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Abstract. The popularity of an opinion in one’s direct circles is not
necessarily a good indicator of its popularity in one’s entire community.
For instance, when confronted with a majority of opposing opinions in
one’s circles, one might get the impression that one belongs to a mi-
nority. From this perspective, network structure makes local information
about global properties of the group potentially inaccurate. However, the
way a social network is wired also determines what kind of information
distortion can actually occur. In this paper, we discuss which classes of
networks allow for a majority of agents to have the wrong impression
about what the majority opinion is, that is, to be in a ‘majority illusion’.
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1 Introduction

When making decisions, people often use information from the decisions of others
in their circles and are influenced by those. For instance, if a lot of people around
you buy a specific brand, vote for a specific political party, or have a specific
opinion, you are more likely to buy, vote, or think the same (see e.g. [14,17]).

However, one’s view of ‘the world around’ might be distorted by the social
network one is in, and one might as a result misrepresent one’s situation with
respect to the overall population. A well-known example of this is the so-called
‘friendship paradox’ [9]: agents in a network are likely to get the impression that
their popularity is lower than average because their friends have more friends
than they do. Similarly, on the basis of what they can see of others around
them, agents might get the wrong impression with respect to how popular their
opinions are in the entire population. Indeed, the proportions of opinions an
agent observes in its neighborhood are not necessarily a representative sample
of their overall distribution in the population.

From this local sampling, one could for instance get the impression that they
disagree with the majority of the population on a particular opinion and get
influenced by this impression when taking their decisions. As a consequence,
one could in principle influence what people will decide by changing the network
structure to tweak the distribution of opinions/behavior agents see locally. Figure
1 (a), (b), and (c) illustrate this: rewiring a few edges is sufficient to make all
nodes observe a different majority in their neighborhood.
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(a) (b) (c) (d)

Fig. 1: (a), (b), and (c) have the same proportion of blue and red nodes but
nodes see different distributions in their neighborhood: in (a), all nodes have a
majority of red neighbors; changing two edges results in all nodes seeing a tie
(b); changing two more edges makes nodes have a majority of blue neighbors
(c). (d) is an example of a majority-majority-illusion: a majority (the red nodes)
have more blue than red neighbors, while red is the actual global ‘winner’.

A paradigmatic example is polling bandwagon effects [19] in political decision
making: if, for any reason, citizens prefer not to vote on a losing party, a party
could increase the chances of actually winning by making a lot of voters think
it is winning. The idea of manipulating the network towards this end, so-called
‘information gerrymandering’, is introduced in [4,20] and shown to potentially
lead to undemocratic decisions. Similar phenomena have been observed in a
variety of social networks [15].

In this paper, we examine which networks allow for which types of distortion
between local and global opinion representations. We focus on a specific type
of network distortion, ‘majority illusion’ as introduced by [15], where an agent
observes that more than half its neighbors are in a certain state, while in the
total network, less than half of the agents are in this state. An example is shown
in Figure 1d: if all nodes were to believe that their neighborhood was represen-
tative of the entire network, the red nodes would believe that the majority of
nodes in the network is blue, while in reality it is red. Whether it is possible for
such illusions to exist, and if so, for how many agents, depends on the network
structure. On the one hand, not all networks allow for most agents to be under
this type of majority illusions. On the other hand, there exist network structures
in which even all agents can be under a majority illusion. In this paper we fo-
cus on the possibility of a majority of agents being in a majority illusion. The
network in Figure 1d is an example of such a ‘majority-majority illusion’.

Related work. The concept of majority illusion was first introduced in [15], to
show how network structures can distort individual observations. Computational
simulations are used to study to which extent the majority illusion can occur
in scale-free, Erdős-Rényi networks, and several real-world networks, and show
that networks in which high-degree nodes tend to connect to low-degree nodes
are most susceptible to this illusion.

In [20] a voter game is modeled with two competing parties to show that
majority illusions can be used for the purposes of ‘information gerrymandering’,
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that is, influencing people’s votes by misrepresenting the opinion of the group
to them. The authors predict this by a mathematical model and confirm their
results with a social network experiment with human participants. They find
that information gerrymandering can even take place when all agents have the
same amount of influence (the same degree).

In [10], the computational complexity of majority illusions is studied. A q-
majority illusion is defined, where at least a q fraction of agents are under ma-
jority illusion, and it is shown that the problem of deciding whether or not a
given network can be colored into a q-majority illusion is NP-complete for q > 1

2 .
Whether it also holds for q ≤ 1

2 is left as an open question. Since majority illu-
sions can in some situations have detrimental effects and are generally regarded
as undesirable, they also study the problem of eliminating an illusion from a net-
work by adding or deleting edges. The problem to identify whether it is possible
to change the network in such a way that the number of agents with a q-majority
illusion is below a given bound is also shown to be NP-complete for q > 1

2 .

Contributions. We study the possibility of majority illusion in its weak and
strict versions, in different classes of graphs. Section 2 introduces our framework,
definitions and terminology. In Section 3, we prove that a weak version of the
majority illusion can occur on all network structures. In Section 4, we provide
some stronger results on specific classes of networks: graphs with odd degrees,
properly 2-colorable graphs, and regular graphs. Table 2 gives a summary of
which graphs allow for which type of majority illusions.

2 Preliminaries

Binary opinion networks and 2-colored graphs. A social network (a simple graph)
G = ⟨V,E⟩ consists of a finite set V agents (nodes/vertices), and a set E of
(undirected irreflexive) edges between agents. If two agents are connected by
an edge, we call them neighbors. We assume that no agent is a neighbor of
itself. We write Ni for the set of neighbors of i and di for its degree |Ni|. Each
agent holds a binary opinion on a single issue. Since binary single-issue opinion
distributions can be seen as graph 2-colorings, we will borrow the terminology
of vertex colorings, and use the terms ‘color’ and ‘opinion’ interchangeably. We
write ci to refer to agent i’s color and c for the 2-coloring of the graph (c : V →
{red, blue}). A 2-colored graph is a triple C = ⟨V,E, c⟩. Thoughout the paper,
the term ‘colored graph’ refers to such 2-colored graph.

Majority illusion and opposition: intuitions. In such opinion networks (or 2-
colored graphs), we are concerned with three types of information: individual
opinions, local majority opinions, and global majority opinions. Any two of these
three types of opinions can be in agreement or not. We systematize and illustrate
all possible relations between the above types of opinions in Table 1.

Different fields have been studying disagreement between the different types
of information mentioned above. On the one hand, in social network science and



4 M. Venema-Los, Z. Christoff & D. Grossi

social choice theory, an agent is under majority illusion when its neighborhood
majority disagrees with the global majority [10,15]. On the other hand, graph
theory has concerned itself with the disagreement between a node’s color and the
color of its neighbors: a proper coloring requires that no two adjacent nodes are
of the same color, that is, that everybody disagrees with all of their neighbors.
A generalisation of that concept is that of majority-coloring [1,5,13], where no
agent agrees with most of its neighbors. We call the local disagreement faced
by an agent in a majority coloring majority opposition. In such a situation, one
might have the impression that they belong to a global minority. For instance, in
Figure 1d all nodes might have this impression, while it is only true for the blue
ones. When all agents are under this impression, then some of them must be
mistaken, it must be some sort of illusion. Clearly, the two concepts of majority
illusion and opposition are related. In this paper, we explore this relation to get
results about majority illusions.

