
Neurosymbolic Integration of Linear Temporal Logic in
Non Symbolic Domains⋆

Elena Umili

Sapienza University of Rome
umili@diag.uniroma1.it

Abstract. Linear Temporal Logic (LTL) is widely used to specify temporal re-
lationships and dynamic constraints for autonomous agents. However, in order
to be used in practice in real-world domains, this high-level knowledge must be
grounded in the task domain and integrated with perception and learning modules
that are intrinsically continuous and subsymbolic. In this short paper, I describe
many ways to integrate formal symbolic knowledge in LTL in non-symbolic do-
mains using deep-learning modules and neuro-symbolic techniques, and I discuss
the results obtained in different kinds of applications, ranging from classification
of complex data to DFA induction to non-Markovian Reinforcement Learning.

Keywords: Neurosymbolic AI · Linear Temporal Logic · Deep Learning.

1 Introduction

Linear Temporal Logic (LTL) [10] is a modal logic widely used in different domains,
such as Robotics [7] and Business Process Management [5], for specifying temporal
relationships, dynamic constraints, and performing automated reasoning. However, ex-
ploiting LTL knowledge in real-world applications can be difficult due to the knowl-
edge’s symbolic ”crispy” nature. This short paper explores different techniques to re-
lax the knowledge to make it applicable in continuous domains where symbols are
grounded through Deep Learning modules and the symbol grounding function and/or
the symbolic temporal specification can be unknown or partially known. In particular,
we propose two different techniques: (i) one based on Logic Tensor Networks [2] [13]
and (ii) one based on Probabilistic Finite Automaton [12]. We apply the first approach to
classifying sequences of images, and we show that our approach requires less data and
is less prone to overfitting than purely deep-learning-based methods. We use the sec-
ond approach to learn DFA specifications from traces with gradient-based optimization,
showing that it can learn larger automata and is more resilient to noise in the dataset
than prior work. Finally, we propose an extension of our second approach [11] that we
apply to non-Markovian Deep Reinforcement Learning problems [1]. This third con-
tribution has shown to be more sample efficient of methods based on Recurrent Neural
Networks (RNN), and, at the same time, it requires less prior knowledge than methods
based on LTL, such as Reward Machines [3] and Restraining Bolts [4].
⋆ This work is partially supported by the ERC Advanced Grant WhiteMech (No. 834228),

by the EU ICT-48 2020 project TAILOR (No. 952215), by the PRIN project RIPER (No.
20203FFYLK) and by the PNRR MUR project PE0000013-FAIR.



2 Elena Umili

2 Problem formulation

We consider the problem of integrating some symbolic background knowledge ex-
pressed as an LTLf formula ϕ in a non-symbolic environment producing at each run
a sequence of images I = i0, i1, ..il−1 and some high-level label over the sequence.
Each image in the sequence is the ‘rendering’ of a symbolic interpretation over the for-
mula alphabet P . This means that there exists a function sg : I → 2P , where I is the
space of images, that maps each image into the truth values of symbols in P , we call
this function symbol grounding function. We aim to exploit deep learning perception
and symbolic reasoning in our system to leverage both subsymbolic data and symbolic
knowledge.

3 Models

3.1 Recurrent Logic Tensor Networks

Fig. 1: Design of the Recurrent Logic Tensor Network used in [13].

Logic Tensor Networks (LTN) [2] are a neuro-symbolic framework that can reason
and learn by exploiting both structured symbolic knowledge and raw data. It implements
Real Logic, which is fuzzy relaxation of First Order Logic (FOL). Thanks to continuous
logic, neural networks can co-exist in the logic framework and actually implement logic
elements, grounding every atom in a real tensor.

LTN can be used for querying, reasoning, and learning: here we focus on learn-
ing. LTN can learn from both data and symbolic knowledge by imposing the knowl-
edge available, and searching for the groundings that maximize the satisfiability of that



Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains 3

knowledge. This is done by defining a loss objective inverse to the given formula’s
satisfaction level and optimizing the system’s trainable weights by back-propagation.

In our prior work [13], we use the same concept of learning by best satisfiability, but
we apply it to the DFA generated by the LTLf formula. The neural computational graph
implementing the automaton has therefore a recurrent structure, like a Long short-term
memory (LSTM) neural network, and can be applied to sequences of any length. This
feature is missing in the current implementation of LTN, and it is very convenient for
imposing logic specifications that are extended in the time dimension.

