maximizes the p-mean welfare for all p ⩽ 1, proving the
theorem.

It remains to show that V can be decomposed as stated. To see this, consider a complete
bipartite graph G = (A ∪ B, E) with |A| = n and |B| = m. To each edge {i, g} with i ∈ A, g ∈ B,
we associate a variable xig. Consider now the set of linear constraints:

∀i ∈ A, ∑g∈B xig ⩾ ⌊W/Wc⌋

∀i ∈ A, ∑g∈B xig ⩽ ⌈W/Wc⌉

∀g ∈ B, ∑i∈A xig = 1

∀i ∈ A, g ∈ B, xig ⩾ 0

Together, these linear constraints ask for a fractional set of edges that have degree 1 for each
vertex in B and degree between ⌊W/Wc⌋ and ⌈W/Wc⌉ for each vertex in A.

Consider the polytope obtained by these inequalities. Taking xig = V f
ig satisfies these con-

straints. Further, it can be seen that the constraint matrix is equal to the edge-incidence matrix for
the bipartite graph G (with the rows corresponding to vertices i ∈ A repeated, and the identity
matrix appended for nonnegativity of the variables). Hence, the constraint matrix is totally
unimodular by Proposition 20, and thus the extreme points of the polytope are integral. Since
V f is a point in the polytope, V f can be represented as the convex combination of nonnegative
integral matrices X1, . . ., Xt corresponding to the vertices of the polytope, as required.

We make two remarks. Firstly, note that since each matrix Xk in the convex decomposition of
V f gives us an EQ1 allocation with maximum utilitarian welfare, the convex combination gives
us a randomized allocation that is ex ante EQ, and ex post EQ1 and welfare optimal. Secondly,
the doubly normalised constraint is sufficient, but not necessary, for the price of equity to be
1. Consider an instance with 3 agents {a1, a2, a3} and 4 goods {g1, g2, g3, g4} such that a1 values
{g1, g2} while a2 and a3 both value {g3, g4}. This instance is not column normalised, but admits
an EQ1 allocation with optimal welfare.

In the appendix, we offer an alternate proof of Theorem 5, based on a so-called “eating
argument” and an extension of Hall’s theorem.

7 PoE Bounds for Binary Submodular Valuations
We now consider the more general case of binary submodular valuations. Here we focus on the
utilitarian welfare, and show that our results for binary additive valuations that bound the PoE by
the number of types of agents do not extend to binary submodular valuations. We first show that
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from prior work (see Proposition 21 below), it follows that if the agents have identical valuations,
then PoE is 1 for the p-mean welfare objective for all p ⩽ 1.

Proposition 6. When all agents have identical binary submodular valuations, the PoE is 1 for p-mean
welfare measure for all p ⩽ 1.

As earlier, an allocation A = (A1, . . . , An) is clean if for all agents i, vi(Ai) = |Ai|, that is, no
good is wastefully allocated. We note that, given any allocation A, we can obtain a clean (possibly
partial) allocation Â so that vi(Ai) = vi(Âi) for all agents i by repeatedly removing wasted items
from the allocation A. We will use the following result due to Benabbou et al. [2021].

Proposition 21 (Benabbou et al., 2021, Corollary 3.8). For binary submodular valuations, any clean,
utilitarian optimal (partial) allocation that minimizes Φ(A) := ∑i vi(Ai)

2 among all utilitarian optimal
allocations is EF1.

Proof of Proposition 6. Let A⋆ be a Nash welfare maximizing allocation for the given instance. We
will show that under identical binary submodular valuations, A∗ can be transformed into an EQ1
allocation without any change in the Nash welfare objective, thus implying that PoE is 1 for Nash
welfare. Furthermore, from Proposition 14, we know that any allocation that maximizes Nash
welfare also simultaneously maximizes p-mean welfare for all p ⩽ 1. This would imply that PoE
is 1 for p-mean welfare objective for all p ⩽ 1.

First, we will transform A∗ into a clean partial allocation via the following procedure: For
each agent i with vi(A∗

i ) > |A∗
i |, there must be a wasted good in A∗

i ; we simply remove such
wasted goods until we get a clean partial allocation Â. Next, we will add back the removed goods
arbitrarily to obtain a complete allocation A (in particular, adding back the removed goods may
get back the original allocation A∗).