Formal definitions. We start by introducing some notions to be able to talk
about which opinion is prevalent in a network, be it locally or globally. Given
a set S of agents such that |S| = n and a coloring c, a color x is a majority
winner of S (we write MS = x) if |{i ∈ S | ci = x}| > n

2 . When neither color
is a majority winner among S (there is a tie), we will write MS = tie. We say
that an agent is under majority illusion if both the agent’s neighbourhood and
the entire network have a majority winner (no tie) but they are different. This
definition is equivalent to that in [10].

Definition 1 (majority illusion). Given a colored graph C = ⟨V,E, c⟩, an
agent i ∈ V is under majority illusion if MNi

̸= tie and MV ̸= tie and MNi
̸=

MV . A graph is in a majority-majority illusion if more than half of agents are
under majority illusion.

We can generalise this strict definition to weaker cases. First, there exists
a weaker type of disagreement between local and global majorities: the cases
where exactly one of the two is a tie. Second, the majority of agents under an
illusion can also be weak, when exactly half of the agents are under illusion.
The corresponding generalisations of majority illusion includes both types of
weakening:

Definition 2 (weak versions of majority illusion). Given a colored graph
C = ⟨V,E, c⟩, agent i ∈ V is under weak-majority illusion if MNi

̸= MV . A
graph is in a majority-weak-majority illusion if more than half of the agents are
under weak-majority illusion. A graph is in a weak-majority-(weak-)majority
illusion if at least half of the agents are under (weak-)majority illusion.

As indicated in Table 1, while it is the strict version of the majority illusion
that is studied by [15]1, and by [10], it is the weak version of majority opposition

1 They use the strict version throughout the paper, except for Figure 1 where the
illusion can be weak.
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Table 1: Possible combinations of local and global majority winners, and presence
or absence of majority opposition and majority illusion. We assume w.l.o.g. that
the color of the relevant individual (highlighted in the exemplary illustrations)
is red, otherwise just swap ‘red’ and ‘blue’ everywhere. ✗ indicates absence of
the opposition/illusion, ✓ indicates presence of the opposition/illusion, ‘weak’
indicates the presence of a weak-majority opposition or a weak-majority illusion.

local majority majority opposition global majority majority illusion

red ✗ red ✗

red ✗ tie weak

red ✗ blue ✓ [15,10]

tie weak [1,5,13] red weak

tie weak [1,5,13] tie ✗

tie weak [1,5,13] blue weak

blue ✓ red ✓ [15,10]

blue ✓ tie weak

blue ✓ blue ✗
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that is studied by [1], [5], and [13]. As far as we know, the strict majority opposi-
tion and the weak majority illusions have not been studied before. Furthermore,
note that, in the same network, different agents can be under a weak-majority
illusion with respect to different opinions, since it is possible that exactly half
of the nodes in the network are of one color and half of the nodes of the other
color.

Before proceeding, we introduce some extra terminology. When an agent is
under majority illusion and all its neighbors all have the same color, we say
that that agent is in unanimity illusion. Similarly, when all agents are under a
(weak)-majority illusion, we will call it a unanimity-(weak-)majority illusion. We
say that an illusion is possible for a graph G = ⟨V,E⟩ if there exists a coloring
c such that C = ⟨V,E, c⟩ is in the respective illusion.

3 Illusions in Arbitrary Networks

Our overall goal is to discover which social networks allow for majority illusions
to occur. Since this is equivalent to asking which graphs can be colored in some
specific way, we build on existing results from vertex colorings to obtain results
about majority illusions. Recall that a coloring is called proper when no two
neighbors are assigned the same color. The weaker notion of majority coloring
[1,13] is immediately relevant to us. In a majority coloring, each vertex is in
what we described as majority opposition: at least half of its neighbors are of
a different color than its own. For coherence with the rest of the paper, we call
this a weak majority coloring here:

Definition 3 (weak majority 2-coloring). A weak majority 2-coloring of a
graph G = ⟨V,E⟩ is a 2-coloring c such that, for each i ∈ V : MNi

̸= c(i).

A graph is called weak majority 2-colorable if there exists a weak majority
2-coloring of it. Given a colored graph, we call monochromatic the edges between
nodes of the same color, and dichromatic the ones between nodes of different
colors.

Remark 1. The main result involving majority colorings is credited to [16] in the
literature [1,5]: every graph is weak majority 2-colorable. The proof strategy for
this result is commonly described as easy and relying on a simple ‘color swapping
mechanism’ that can only reduce the total number of monochromatic edges in
the network. However, [16] itself focuses on multigraphs and is of a much wider
scope. Therefore, to make the paper self-contained, we provide both a proof of
the general result in Appendix 1 and below a proof of the related lemma, crucial
to our main result, Theorem 1.

Lemma 1. Let G = ⟨V,E⟩ be a graph, and let c be a 2-coloring of G that
minimizes the number of monochromatic edges. Then, c is a weak majority 2-
coloring of G.
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Proof. Let EM be the set of monochromatic edges and ED = E\EM the set of
dichromatic edges in graph G colored by c. Assume for contradiction that there
is a node i ∈ V that is an endpoint of strictly more monochromatic edges (we
write EMi for the set of such edges) than dichromatic edges (EDi): |EMi | >
|EDi

|. Consider now a second 2-coloring c′ of G that only differs from c with
respect to i’s color, i.e., c′ assigns the same color as c did to all nodes except
for i: ci ̸= c′i. Let us write E′

M for the new set of monochromatic edges, and
E′

Mi
and E′

Di
for the new sets of monochromatic and dichromatic edges from i.

Given that |E′
Mi

| = |EDi | and |E′
Di

| = |EMi |, we now have |E′
Di

| > |E′
Mi

| and
|EMi

| > |E′
Mi

|. Given that no other edge of the graph is affected by this change,
the total number of monochromatic edges is smaller with coloring c′ than it was
with c: |EM | > |E′

M |. But since we started by assuming that c was such that
|EM | was minimal, this is a contradiction. ⊓⊔

We now use the existence of such a majority coloring to prove the following
general result:

Theorem 1. For any graph G = ⟨V,E⟩, a majority-weak-majority illusion is
possible.

Proof. Let G = ⟨V,E⟩ be a graph and let c be a 2-coloring of G that minimizes
the total number of monochromatic edges. By Lemma 1, c is a weak majority
2-coloring of G. Two cases:

– MV ̸= tie. Assume w.l.o.g. that MV = red. Since c is a weak majority col-
oring, for any red vertex i, MNi

∈ {blue, tie}, and therefore MNi
̸= MV .

Hence, a majority of the nodes (the red ones) is under (possibly weak) ma-
jority illusion: we have a majority-weak-majority illusion.

– MV = tie. Two cases:
• If |{i ∈ V : MNi

∈ {blue, red}}| > |V |
2 , we have a majority-weak-

majority illusion.
• Otherwise (if |{i ∈ V : MNi

= tie}| ≥ |V |
2 ) choose a node j with MNj

=
tie and define a new coloring c′ that is equal to c for all nodes except for j:
c′j ̸= cj . Since j has as many blue as red neighbors, this does not change
the total number of monochromatic edges in the graph. Therefore, c′ is
also a coloring that minimizes this number. Hence, by Lemma 1, c′ is
also a weak majority 2-coloring of G. Now, we have MV = c′j , and we
can apply the logic of the first case: Assume w.l.o.g. that c′j = red. Since
c′ is a weak majority coloring, for any red vertex i, MNi

∈ {blue, tie}. It
follows that a majority of the nodes has MNi

̸= MV : we have a majority-
weak-majority illusion.