Our framework is based on three fuzzy predicates: Symbol, State, and Output.
The predicate Symbol(p, t) denotes whether the t-th image in the sequence belongs
to class p. We ground this predicate with a convolutional neural network, as shown in
Figure 1. At any time t we are in a state qk of the automaton, we encode this information
with another fuzzy predicate State, where State(qk, t) is true if we are in state qk
at time t. Finally, the fuzzy predicate Output represents the machine’s output in a
given time, denoting with Output(oi, t) whether the machine gives output oi at time
t. In particular, the output can be a symbol in the binary alphabet {Acc,Rej} if our
temporal specification is a DFA, or a symbol in the alphabet {o0, o1, ..., oNO−1} in case
the temporal specification is a Moore Machine.

We use these predicates to define a knowledge base (KB) composed of three axioms:
(i) the initial condition, (ii) the transition rule, and (iii) the output rule. In particular, the
initial condition only specifies the initial state and does not depend on the classifier
predictions. The transition rule calculates the next state given the current automaton
state and the symbol prediction over the current image. The output rule calculates the
current output given the current state. These two rules are applied recursively as many
times as many images compose the sequence.

By applying the rules in the KB, we can monitor the satisfaction of the formula
ϕ during time, and, if we know some labels specifying which image sequences are
accepted by the formula and which are not, we can impose this information defining a
loss on the fuzzy automaton output.

3.2 Probabilistic relaxation of DFA: DeepDFA

In another prior work [12], we propose a different neural architecture based on Proba-
bilistic Finite Automata (PFA). PFAs are easier to integrate with neural networks since
we can calculate the probability that a sequence is accepted by applying matrix multi-
plications. In particular, we represent a PFA in matrix form as a transition matrix Mt,
an input vector vi and an output vector vo. Given a string x = x[0]x[1]...x[l − 1], the
probability that the string is accepted is calculated as follows.

vi ×Mt[x[0]]×Mt[x[1]]× ...×Mt[x[l − 1]]× vo (1)

In our work, we have designed a recurrent neural network with parameters including
a transition matrix and an output vector, resembling the working of a PFA, that we
call DeepDFA [12]. Since DFAs can also be represented in the same matrix form, the
architecture can impose as background knowledge both DFA and PFA specifications.
Differently from the framework presented in Section 3.1, this model can only be applied



4 Elena Umili

to tasks where the symbols are assumed to be mutually exclusive, i.e., at each time step
one and only one symbol is true, and the others are false. Another important difference
between Recurrent LTN and DeepDFA is that the latter can also be employed to learn
the DFA specification from traces, and not only to impose it as outside background
knowledge. In particular, to learn a DFA from traces with DeepDFA, we have used
a specific activation function that smoothly approximates one-hot vectors to drive the
PFA to be a DFA during training while maintaining the differentiability of the model.

3.3 DeepDFA with probabilistic grounded symbols

Finally, we propose a slightly different model in [11] that extends DeepDFA to proba-
bilistic grounded symbols. The latter adds to DeepDFA the calculation of the expecta-
tion value over the next DFA state using the symbol’s probabilities at each time step.
It is a more general framework applicable in non-symbolic environments, that we have
texted in the context of non-Markovian Reinforcement Learning domains.

4 Applications

4.1 Exploiting LTL knowledge in image sequence classification

In prior work [13], we used the recurrent LTN architecture explained in Section 3.1
to increase the performance of a sequence classifier in visual tasks. In particular, we
considered the task of classifying a sequence of images as compliant or not with a
given formula, by exploiting the formula knowledge and a set of sequence-level labels
expressing if the sequence of images is compliant or not with the formula. Note that we
do not assume any knowledge of the symbol grounding function. Symbols are grounded
in the images implicitly by our framework while it tends to maximize the conformance
of the predicted DFA outputs with the sequence labels we have in the dataset. Compared
with a purely deep-learning-based approach that cannot exploit the formula knowledge,
our approach reaches higher accuracy, even if we decrease the number of samples in the
dataset, showing that our way of embedding logical knowledge in the network is very
effective.