Note that Â is a partial allocation with vi(Âi) = vi(A∗
i ) for each agent i; in other words, A∗

and Â have the same p-mean welfare for all p ⩽ 1. We know from Proposition 14 that, for all
p ⩽ 1, A∗ maximizes the p-mean welfare. The same holds true for Â.

By adding the removed goods back to Â, the utility of any agent cannot decrease; that is, for
every agent i, vi(Ai) = vi(Âi). This means that A is a complete allocation that simultaneously
maximizes the p-mean welfare for all p ⩽ 1.

By Proposition 12, allocation A minimizes the strictly convex function Φ(A) := ∑i vi(Ai)
2

among all utilitarian allocations, and the same holds for the partial allocation Â. Then, by Propo-
sition 21, we get that Â is EF1. By the identical valuations assumption, Â is also EQ1.

In going from Â to A, each good that is added back has zero marginal value for the agent it is
assigned to under A. Thus, the allocation A is also EQ1, which readily implies that for all p ⩽ 1,
the PoE for p-mean welfare is 1, as desired.

The bound in Proposition 6 is, in a certain sense, the best that can be obtained. We will now
show that with more than one type of agent under binary submodular valuations, the PoE is at
least n/6 for utilitarian welfare. Hence we cannot obtain bounds on the PoE that depend on the
number of agent types for all p ⩽ 1, as we did for binary additive valuations.

Theorem 7. The PoE for utilitarian welfare when agents have binary submodular valuations is at least
n/6 (where n is the number of agents), even when there are just two types of agents.
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Proof. In our example for the lower bound, we represent goods as vectors (i.e., elements of a linear
matroid). Then the value of an agent for a bundle is just the number of linearly independent
vectors in the bundle. Fix k ∈ N. Our example will have 2k agents and k2 + k goods.

Goods: There are k(k + 1) goods, consisting of k + 1 groups of k goods each. The groups are G1,
G2, . . ., Gk+1.
Agents: There are 2k agents, with k agents of type 1 and k agents of type 2. Agents of type 1 see
goods in G1 as the standard basis vectors for Rk, and goods in Gj for j ̸= 1 as zero vectors. Thus,
for an agent i of type 1, vi(G1) = vi(M) = k, and vi(Gj) = 0 for j > 1.

Agents of type 2 see the goods in each group Gi as the standard basis vectors for Rk, and
hence for an agent i of type 2, vi(Gj) = vi(M) = k, for all j ∈ [k + 1]. Thus, the valuations are
normalised.

In an EQ1 allocation, each agent of type 1 has value at most 1, and hence the social welfare
is at most 3k. In the optimal allocation, each agent of type 1 gets a single vector from G1. Each
agent of group 2 gets assigned an entire group Gj of vectors, and hence has value k. The optimal
social welfare is thus k + k2, and hence the PoE is at least k/3, or n/6, where n is the number of
agents.

Note that for the example in the proof of Theorem 7, for any p ∈ (0, 1], the PoE is

Λp =

(
1
2k (k × 1 + k × kp)
1
2k (k × 1 + k × 2p)

)1/p

=

(
1 + kp

1 + 2p

)1/p

⩾
k

31/p ,

and hence the PoE depends on the number of agents, even with two types. Similarly, for the Nash
social welfare, one obtains the PoE as

√
k/2 =

√
n/4.

For p < 0, for this example, the PoE is a constant that depends on p (for example, for p = −1,
the PoE for this example is 1.5). It is possible that for p < 0 the PoE may depend on the agent
types, rather than number of agents. We leave this as an open question.

Despite this, we show that 2n is an upper bound on the PoE for all p ⩽ 1. For an allocation
A = (A1, . . . , An) of the goods, we say good g is valuable for i if vi(Ai ∪ g) > vi(Ai) (and i values g
in this case).

Theorem 8. For binary submodular valuations and any p ⩽ 1, the PoE for p-mean welfare is at most 2n.

Proof. As before, let A⋆ be an allocation with optimal Nash welfare. If A⋆ is an EQ1 allocation,
we are done, since from Proposition 14, A⋆ simultaneously maximizes the p-mean welfare for all
p ⩽ 1. Else, we construct the truncated allocation B as described in Section 3.2. We will show
that for every agent i with non-zero value in B, vi(Bi) ⩾ W/(2n), where W is the normalisation
constant. It follows that the PoE is bounded by 2n for all p ⩽ 1.

Consider the allocation A⋆. Let il be a minimum positive value agent in A⋆. Note that A∗
il
= Bil .