⊓⊔
One of the results in [10] is that checking whether or not a network allows

for a majority-majority illusion is NP-complete2. Here, in stark contrast, we see
that there is no need for checking whether a network allows for a majority-weak-
majority illusion, since Theorem 1 shows that it is always the case.

2 [10] does not actually speak about a majority-majority illusion, but about ‘at least a
fraction of q agents is under majority illusion’, with q > 1

2
. The fact that it then also
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4 Illusions in Specific Network Classes

While the above solves the question of the existence of weak majority illusions,
we now aim to understand when the strict version of the illusion can occur. In
order to obtain results in that direction, we turn to some classes of graphs with
well-known global properties. Note that the results from this section are not
intended to describe realistic classes of social networks but can instead be seen
as a starting point for the systematic analysis of the types of graphs that allow
for majority illusions. We focus on graphs with only odd-degree nodes, properly
2-colorable graphs, and regular graphs.

4.1 Graphs with Odd Degrees

Theorem 2. For any graph G = ⟨V,E⟩ such that for all i ∈ V, di is odd, a
majority-weak-majority illusion is either a unanimity-weak-majority illusion or
a majority-majority illusion.

Proof. Let G = ⟨V,E⟩ be such that for all i ∈ V , di is odd. By Theorem 1, there
exists a coloring of G that induces a majority-weak-majority illusion. Consider
any such coloring c. Two cases:

– MV = tie. For all i ∈ V , since di is odd,MNi
̸= tie and thereforeMNi

̸= MV :
we have unanimity-weak-majority illusion.

– MV ̸= tie. Assume w.l.o.g. that MV = red. Since G is in a majority-weak-

majority illusion, |{i ∈ V : MNi
∈ {blue, tie}}| > |V |

2 , but since for all i,
di is odd, this implies that all those vertices cannot have a tie: we have

|{i ∈ V : MNi
= blue}| > |V |

2 , a majority-majority illusion.

⊓⊔

The intuition is that an agent with odd degree cannot see a tie in its neigh-
borhood, which causes either all agents a to be in weak-majority illusion if there
is a global tie, or, if there is no global tie, a majority of agents to be in a majority
illusion.

Given a graph coloring we can define a ‘swappable node’ as a node whose
neighbors all have at least 2 (so 3 for odd degree) more nodes of one color than
nodes of the other color. Then, a corollary of Theorem 2 is the following:

Corollary 1. For a graph G = ⟨V,E⟩ such that for all i ∈ V, di is odd, if
the coloring c witnessing that majority-weak-majority illusion is possible induces
that Mv = tie and that there is at least one j ∈ V that is ‘swappable’, a weak-
majority-majority illusion is possible.

holds for majority-majority illusion follows from that ‘more than half’ is equivalent
to ‘at least some fraction q where q is more than half’ since we only have to consider
rational numbers.
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Proof. W.l.o.g. assume cj = red and define c′ which is equal to c for all nodes
except that c′j = blue. Since c was a majority 2-coloring, all red nodes had more
than half blue neighbors. Since j’s neighbors all had a margin of at least 2 and
nothing except j’s color changed, all red nodes except j still have more than half
blue neighbors in c′. Hence, half of the nodes are under majority illusion. ⊓⊔

4.2 2-Colorable Graphs

In the same way as we used the existence of a majority coloring to obtain results
about the existence of majority illusions we can also use the existence of a special
type of weak majority colorings, the proper colorings, to obtain results about
majority illusions in 2-colorable graphs.

Lemma 2. Any proper 2-coloring of a graph G = ⟨V,E⟩ is either a majority-
majority illusion or a unanimity-weak-majority illusion.

The idea of the proof is similar to that of Theorem 2: no node can see a tie
among its neighbors.

Proof. Let c be a proper 2-coloring of G. Two cases:

– If MV ̸= tie, then w.l.o.g. assume that MV = red. Since more than half the
nodes are red and all red nodes have a majority of blue neighbors, we have
a majority-majority illusion.

– If MV = tie, then all the nodes are under weak-majority illusion, since for all
nodes, all neighbors are the other color. We have a unanimity-weak-majority
illusion.

⊓⊔

Both cases used in the above proof are cases of majority-weak -majority illusions
(which were already guaranteed to exist by 1), but we can also show the existence
of the strict majority illusion in two different cases. First, when the number of
nodes is odd, there cannot be a global tie, so by using the first case in Lemma
2 we get the following proposition:

Proposition 1. For any properly 2-colorable graph G = ⟨V,E⟩ with |V | odd, a
majority-majority illusion is possible.

Proof. Let c be a proper 2-coloring of G. Since |V | is odd, MV ∈ {red, blue}, we
can use the first case of the proof of Lemma 2: W.l.o.g. assume MV = red. Since
more than half of the nodes are red and all red nodes have only blue neighbors
(since c was a proper 2-coloring), we have a majority-majority-illusion. ⊓⊔

Second, when the color of a node can be swapped if needed, we can solve a tie:

Proposition 2. For any properly 2-colorable graph G = ⟨V,E⟩ with some i ∈ V
such that for all j ∈ Ni dj > 2, a weak-majority-majority illusion is possible.

Proof. Let c be a proper coloring of G. Two cases:
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– If MV ̸= tie, then conformingly to Lemma 2, we have a majority-majority
illusion.

– If MV = tie, then swap the color of node i: let c′ assign the same colors
as c to all other nodes but c′i ̸= ci. Now M ′

V = c′i. W.l.o.g. say ci = blue
and c′i = red. All of i’s neighbors are also red and have now exactly one
red neighbor (i), and more than one blue neighbor. Therefore, all red nodes
except for i have more than half of their neighbors blue. Therefore, exactly
|V |
2 of the nodes are in a situation of majority illusion.

⊓⊔
In [10], the complexity of checking whether a network admits (what we call)

a weak-majority-majority illusion was left as an open problem. Propositions 1
and 2 show that by checking whether a graph is properly 2-colorable (which
can be done in polynomial time [6]) and whether there exists a node whose
neighbors all have degree larger than 2 or whether the number of nodes is odd,
we can know that a graph admits a (weak-)majority-majority illusion. Still this
does not give us the complexity of checking whether a network admits a weak-
majority-majority-illusion: while this is a sufficient condition for a graph to allow
for a (weak-)majority-majority illusion, it is not a necessary condition.

4.3 Regular Graphs

In [2], theoretical analysis and experiments where human subjects were asked to
perform estimation tasks are used to study the influence of network structure
on the wisdom of crowds. The authors find a remarkable difference between cen-
tralized networks, where the degree distribution varies a lot between nodes, and
decentralized (regular) networks, in which all nodes have the same degree, re-
garding what social influence does to the accuracy of the estimates of individuals
(when individual’s estimates are based on a weighted average of their own belief
and the beliefs of their neighbors). They show that in decentralized networks,
social influence significantly improves individual accuracy and the group mean
estimate. Furthermore, an overview of research about collective intelligence by
Centola [7] mentions several studies about decentralized networks in practical
applications: in decentralized networks, political polarization and biases about
climate change and immigration are reduced [3,11], and social influence reduced
biases about the risk of smoking [12], as well as (implicit) race and gender biases
in clinical settings [8]. Since decentralized/regular networks seem to be beneficial
for group accuracy and bias reduction, we wonder whether they also are ‘good
networks’ in terms of the distortion we study: to what extend they allow for ma-
jority illusions. According to [15], differences between the degrees of nodes and
their neighbors are one of the main factors enabling majority illusion. Therefore,
one would expect that regular networks, where all nodes have the same degree,
make majority illusions less likely. Nevertheless, we show that majority illusions
(beyond the ones given by Theorem 1) are also possible in regular networks.

A k-regular network is a network in which all nodes have degree k. We start
by considering the simplest cases of regular network: simple cycles, where k = 2,
and complete networks, where k = |V | − 1.
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Proposition 3 (simple cycles). For any 2-regular graph G = ⟨V,E⟩, a (weak-
)majority-majority illusion is not possible.

Proof. Let G = ⟨V,E⟩ be any 2-regular graph. A node can only be under ma-
jority illusion if both of its neighbours are of the minority color. Every minority-
colored node can serve as a neighbour for at most two nodes. Thus, to give at

least half of the nodes a majority illusion, there must be at least |V |
2 nodes in

the minority color, which is a contradiction with being a strict minority. ⊓⊔

However, a majority-weak-majority illusion is possible, according to Theorem 1,
and it is easy to find one (which we leave as an exercise to the reader).

Proposition 4 (weak-majority-majority illusion in complete graphs).
For any complete graph G = ⟨V,E⟩ (i.e. a k-regular graph with k = |V | − 1), a
(weak-)majority-majority illusion is not possible.

Proof. This is a corollary of Proposition 8 in Appendix 2. If |V | = n, according
to Proposition 8, a weak-p-q illusion can occur iff there is an integer x such that
q(n− 1) < x < qn and n− x ≥ pn. This implies that a majority-weak-majority
illusion can occur iff there is an integer x such that n−1

2 < x < n
2 and n−x ≥ n

2 .
Clearly, there is no x that satisfies the first requirement. ⊓⊔

We know (by Theorem 1) that a majority-weak -majority illusion is always possi-
ble on complete graphs too. We can go further and specify the types of colorings
under which these graphs are in such an illusion.

Proposition 5 (majority-weak-majority illusion in complete graphs).
A complete 2-colored graph G = ⟨V,E, c⟩ is under majority-weak-majority illu-
sion if and only if:

– the difference in numbers of nodes of each color is one; or
– the number of nodes of each color is equal, then it is under unanimity-weak-

majority illusion.

Proof. If the difference in numbers of nodes of each color is one, assume w.l.o.g.
that MV = red. Then for all red nodes r, Mr = tie, so we have a majority-
weak-majority illusion. If the number of nodes of each color is equal, we have
MV = tie but every node will observe a majority of the other color: we have a
unanimity-weak-majority illusion. ⊓⊔

We return to the analysis of general regular graphs. The number of minority-
colored neighbours needed for an illusion gives a restriction on the possible values
of k depending on |V |:

Proposition 6 ((weak-)majority-majority illusion in k-regular graphs).
Let G = ⟨V,E⟩ be a k-regular graph with |V | = n. If a (weak-)majority-majority
illusion is possible on G, then n and k must satisfy:

– k ≤ n− 4 if n and k are even;
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– k ≤ n− 3 if one of n and k is even and one is odd.

Proof. This is a direct corollary of Proposition 9 in Appendix 2. ⊓⊔

Example 1. Consider a k-regular graph G = ⟨V,E⟩ with |V | = 6 and k = 4. For
any node to be in a majority illusion, at least 3 of its neighbours have to have a
different color than the global majority color. Assume that the global majority
color is red. Then there are at least 4 red nodes and therefore only 2 nodes can
be blue. Therefore, no node can have 3 or more blue neighbours.

The number of available edges of the minority color brings another require-
ment on the relative values of |V | and k for the strictest version.

Proposition 7 (majority-majority illusion in k-regular graphs). Let G =
⟨V,E⟩ be a k-regular graph with |V | = n. If a majority-majority illusion is
possible on G, then n and k must satisfy:

– n ≥ 2(3k+2)
k−2 (assuming k ≥ 3) if n and k are even;

– n ≥ 2(3k+1)
k−1 (assuming k ≥ 2) if n is even and k is odd;

– n ≥ 3k+2
k−2 (assuming k ≥ 3) if k is even and n is odd.

Proof. If G is in a majority-majority illusion, there are more than half of the
nodes of one color. W.l.o.g., assume that this majority color is red, and that the
minority color is blue.

– When n and k both are even, in order for a majority-majority illusion to
exist, at least n

2 + 1 nodes have to be red. Nodes with an illusion have to

have at least k+2
2 blue neighbours. Then, there have to be at least n

2 +1 such

nodes with an illusion. Thus there have to be at least k+2
2 (n2+1) = (k+2)(n+2)

4

edges to a blue node. Hence, there must be at least (k+2)(n+2)
4k blue nodes

because every blue node can have at most k edges. Since at least n
2 +1 nodes

were red, there are at most n
2 − 1 left over to be blue, so this means that

(k+2)(n+2)
4k must be at most n

2 −1. This is equivalent to n ≥ 2(3k+2)
k−2 assuming

that k > 2;
– When n is even and k odd, in order for a majority-majority illusion to exist,

at least n
2 + 1 nodes have to be red. Nodes with an illusion have to have at

least k+1
2 blue neighbours. Then, there have to be at least n

2 +1 such nodes

with an illusion. Thus there have to be at least k+1
2 (n2 + 1) = (k+1)(n+2)

4

edges to a blue node. Hence, there must be at least (k+1)(n+2)
4k blue nodes

because every blue node can have at most k edges. Since at least n
2 +1 nodes

were red, there are at most n
2 − 1 left over to be blue, so this means that

(k+1)(n+2)
4k must be at most n

2 − 1. This is equivalent to n + 2 ≤ k(n − 6),

which means n ≥ 2(3k+1)
k−1 assuming that k > 1;

– When k is even and n odd, in order for a majority-majority illusion to exist,
at least n+1

2 nodes have to be red. Nodes with an illusion have to have at

least k+2
2 blue neighbours. Then, there have to be at least n+1

2 such nodes
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(a) Color 7 nodes
red and 5 nodes
blue. Draw lines
from red to blue
nodes,

(b) until each
red node has
⌊ k
2
+ 1⌋ = 4

connections to a
blue node.

(c) Add an edge
(green) such that
all blue nodes
have 6 edges.

(d) Draw a
regular graph
(purple) of the
remaining edges
between the red
nodes.

Fig. 2: Example of the algorithm for Theorem 3, with n = 12, k = 6.

with an illusion. Thus there have to be at least k+2
2 · n+1

2 edges to a blue

node. Hence, there must be at least (k+2)(n+1)
4k blue nodes. Since at least n+1

2
nodes were red, there are at most n−1

2 left over to be blue, so this means that
(k+2)(n+1)

4k must be at most n−1
2 . This is equivalent to n ≥ 3k+2

k−2 assuming
that k > 2.

⊓⊔

Example 2. Consider a k-regular network with |V | = 6 and k = 3. Let us assume
that red is the global majority color, so we have at least 4 red nodes and at
most 2 blue nodes. Then any node with a majority illusion has at least 2 blue
neighbours. Since for a majority-majority illusion there have to be at least 4
nodes with an illusion, there are at least 4 · 2 = 8 edges to blue nodes necessary.
However, since we have at most 2 blue nodes that each have only 3 edges, this
is not possible.