Let ν be the value of agent il under A∗. Since vil (M) = W, there are W − ν goods that il values
that are allocated to other agents. Further, any agent i ̸= il is allocated at most ν + 1 goods that il
values, since otherwise, we can transfer a good that il values from i to il and increase the Nash
social welfare of allocation A∗. Hence, W − ν ⩽ (n − 1)(ν + 1), or W ⩽ nν + n − 1 ⩽ 2nν for
ν ⩾ 1. Thus for any agent i, vi(Bi) ⩾ vi(Bil ) = ν ⩾ W/(2n), as required.
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8 Some Concluding Remarks on Chores
Our focus in the paper has been on goods, where agents have non-negative marginal utility
for all items. We briefly remark on the case of bads or chores, where all marginal utilities are
non-positive. Consider any instance with binary additive valuations, i.e., the value of each item is
either 0 or −1. It is not hard to see that in these instances, there is always a utilitarian optimal
EQ1 allocation: if chore c has value 0 for an agent i, assign c to i. The remaining chores have value
−1 for all agents, and can be assigned using the round robin procedure. This allocation is clearly
EQ1 and also achieves the best possible utilitarian welfare.

For more general additive instances with chores, we now show that the PoE is unbounded,
even in very simple cases.6 To this end, consider the following example involving 2n items and
n + 1 agents. The first n agents mildly dislike the first n chores and severely dislike the last n,
while it is the opposite for the (n + 1)th agent, who strongly dislikes the first n items and mildly
dislikes the last n.

c1, · · · , cn cn+1, · · · , c2n

a1, . . ., an −ϵ −1

an+1 −1 −ϵ

In this example, the maximum utility is −2nϵ: assign the first n chores to the first agent and
the last n chores to the last agent. On the other hand, in any EQ1 allocation, the last agent can get
at most 2 chores, and hence some agent gets a chore that they value at −1. The PoE is thus at
least 1/(2nϵ), which can be made arbitrarily large by choosing ϵ appropriately. Note that this
instance has two item types, two agent types, and only two distinct entries in the valuation matrix.
Relaxing any of these conditions implies identical valuations, where the PoE is 1; so, in some
sense, this is a “minimally complex” example that already exhibits unbounded PoE. There is thus
a sharp change in the PoE between instances where the values are in {0,−1} and those where the
values are in {−ϵ,−1}. While the PoE is unbounded as ϵ approaches 0, it “snaps back” to 1 at
ϵ = 0.

To conclude, we obtain nearly tight bounds on the price of equity in terms of agent types for
the p-mean welfare spectrum. This captures, as special cases, the notions of utilitarian, egalitarian,
and Nash welfare. Our bounds are in terms of agent types (r) rather than the number of agents.
Overall, our results provide a fine-grained perspective on the behavior of the price of equity
parameterized by p and r.

In future work, it would be interesting to extend the insights that we obtain in this work beyond
the domain of binary valuations. We also propose obtaining bounds on the PoE parameterized
by other structural parameters, such as the number of item types. We note that for additive
valuations, the rank of the valuation matrix is a lower bound on the number of item types, and
hence Theorem 3 bounds the PoE in this case by the number of item types as well.

6For chores, we adopt the natural definition of PoE: the ratio of the utilitarian welfare of the best EQ1 allocation,
to the maximum utilitarian welfare obtainable in any allocation. Note that if the denominator is 0, then so is the
numerator (and this can be identified in polynomial time).
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9 Appendix
9.1 A proof for Proposition 14

Proposition 14. For binary submodular valuations, any Nash welfare maximizing allocation (and hence,
leximin allocation) simultaneously maximizes the p-mean welfare for all p ⩽ 1.

The following property of leximin allocations is useful in the proof.

Proposition 22. For agents with binary submodular valuations, let A be a utilitarian optimal allocation so
that maxi vi(Ai) ⩽ mini vi(Ai) + 1. Then A is a leximin allocation.

Proof. (of Proposition 22) Assume without loss of generality that vi(Ai) ⩽ vi+1(Ai+1) for i ∈ [n− 1].
If A is not a leximin allocation, let A′ be a leximin allocation. Let permutation π ∈ Sn be
such that vπ(i)(A′

π(i)) ⩽ vπ(i+1)(A′
π(i+1)) for i ∈ [n − 1]. Then there exists k ∈ [n], so that

vi(Ai) = vπ(i)(A′
π(i)) for i < k, and vk(Ak) < vπ(k)(A′

π(k)). Note that for i > k,

vi(Ai) ⩽ vk(Ak) + 1 ⩽ vπ(k)(A′
π(k)) ⩽ vπ(i)(A′

π(i)) .