For any n and k (with k > 2 and n or k even) satisfying the above constraints,
we can find a k-regular graph of size n that has a majority-majority illusion.
Note that this does not mean that for any k-regular graph of size n we can
find a coloring that gives a majority-majority illusion, because there exist many
different regular graphs with the same n and k. We only show that, for all
combinations of n and k not excluded by our previous results, there exists at
least one such graph with the illusion, and that we know how to find it.

Theorem 3. Let n and k be any two integers such that k > 2 and k or n is
even. If the requirements of Propositions 6 and 7 are met, there exists a k-regular
graph G = ⟨V,E⟩ with |V | = n on which a majority-majority illusion is possible.

Proof sketch. We prove this by construction: we give an algorithm that takes
as input n and k and returns a regular graph with n nodes of degree k that
has a majority-majority illusion. The algorithm and a proof that the algorithm
outputs the desired graph are given in Appendix 3. See Figure 2 for an example
with 12 nodes of degree 6.
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Propositions 6 and 7 and Theorem 3 together give necessary and sufficient
conditions for n and k for the existence of a k-regular graph with |V | = n nodes
on which a majority-majority illusion is possible.

5 Conclusion and Outlook

We studied weak and strong versions of the majority illusion. Using results about
majority-colorings, we proved that no network is immune to majority-weak-
majority illusion, and that some classes of graphs are not immune to stronger
types of illusions either. The results are summarized in Table 2. We also provided
an algorithm to find a k-regular graph of size n with a majority-majority illusion,
when it exists.

The most natural direction for further research is to broaden the scope of our
study: first, as we have initiated with Appendix 2, by considering proportions
other than majority; and second, by considering classes of graphs that are more
realistic as social networks, including not necessarily irreflexive ones. Moreover,
beyond verifying their sheer possibility, we keep measuring the likelihood of such
illusions for future work.

A different direction is to investigate the relation between majority illusions
and majority logic [18], which can ‘talk about’ local majorities, but not about
global majority. We propose to enrich the logic with a global majority operator,
to express the results from this paper. The idea is elaborated on in Appendix 4.

Last but not least, it would be interesting to measure the impact of propor-
tional illusions on specific social phenomena. For instance, how do they affect
opinion diffusion dynamics in a population? How do they interact with polling
effects? And how do they relate to better known types of illusions, such as the
above-mentioned ‘friendship paradox’ [9]?
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the Netherlands Organisation for Scientific Research (NWO).
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Table 2: The (im)-possibility of majority illusions on different classes of graphs.
✓ indicates that the illusion is possible on all graphs of the class, ✗ indicates
that the illusion is not possible on any graph in the class, ✓/ ✗ indicates
that the illusion is possible on some but not all graphs of the class. For the
majority-weak-majority illusion, some stronger results are shown. References to
the relevant results are given.

Class of graphs majority-weak-majority
weak-maj.-
majority

majority-
majority

All graphs

✓(Thm. 1)

✓/ ✗Graph with only
odd-degree nodes majority-

majority
or

unanimity-
weak-

majority

(Thm. 2)

2-colorable graphs

(Lem. 2)

2-colorable graphs
with |V | odd ✓ (Prop. 1)

2-colorable graphs
with i ∈ V : ∀j ∈
Ni : dj > 2

✓ (Prop. 2) ✓/ ✗

2-regular graphs ✗ (Prop. 3)
Complete graphs
with |V | even

unanimity-weak-majority
(Prop. 5)

✗ (Prop. 4)
Complete graphs
with |V | odd

Appendix 1 Constructive Argument for Majority-2-
Colorability

Theorem 4 (attributed to [16]). Every graph is weak majority 2-colorable.

Proof. Consider a graph G = ⟨V,E⟩ and an arbitrary 2-coloring c of G. Then,
search for a node with more monochromatic edges than dichromatic ones. If
such a node does not exist, we are done, and our initial coloring c is already a
majority 2-coloring. If such a node does exist, swap its color. Even though this
might make another node increase its number of monochromatic edges, the total
number of monochromatic edges in the graph can only decrease by such a step.
We can proceed with this until there is no node to swap color of anymore, i.e.
all nodes have at least as many dichromatic edges as monochromatic ones. We
can be sure that at some point this will be the case, since every step can only
strictly decrease the total number of monochromatic edges in the graph, and
this number has a lower bound.

⊓⊔

See Figure 3 for an illustration of the algorithm.
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Algorithm 1: Weak majority 2-coloring

input : graph G
output: weak majority 2-coloring of G

1 c← random 2-coloring of G;
2 while ∃ node i with EM (i) > ED(i) do
3 ci ← c̄i;
4 end
5 return c

(a) Initial color-
ing. Some nodes
have more di-
than monochro-
matic edges, for
example A. Total
nr. of monochro-
matic edges: 6

(b) Result of
swapping node
A’s color. Node
E still has too
many monochro-
matic edges.
Total nr. of
monochromatic
edges: 4

(c) Result of
swapping E’s
color. Even
though this is
bad for D, the
total number
of bad edges
decreases. Total
nr. of monochro-
matic edges: 3

(d) Result of
swapping D’s
color. Total nr. of
monochromatic
edges: 2. Now
the graph is in a
weak majority-2-
coloring

Fig. 3: Algorithm 1 executed on an example network.

Appendix 2 More General Illusions

For the following results, we will further generalize Definitions 1 and 2 to arbi-
trary thresholds as follows:

Definition 4 (q illusion). Given a colored graph C = ⟨V,E, c⟩, an agent i ∈ V
is under q illusion if, for some x ∈ {red, blue}, |{j ∈ Ni | cj = x}| > q · di, but
|{j ∈ N | cj = x}| < q · |V |.

Definition 5 (weak-q illusion). Given a colored graph C = ⟨V,E, c⟩, agent
i ∈ V is under weak q illusion if, for some x ∈ {red, blue}, |{j ∈ Ni | cj =
x}| ≥ q · di but |{j ∈ N | cj = x}| ≤ q · |V |, and it is not the case that
|{j ∈ Ni | cj = x}| = q · di and |{j ∈ N | cj = x}| = q · |V |.

For q = 1
2 , Definitions 4 and 5 reduce to Definitions 1 and 2.

Note that in the same network, different agents can be under a q illusion
with respect to different colors if q > 1

2 (or a weak q illusion if q ≥ 1
2 ), since
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then for both colors there can be less than (or equal to) qn of the nodes in the
network of that color, while in the different neighbourhoods there can be more
than q of different colors. We call a network illusion where all agents that are
under illusion have an illusion of the same color (or all see a tie) a monochromatic
illusion, and the general case where different agents can have illusions of different
colors a polychromatic illusion or just an illusion (so the polychromatic illusion
is more general and includes also the monochromatic one). Note that for q ≤ 1

2
(and q < 1

2 for weak illusions), the illusion can only be monochromatic.
We can also make the first ‘majority’ in ‘majority-q illusion’ an arbitrary

fraction of agents p instead of exactly 1
2 , and we can define both the weak and

strong version of this to study cases where either at least p of the agents are
under illusion or more than p of the agents are under illusion.

Definition 6 ((weak)-p-(weak)-q illusion). A graph C = ⟨V,E, c⟩ is in a
p-(weak)-q illusion if more than a p- proportion of the agents is under (weak-)q
illusion. A graph is in a weak-p-(weak)-q illusion if at least a proportion p of the
agents is under (weak-)q illusion.

If we set either p or q to 1
2 , we get the respective ‘majority’-versions. We examine

the possibility of p-q illusions on complete graphs.