But then ∑n
i=1 vπ(i)(A′

π(i)) > ∑n
i=1 vi(Ai), and allocation A cannot be utilitarian optimal.

The following results are shown by Benabbou et al. [2021].

Proposition 23 (Benabbou et al., 2021, Lemma 3.12). For agents with binary submodular valuations,
let A be a utilitarian optimal allocation that is not a leximin allocation. Let agents i, j be such that
vj(Aj) ⩾ vi(Ai) + 2.7 Then there is another allocation A′ that is utilitarian optimal and satisfies (i)
vj(A′

j) = vj(Aj)− 1, (ii) vi(A′
i) = vi(Ai) + 1, and (iii) the values for other agents are unchanged.

Note that in the above proposition, the allocation A′ is a lexicographic improvement on A.

Proposition 24 (Benabbou et al., 2021, Lemma 3.13). Let Ψ be a symmetric concave function, and
A be a utilitarian optimal allocation with agents i, j such that vj(Aj) ⩾ vi(Ai) + 2. Let A′ be another
utilitarian optimal allocation that satisfies (i) vj(A′

j) = vj(Aj)− 1, (ii) vi(A′
i) = vi(Ai) + 1, and (iii) the

values for other agents are unchanged. Then Ψ(A′) ⩾ Ψ(A).

We can now prove Proposition 14. Firstly, note that the Nash welfare maximizing allocation is
also leximin from Proposition 12, and hence maximizes the egalitarian welfare (in other words,
maximizes p-mean welfare for p → −∞). For any fixed p ⩽ 1, let A be an allocation that
maximizes the p-mean welfare. Since the p-mean welfare is strictly increasing, allocation A is
Pareto optimal, and hence from Proposition 13 is also utilitarian optimal. We will show that
there exists an allocation B so that Wp(B) = Wp(A), and B is a leximin allocation. If A is not
leximin, then by Propositions 23 and 24, there is an allocation A′ so that Wp(A′) ⩾ Wp(A), and
A′ lexicographically dominates A. Then either A′ is a leximin allocation, or we can continue
in this manner until we get a leximin allocation B with Wp(B) ⩾ Wp(A), as required. Finally,
by Proposition 13, an allocation is leximin if and only if it maximizes the Nash social welfare,
hence if allocation A∗ maximizes the Nash social welfare, it also maximizes the p-mean welfare
for all p ⩽ 1.

7By Proposition 22, such agents must exist.
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9.2 An alternate proof of Theorem 5

We now turn to an alternate proof of the fact that doubly normalised instances have PoE 1.
We first state some results that we will use. Consider a bipartite graph G with bipartition

A and B. A set of edges T ⊆ E(G) is said to be a q-expansion from A to B if every vertex of A
is incident to exactly q edges in T and exactly q|A| vertices in B are incident on T. A perfect
matching, for instance, is a 1-expansion, and a star with q leaves is a q-expansion.

Lemma 25 (Cygan et al., 2015, Lemma 2.17). Let G be a bipartite graph with bipartition A and B. There
is a q-expansion from A to B if and only if |N(X)| ≥ q|X| for every X ⊆ A. Furthermore, if there is no
q-expansion from A to B, then a set X ⊆ A such that |N(X)| < q|X| can be found in polynomial time.

A non-negative, square (m × m) matrix Y is said to be doubly stochastic if the sum of entries in
each row and each column is 1, that is, ∑i∈[m] Y[i][j] = 1 ∀ j ∈ [m] and ∑j∈[m] Y[i][j] = 1 ∀ i ∈ [m].
A permutation matrix is a doubly stochastic matrix such that all the entries are either 0 or 1. The
following result, known as the Birkhoff-von Neumann Theorem, states that a doubly stochastic
matrix can be represented as a convex combination of permutation matrices.

Theorem 26 (Birkhoff, 1946, von Neumann, 1953). Let Y be a doubly stochastic matrix. Then, there
exist positive weights w1, w2, . . . wk and permutation matrices P1, P2, . . . Pk such that ∑i∈[k] wi = 1 and
Y = ∑i∈[k] wiPi.

In other words, the convex hull of the set of all permutation matrices is the set of doubly-stochastic
matrices.

We are now ready to prove that doubly normalised instances have PoE 1.