Proposition 8 (p-q illusions on complete graphs). If G = ⟨V,E⟩ is a com-
plete graph with |V | = n, a p-q illusion can occur iff there is an integer x,
representing the number of nodes of color c, such that q(n − 1) < x < qn and
n− x > pn.
A weak-p-q illusion can occur iff there is an integer x such that q(n−1) < x < qn
and n− x ≥ pn.
A p-weak-q illusion can occur iff there is an integer x such that q(n−1) ≤ x ≤ qn
and n− x > pn.
A weak-p-weak-q illusion can occur iff there is an integer x such that q(n− 1) ≤
x ≤ qn and and n− x ≥ pn.

Proof. For a p-q illusion to be possible in G, we need that for some nodes, more
than q · k = q(n− 1) of its neighbours has a color c, but that at the same time
less than q · n of the set of all its neighbours plus the node itself has color c.
Hence, if we call the total number of c-colored nodes in the network x, we need
to have that q(n − 1) < x < qn, or x

n < q < x
n−1 . For some combinations of n

and q, there is no such integer x, for example when q = 1
m for some integer m

or when either qn or q(n− 1) is an integer. If there does exist such an x, at least
some nodes can be under illusion, in fact, exactly all the nodes that do not have
color c are under q illusion. Since x was the number of nodes with color c, there
are n− x nodes with the other color. Hence, there can be a p-q illusion iff there
is an integer x such that q(n − 1) < x < qn and n − x > pn. For the illusions
with weak q, the first requirement becomes q(n− 1) ≤ x ≤ qn; for the illusions
with weak p the second requirement becomes n− x ≥ pn. ⊓⊔

Proposition 6 can be written in a sligtly more general way:
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Proposition 9. 3 If a 2-colorored k-regular graph G = ⟨V,E, c⟩ with |V | = n is
in a (weak-)p-majority illusion (for any p > 0), then n and k must satisfy

– k ≤ n− 4 if n and k are even;
– k ≤ n− 3 if one of n and k is even and one is odd.

Proof. Assume G is in a (weak-)p-majority illusion. Then there is at least one
agent under majority illusion, so more than k

2 of its neighbours have color c, but
less than n

2 of the agents in the entire network have color c. Hence, this agent

has at least (k+1)
2 neighbours of color c if k is odd and at least (k+2)

2 if k is even.
But in total, there are less than n

2 nodes of color c, so at most n−2
2 if n is even

and at most n−1
2 if n is odd. Hence we must have:

– if n and k are even: (k+2)
2 ≤ n−2

2 , so k ≤ n− 4;

– if n is even and k is odd: (k+1)
2 ≤ n−2

2 , so k ≤ n− 3;

– if n is odd and k is even: (k+2)
2 ≤ n−1

2 , so k ≤ n− 3.
⊓⊔

Proposition 7 can be generalised for arbitrary p and q as follows:

Proposition 10. If a 2-colorored k-regular graph G = ⟨V,E, c⟩ with |V | = n is
in a monochromatic p-q illusion (for 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1), then for any
n > 1, k > 1, 0 < q ≤ 1, p must satisfy 0 ≤ p < kn

(n+1)(k+1) .

Proof. Assume G is in a monochromatic p-q illusion, and assume that the color
of illusion is c. Then more than np of the nodes are under q illusion, so at least
(n+ 1)p nodes are under illusion4. Of the nodes under illusion, more than qk of
the neighbours are colored c, so at least (k + 1)q of the neighbours are colored
c. Hence, there have to be at least (n + 1)p(k + 1)q edges to a c-colored node,

and since every node has k edges, there have to be at least (n+1)p(k+1)q
k nodes

of color c. However, in the total network there are less than qn blue nodes, so
(n+1)p(k+1)q

k < qn, which, for q > 0, boils down to p < kn
(n+1)(k+1) . ⊓⊔

We can also say something (trivial) about the size of the existing proportional
illusion in all graphs with only odd degrees of at most k . The point is that we
know that the illusion exists, and that, when k is smaller (and n larger), the
illusion is stronger (it will not just be a neglectable difference between local
majority and global majority).

Corollary 2. For any graph G = ⟨V,E⟩ with all v ∈ V, d(v) odd and ≤ k, a

weak majority-q illusion exists for q =
k+1
2

k .

3 We can make a similar theorem for general q instead of q = 1
2
, but then we only get

that k + 2 ≤ n for the possibility of an illusion, which we already knew because for
k + 1 = n we have a complete network in which a (strict) illusion is not possible.

4 the exact value can differ depending on the divisibility of n by 1
p
, or maybe on the

common divisors of n and p, but it always has the lower bound of (n+ 1)p.
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This holds in particular for regular graphs (it doesn’t add anything):

Corollary 3. For any k-regular graph G = ⟨V,E⟩ with k odd (and therefore n

even), a weak majority-q illusion exists for q =
k+1
2

k .

The generalization to p-q illusions gives us another open question: We know
that any network allows for majority-weak-majority illusions. The problem of
whether a q-weak-majority illusion is possible on a network for greater q remains.

Appendix 3 Algorithm for Finding a k-Regular Graph
with a Majority-Majority Illusion.

Appendix 3.1 Pseudocode

The pseudocode of the algorithm can be found in Algorithm 2.

Appendix 3.2 Proof of Correctness of the Algorithm

We go by cases over the combinations of the possible parities of |V | = n and k.

– n and k are even For the case where n and k are both even: Let there be
nred = n

2 + 1 red nodes and nblue = n
2 − 1 blue nodes. We assume that the

requirements n− 4 ≥ k (and n ≥ 2(3k+2)
k−2 ) hold.

We start by just connecting every red node to k+2
2 blue nodes, and do this

as evenly spread out over the blue nodes as possible by just going in rounds
over the red nodes and over the blue nodes until we are done. After this, all
red nodes have enough blue neighbours to be in majority illusion, and there
are in total n+2

2
k+2
2 blue edges used, so there are k(n2 − 1) − n+2

2
k+2
2 blue

edge-ends left over, evenly spread over the blue nodes. We can write this as
k(n2 −1)−(n2 −1+2)k+2

2 = (n2 −1)(k− k+2
2 )−(k+2) = (n2 −1)(k−2

2 )−(k+2).

Hence, every blue node has k−2
2 edge-ends left over, but k + 2 of them have

one less left over. But, k + 2 may exceed the number of blue nodes n
2 − 1,

namely when n < 2k + 6, and then there must be some nodes that have
two less (because we cannot spread out the k + 2 evenly over the n

2 − 1.
However, k + 2 cannot be bigger than 2(n2 − 1) (since then we would have
k > n − 4, which is contradicted by our first assumption), so there are no
blue nodes with more than 2 less open ends than k−2

2 . We can therefore
approach it from the other side, if we start with stating that every blue node
has k−2

2 − 2 = k−6
2 edge-ends left open, then (n2 − 1)2− (k + 2) = n− k − 4

have another extra left open (and if (n2 − 1)2 − (k + 2) > n
2 − 1 some have

two extra, that is, when n > 2k + 6). So, we have three kinds of open ends
left over.
(a) n

2 + 1 red nodes that all have kred = k
2 − 1 open ends;

(b) n
2 − 1 blue nodes that all have kblue =

k−6
2 = k

2 − 3 open ends
(c) another n− k − 4 open ends evenly divided over the blue nodes (where

each blue node has at most two ends of this kind).
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Algorithm 2: Finding a majority-majority illusion coloring

input : number of nodes n, degree k
output: k-regular graph of n nodes, with majority-majority illusion