Theorem 5. For doubly normalised instances under binary additive valuations, the PoE for the p-mean
welfare is 1 for all p ⩽ 1.

Proof. (of Theorem 5) Let I = ⟨N, M,V⟩ be a doubly normalised instance. Let G = (N, M) be
the corresponding (W, Wc)-regular bipartite graph with agents and goods as bi-partitions and
(i, g) ∈ E(G) if and only if agent i values the good g. Note that the number of edges in G is nW,
as exactly W edges are incident on each agent. Likewise, as exactly Wc edges are incident on each
of the m goods, therefore, |E(G)| = nW = mWc.

We first consider the case when n/m = W/Wc = p for some integer p. That is, the number of
agents is an integer multiple of the number of goods, and show the existence of a non-wasteful
EQ allocation that allocates a utility of p to every agent.

Consider any subset S ⊆ N. The number of edges from S to its neighborhood N(S) is exactly
W|S|. The number of edges incident on N(S) in G is exactly Wc|N(S)|. Then Wc|N(S)| ⩾ W|S|,
and hence |N(S)| ⩾ p|S|.

By Lemma 25, G must have a p-expansion, say T, from N to M. Now consider the allocation
A that allocates along the edges of T. Precisely, if (i, g) ∈ T, then good g is allocated to the agent i
under A. Then by definition of p-expansion, A is an indeed an EQ allocation as it allocates exactly
p goods to every agent. Since A is non-wasteful, it achieves the optimal utilitarian welfare m.

Now suppose W is not an integer multiple of Wc. We propose the following version of the
probabilistic serial algorithm that constructs a non-wasteful EQ1 allocation.8

8The probabilistic serial algorithm was proposed by Bogomolnaia and Moulin [2001] in the context of the assignment
problem where the number of goods and agents is the same. Subsequently, Aziz et al. [2023] used this algorithm (in
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Let W = pWc + q for some constant p and q ̸= 0. We create p + 1 copies of every agent, say
{a1

i , a2
i , . . . ap+1

i }. We also add t = (p + 1) n − m many dummy goods to the instance which are
valued at zero by everyone. Note that the new instance has an equal number of agents and goods,
precisely (p + 1)n. Now each good is represented as food, and the agent copies start eating away
all the available goods that they like, all at once. By the structure of the instance, exactly Wc agent
copies eat the same W goods at the same time, and the same speed – at the rate of one good
per unit time. In particular, at the tth timestep, 1/(W−(t−1)Wc) fraction of the remaining good is
consumed by the tth copy of the agent. This gives us a square matrix Y with (p + 1) n columns as
goods and (p + 1) n rows as copies of the agents. The entry Y[aj

i ][g] corresponds to the fraction of
good g eaten by jth copy of agent i at timestep j.

In particular, in the first timestep, W goods are consumed by all the first copies (a1
i ) of Wc

agents (who like them) simultaneously, each of whom eats 1/W fraction of W goods each. At
second timestep, (1 − Wc/W) fraction of these r goods remain, out of which 1/(W−Wc) fraction is
consumed by the second copy of all the Wc agents and so on. That is, assuming Ng be the set of
Wc agents who like g, we have:

∑
i∈Ng

vi(a1
i ) =

Wc

W

∑
i∈Ng

vi(a2
i ) = Wc

(
1

W − Wc

(
1 − Wc

W

))
=

Wc

W

∑
i∈Ng

vi(a3
i ) = Wc

(
1

W − 2Wc

(
1 − 2Wc

W

))
=

Wc

W

...

∑
i∈Ng

vi(ap
i ) = Wc

(
1

W − (p − 1)Wc

(
1 − (p − 1)Wc

W

))
=

Wc

W

For the last agent copy ap+1
i , the fraction of each of the W goods that remain is 1 − pWc/W =

(W−pWc)/W = q/W. This is divided equally among the last copy of all the Wc agents, each of them
getting q/WWc fraction.

Also, ap+1
i eats q/WWc of W goods, thereby summing to q/Wc. Now q/Wc < 1, and we have t

dummy goods remaining to be consumed. Therefore, at this timestep, ap+1
i for i ∈ [n], start eating(

1−q/Wc
t

)
fraction of each of the dummy goods, thereby consuming one unit of good, in aggregate.

We now claim that Y is a doubly stochastic matrix. To this end, we first show that the fractions
in every column of Y adds up to 1. For a column c corresponding to an original good g, summing
over the p + 1 copies of s agents who like g, we get:

p+1

∑
j=1

∑
i∈Ng

vi(aj
i) =

p

∑
j=1

∑
i∈Ng

vi(aj
i) + vi(ap+1

i ) = p
(

Wc

W

)
+ Wc

(
q

WWc

)
=

pWc + q
W

= 1

combination with the Birkhoff-von Neumann decomposition) to study fair allocation with an unequal number of goods
and agents. The work of Aziz et al. [2023] focuses on computing a randomized allocation with desirable ex-ante and
ex-post envy-freeness guarantees. By contrast, our work uses the technique of Aziz et al. [2023] to achieve an equitability
guarantee.
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Now for a column c corresponding to a dummy good g, each of the agent copies eat
(

1−q/Wc
t

)
fraction of the dummy goods. Since there are n such agents, the sum of the fractions in column c
is

n
(

1 − q/Wc

t

)
=

n(Wc − q)
Wc(p + 1)n − mWc

=
n(Wc − q)

npWc + nWc − nW
=

Wc − q
Wc − q

= 1

Also, it is easy to see that rows in Y add up to 1. For j ∈ [1, p], aj
i starts eating at jth timestep,

when (1 − (j−1)Wc/W) fraction of any good g remains. She eats 1/(W−(j−1)Wc) fraction of W such
goods, that adds to W( 1

W−(j−1)Wc
)(1 − (j−1)Wc

W ) = 1. As for the row corresponding to ap+1
i , it adds

up to 1 by construction.
This establishes the following claim.

Claim 27. Y is a doubly stochastic matrix.

By Theorem 26, Y can be represented as a convex combination of permutation matrices. An
illustration of this is shown in Example 29. For the final allocation, one of these permutation
matrices, say P, is selected with probability equal to the corresponding weight. A good is allocated
to aj

i if and only if P[aj
i ][g] = 1. Finally, all the goods allocated to the copies of agent i are said to

be allocated to agent i.
We now claim that the resulting allocation is EQ1 with optimal utilitarian welfare.

Claim 28. Every integral allocation returned by the above algorithm satisfies EQ1.

Proof. (of Claim 28) Since the matrices in the decomposition are permutation matrices and the
number of goods is equal to the number of agents, each of the agent-copies gets exactly one good.
This implies that all the agents end up with an equal number of goods, precisely, p + 1.
Since the dummy goods are consumed by only the last agent copy, therefore, every agent gets
at most one dummy good in the final allocation. Also, all the original goods are allocated non-
wastefully, as except for the dummy goods, agents eat only the goods that they like. Therefore,
whoever ends up with a dummy good have a utility of p and the remaining agent have a utility of
p + 1, resulting in an EQ1 allocation with optimal utilitarian welfare.

Therefore the price of equity for doubly normalised instances is 1. This finishes the proof of
Theorem 5.

Example 29. Consider an instance with 4 agents, {a1, . . . a4} and 6 goods, {1, 2, . . . 6}. We set W = 3
and Wc = 2. a1 likes {1, 2, 3}, a2 likes {4, 5, 6}, a3 likes {2, 3, 4} and a4 likes {1, 5, 6}. Here, since p = 1,
we create p + 1 = 2 copies of every agent, and introduce (p + 1)n − m = 2 · 4 − 6 = 2 dummy goods.
The corresponding matrix Y and its decomposition is as follows.
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

1/3 1/3 1/3 0 0
1/6 1/6 1/6 1/4 1/4

1/3 1/3 1/3 0 0
1/6 1/6 1/6 1/4 1/4

1/3 1/3 1/3 0 0
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

9.3 Graphs for comparing bounds on the PoE for binary additive valuations.

To help in visualising our upper and lower bounds on the PoE (as presented in Table 1), we also
present the PoE bounds graphically below (see Figures 1 to 4). Each graph shows the lower and
upper bounds obtained as a function of r, the number of agent types. In each figure, the upper
line in blue represents the upper bound, and the lower line in orange represents the lower bound.
We provide the plots for four values of p, namely p = 1 (the utilitarian welfare), p = 0 (the Nash
social welfare), p = −1, and p = −10 (recall that for p → −∞, the egalitarian welfare, the PoE is
1).
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Figure 1: PoE as a function of r for p = 1 Figure 2: PoE as a function of r for p = 0

Figure 3: PoE as a function of r for p = −1 Figure 4: PoE as a function of r for p = −10
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