1 nred ← ⌊n2 + 1⌋;
2 nblue ← ⌈n2 − 1⌉;
3 if n is even then
4 if k is even then
5 kblue ← k

2
− 3;

6 kred ← k
2
− 1;

7 else
8 kblue ← k−5

2
;

9 kred ← k−1
2

;

10 if kblue < 0 then
11 kblue ← 0

12 else
13 kblue ← k

2
− 2;

14 kred ← k−2
2

;

15 /* Now nblue and nred are the numbers of blue and red nodes, and

kblue and kred are the degrees of the regular subgraphs built in

the last step. */

16 N ← set of n nodes;
17 E ← ∅ ; /* set of edges starts empty */

18 G← ⟨N,E⟩;
19 R← any subset of nred nodes of N ;
20 B ← N\B;
21 E ← add initial edges(E,B,R, k); /* Algorithm 3 */

22 E ← add extra blue edges(E,B, k, kblue); /* Algorithm 4 */

23 if kred is even or nred is even then
24 E ←add regular subgraph(E,R, kred); /* Algorithm 5 */

25 if kblue is even or nblue is even then
26 E ← add regular subgraph(E,B, kblue);
27 if kred is odd and nred is odd then /* Hence also kblue and nblue are odd

*/

28 kredtemp ← kred − 1 ; /* Make regular graphs with one less edge per

node */

29 E ← add regular subgraph(E,R, kredtemp);
30 if kblue > 0 then
31 kbluetemp ← kblue − 1;
32 E ← add regular subgraph(E,B, kbluetemp);

33 blue1 ← blue node with least amount of edges;
34 redc ← a red node that blue1 is not yet connected to;
35 E ← E ∪ {(blue1, redc)} ; /* add an edge between (blue1 and redc) */

36 if kblue > 0 then
37 for node in B\{blue1} do
38 if number of neighbors of node < k then
39 next← first blue node that is not yet connected to node and

has less than k edges;
40 E ← E ∪ {(node, next)};
41 for node in R\{redc} do
42 if number of neighbors of node < k then
43 next← first red node that is not yet connected to node and has

less than k edges;
44 E ← E ∪ {(node, next)};
45 G← ⟨N,E⟩;
46 return G
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Algorithm 3: add initial edges

input : set of edges E, blue nodes B, red nodes R, degree k
output: E with some edges added between blue and red nodes

1 x← 0 ; /* value to avoid double edges */

2 if k is even then
3 nedges ← ⌊|R| · k+2

2
⌋ ; /* nedges is the nr of necessary edges */

4 else
5 nedges ← ⌊|R| · k+1

2
⌋

6 end
7 for 0 ≤ i < nedges do
8 indexred ← i mod |R|;
9 nodered ← R[indexred];

10 indexblue ← (x+ i) mod |B|;
11 nodeblue ← B[indexblue];
12 if (nodered, nodeblue) ∈ E then
13 x← 1 ; /* (edge already exists, we shift one position) */

14 indexblue = (x+ i) mod |B|;
15 nodeblue ← B[indexblue];

16 end
17 E ← E ∪ {(nodered, nodeblue)};
18 end
19 return E

Algorithm 4: add extra blue edges

input : set of edges E, blue nodes B, degree k, degree kblue
output: E with extra blue edges

1 sort B such that ones missing most edges come first;
2 for node in B do
3 indexnext ← (B.index(node) + 1) mod |B|;
4 next← B[indexnext];
5 if (node,

next node)/∈ E∧|neighbors(node)| < k−kblue∧|neighbors(next)| < k−kblue
then /* The node has more than kblue open edges (which is the

nr to be left over after this), so less than k − kblue neighbors

(the next-node check is only for the case where one node has to

be left open (n odd, k even)) */

6 E ← E ∪ {(node, next)};
7 end

8 end
9 return E
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Algorithm 5: add regular subgraph

input : set of edges E, colored nodes C, degree kcolor
output: E with added regular subgraph between nodes of C

1 for node in C do
2 if |C| is even then

3 indexstart ← C.index(node) + ⌊ |C|
2
⌋ mod |C| ; /* The index of the

node opposite to the current node */

4 else

5 indexstart ← C.index(node) + |C|
2

; /* (this will be a half

number) */

6 end
7 if |C| is even and kcolor is odd then
8 E ← E ∪ (node, C[indexstart]) ; /* (add an edge to the node

opposite.) */

9 end

10 r ← kcolor
2

; /* r is the range to both sides */

11 if |C| is odd and kcolor is odd then

12 r ← kcolor−1
2

;
13 end
14 for 1 ≤ i ≤ r do
15 indexminus ← ⌈indexstart − i⌉ mod |C|;
16 indexplus ← ⌊(indexstart + i)⌋ mod |C|;
17 E ← E ∪ {(node, C[indexminus]), (node, C[indexplus])};
18 end

19 end
20 return E
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Now we can link those open edges to make a regular graph:

i we can tie the ends in (c) to each other (possible since n− k− 4 is even,
and no blue is yet connected to another blue);

ii if kblue =
k
2 − 3 (and hence also kred = k

2 − 1) is even:

(a) make a regular graph between the remaining blue edge ends (n2 − 1

nodes with all k
2 − 3 open ends);

(b) make a regular graph between the remaining red edge ends (n2 + 1

nodes with all k
2 − 1 open ends);

Where 2 (a) is possible because any blue node is connected to at most
two other blue nodes as a result of 1, so there are at least (n2 − 1) − 3
other blue nodes left over (also subtracting 1 for the node itself). Since
n−2 ≥ k, we also have (n2 −1)−3 ≥ k

2 −3. If kblue < 0, we just skip this
step, because then all blue nodes already have enough edges due to step
(i). Clearly, 2(b) is always possible, since there are no edges between any
red nodes yet.

iii if kblue and hence also kred are odd,

(a) make a regular graph between the remaining blue edge ends leaving
one edge per node open (n2 − 1 nodes with all k

2 − 4 ends);
(b) make a regular graph between the remaining red edge ends, leaving

one edge per node open (n2 + 1 nodes with all k
2 − 2 ends);

Then we are left with exactly one open end for all nodes, but since
everything so far was spread out as evenly as possible over the network,
it is possible to divide the nodes into pairs that are not yet connected to
each other.

The cases where one of k and n is odd work very similar:

– n is even, k is odd When n is even and k is odd, we still have nred = n
2 +1

red nodes and nblue = n
2 − 1 blue. We assume that, as given in Proposition

6, k ≤ n − 3, and, as given in Prop. 7, n ≥ 2(3k+1)
k−1 . Then we proceed as in

Algorithm 2 above: we tie every red node to k+1
2 blue nodes, as evenly as

possible. Then, there are still k(n−2
2 ) − n+2

2
k+1
2 = k−1

2
n−2
2 − (k + 1) blue

edge-ends left over. Since these are as evenly spread over the blue nodes as
possible, every blue node has at least k−1

2 − 2 = k−5
2 open ends, and then

there are another n−2
2 · 2− (k + 1) = n− k − 3 blue edge-ends left over. (if

n − k − 3 > n
2 − 1, some blue nodes have two extra, otherwise those can

be divided over n− k − 3 blue nodes that all have one extra). Then, all red
nodes have a majority illusion, and we still have the following open ends to
fill the regular graph:

a) n
2 + 1 red nodes, all with kred = k−1

2 open ends;

b) n
2 − 1 blue nodes, all with kblue =

k−5
2 open ends to start with;

c) another n− k − 3 blue open ends, at most 2 per node.

Since n − k − 3 is even, and no blue is yet connected to another blue, we
can just connect the open ends in (c) to each other. Then, if k−1

2 and k−5
2

are even, just make two regular graphs between the two, otherwise leave one
open and connect those, just as in the case with both n and k even.
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– n is odd, k is even When n is odd and k is even, we have nred = n+1
2 red

nodes, nblue = n−1
2 blue nodes, and a node needs to be connected to k

2 + 1
blue nodes to have an illusion. We assume that k ≤ n − 3 conformingly to
Proposition 6, and that n ≥ 3k+2

k−2 conformingly to Proposition 7. Just as in

the other cases, we start by tying every red node to k
2 +1 blue nodes, which

leaves us with k(n−1
2 )− n+1

2
k+2
2 = k−2

2
n−1
2 − k+2

2 blue ends open. It is not

possible that k+2
2 > n−1

2 , since that would imply that k > n − 3, so the

remaining k+2
2 can be divided over the blue nodes. What this means is that

every blue node has k−2
2 − 1 = k

2 − 2 open ends at least, and n=−1
2 − k+2

2 =
n−k−3

2 blue nodes have one more open end (so those have k−2
2 ). This means

that we still have the following open ends to fill the regular graph:
(a) n+1

2 red nodes, all with kred = k−2
2 open ends;

(b) n−1
2 − n−k−3

2 = k+2
2 blue nodes that have kblue =

k
2 − 2 open ends; and

(c) n−k−3
2 blue nodes that have k

2 − 1 open end.
If the number of nodes mentioned in (c) is even, we can connect them to
each other and make regular graphs between the remaining red resp. blue
nodes. If the number mentioned in (c) is odd, then either both n+1

2 (nred)

and k−2
2 (kred) are even or both n−1

2 (nblue) and
k
2 − 2 (kblue) are even, but

not both. That means that we can make a regular graph of the remaining
edges of either the blue nodes or the red nodes, but not both. However, of
the one that cannot form a regular graph, we tie one node to one of the
nodes in c, which makes the remaining number in c even, and of the rest, we
make an almost regular graph.

Faster algorithm (only for nice values of n and k). If n ≡ 2 mod 4 and n ≤
2k − 2, we can connect all red nodes to all blue nodes. Then all red nodes still
have k − n

2 + 1 open ends, and all blue nodes still have k − n
2 − 1 open ends.

Since n ≡ 2 mod 4 and k is even, both k− n
2 +1 and k− n

2 −1 are even. Hence,
we can make two regular graphs with the remaining open ends, one between the
red nodes, and one between the blue nodes. Note that if n ≡ 0 mod 4, both
the numbers of open ends of each color and the number of nodes of each color
is odd, so we cannot apply this algorithm.

Appendix 4 Global Majority Logic

Majority Logic, a modal logic that can express facts about a majority of accesible
worlds is introduced in [18]. It is an extension of Graded Modal Logic with the
following syntax:

α := p | ¬α | α ∨ α | ♢nα | Wα,

where p ∈ Φ, a set of atomic propositions, and n ∈ N.
The formula ♢nα means that α is true in strictly more than n accessible

states. Wα means that α is true in at least half of the accessible states, and
its dual Mα = ¬W¬α means that α is true in more than half of the accessible
states. This logic, as it is, can already capture some of the central notions of
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our paper. For instance, a majority opposition can be formulated as p∧M¬p, a
weak majority opposition as p ∧W¬p.

To capture the other notions relevant to the majority illusion, we propose to
enrich this logic with global modalities: a modality En (there exists at least n
states) and a ‘global majority modality’ GW (in at least half of all states). Then
the syntax LGMJL (Global Majority Logic) becomes:

α := p | ¬α | α ∨ α | ♢nα | Wα | Enα | GWα.

We will write GM for the dual of GW (in more than half of all states).
A model M = ⟨G, v⟩ is such that G = ⟨V,E⟩ is a graph, as defined in the

beginning of this paper, together with a valuation v : V → P(Φ).
We use the notation that for any formula α, the set of neighbors of i for

which α is true is Nαi
= {j | j ∈ Ni and j |= α}, and for any formula α we

denote by Vα = {s | s |= α} the set of agents at which α is true. The truth of a
formula α ∈ LGMJL at an agent i in model M is defined as follows:

– M, i |= p iff p ∈ v(i);
– M, i |= ¬α iff M, i ̸|= α;
– M, i |= α ∨ β iff M, i |= α or M, i |= β;
– M, i |= ♢nα iff |Nαi

| > n (for n ∈ N);
– M, i |= Wα iff |Nαi

| ≥ |N
i
|

2 ;
– M, i |= Enα iff |Vα| > n;

– M, i |= GWα iff |Vα| ≥ |V |
2 .

We give some examples of statements about majority illusions that can be
expressed in LGMJL.

First, we can talk about the situation a single agent might be in.

– i is under weak majority opposition: M, i |= (p ∧W¬p) ∨ (¬p ∧Wp)
– i is under majority illusion: M, i |= (GMp ∧M¬p) ∨ (GM¬p ∧Mp)
– i is under weak majority illusion: M, i |= (GWp∧¬Wp)∨(GW¬p∧¬W¬p)∨

((Wp ∧W¬p) ∧ (¬GWp ∨ ¬GW¬p))

Second, we can talk about whether an entire network is under a specific type
of illusion:

– G is under majority majority illusion: M, i |= GM((GMp∧M¬p)∨(GM¬p∧
Mp))

– G is under weak majority majority illusion: M, i |= GW ((GMp ∧ M¬p) ∨
(GM¬p ∧Mp))

– G is under majority weak majority illusion: M, i |= GM((GWp ∧ ¬Wp) ∨
(GW¬p ∧ ¬W¬p) ∨ ((Wp ∧W¬p) ∧ (¬GWp ∨ ¬GW¬p)))

– G is under weak majority weak majority illusion: M, i |= GW ((GWp ∧
¬Wp) ∨ (GW¬p ∧ ¬W¬p) ∨ ((Wp ∧W¬p) ∧ (¬GWp ∨ ¬GW¬p)))

Third, we can talk about the possibility of certain illusions on a network:
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– a majority majority illusion is possible on G:

G ̸|= ¬GM((GMp ∧M¬p) ∨ (GM¬p ∧Mp))

– a weak majority majority illusion is possible on G:

G ̸|= ¬GW ((GMp ∧M¬p) ∨ (GM¬p ∧Mp))

– a majority weak majority illusion is possible on G:

G ̸|= ¬GM((GWp∧¬Wp)∨(GW¬p∧¬W¬p)∨((Wp∧W¬p)∧(¬GWp∨¬GW¬p)))

– a weak majority weak majority illusion is possible on G:

G ̸|= ¬GW ((GWp∧¬Wp)∨(GW¬p∧¬W¬p)∨((Wp∧W¬p)∧(¬GWp∨¬GW¬p)))

Note that, just as colorability is expressible in terms of satisfiability in ba-
sic modal logic extended only with the universal modality, the possibility of
our majority illusions (in addition to colorability and majority-colorability) are
expressible in terms of satisfiability in this globalized majority logic.

Axiomatization and further analysis of LGMJL is left as a direction for further
research.
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