4.2 Neural DFA induction from traces

In another work [12], we tested DeepDFA in learning DFA specifications from labeled
sequences of images. Our approach has shown to be very effective in learning compact
DFA from data by minimizing the binary cross-entropy loss between the model predic-
tions and the labels. In particular, we compared DeepDFA with a classical combinatorial
algorithm for DFA induction based on SAT [15], and we found that our framework can
maintain high performances even with large target DFA and with a small percentage of
errors in the training data, while the SAT-based approach performs very poorly in these
cases. We also compared DeepDFA with another kind of hybrid method between RNNs
and DFAs: L* extraction [14]. The latter consists of training an RNN on the same task
and extracting an equivalent DFA from the RNN. We found that applying this method to



Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains 5

some complex languages can be tricky, since it can require training many different RNN
architectures before finding the best one for the specific language. Instead, our method
has only one hyperparameter, resulting in similar performances and a very much lighter
fine-tuning.

4.3 Application to Reinforcement Learning: Visual Reward Machines

Non-markovian Reinforcement Learning (RL) tasks are arduous, because intelligent
agents must consider the entire history of state-action pairs to act rationally in the
environment. A common approach to this kind of task uses RNNs to preprocess ex-
perience data sequences and automatically extract a state representation for the RL
algorithm [8] [6] [9]. However, there are no theoretical guarantees the resulting state
representation will be Markovian. Another kind of approach, such as Reward Machines
(RM) [3], uses LTL to specify the temporally-extended tasks and compose a Markovian
state representation [4]. However, this approach requires prior knowledge of both the
symbol grounding function mapping the environment observations in the specification’s
symbols and the temporal property. This limits the applicability of this approach in real-
world domains. In a previous work [11], we defined Visual Reward Machines (VRM)
as a neurosymbolic framework based on the model described in Section 3.3. VRMs
compose the state representation as RMs, so as to have the same theoretical guarantees
in the limit, and they are equivalent to RMs in case of complete knowledge of the task.
However, VRMs are still applicable in the case of missing knowledge because they can
integrate the available prior knowledge with the data they observe in the environment
to learn the missing modules (the symbol grounding function and/or the DFA). Com-
pared with methods based on RNNs, our approach reaches higher values of cumulative
discounted rewards in visual non-symbolic tasks where RMs cannot be applied.

5 Conclusions

In conclusion, I described many prior works on integrating Linear Temporal Logic in
non-symbolic (visual) domains, showing the advantage of relying on both prior struc-
tured knowledge and unstructured data acquired in the environment. We remark that
future artificial systems should be able to acquire and integrate both these two sources
of knowledge from human users and/or the environment, since this is a fundamental
milestone of AI systems to achieve complex tasks, and this is the main objective behind
our current and future research. In particular, many improvements on the described sys-
tems are still possible, such as, for example, integrating richer temporal formalisms
such as Alternating-Time Temporal Logic and Signal Temporal Logic, which we let as
future research.

References

1. Bacchus, F., Boutilier, C., Grove, A.: Rewarding behaviors. pp. 1160–1167. Portland, OR
(1996), behaviors.pdf

behaviors.pdf


6 Elena Umili

2. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.:
Logic tensor networks. Artificial Intelligence 303, 103649 (2022).
https://doi.org/https://doi.org/10.1016/j.artint.2021.103649, https://www.sciencedirect.
com/science/article/pii/S0004370221002009

3. Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Ltl and beyond:
Formal languages for reward function specification in reinforcement learning. In: Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-
19. pp. 6065–6073. International Joint Conferences on Artificial Intelligence Organization
(7 2019). https://doi.org/10.24963/ijcai.2019/840, https://doi.org/10.24963/ijcai.2019/840

4. Giacomo, G.D., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restraining bolts: Rein-
forcement learning with ltlf/ldlf restraining specifications (2019)

5. Giacomo, G.D., Masellis, R.D., Grasso, M., Maggi, F.M., Montali, M.: Monitoring business
metaconstraints based on ltl and ldl for finite traces. In: BPM (2014)

6. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In: Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018), https:
//proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf

7. He, K., Wells, A.M., Kavraki, L.E., Vardi, M.Y.: Efficient symbolic reactive synthesis for
finite-horizon tasks. In: 2019 International Conference on Robotics and Automation (ICRA).
pp. 8993–8999 (2019). https://doi.org/10.1109/ICRA.2019.8794170

8. Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D.: Memory-based control with recurrent neural
networks. CoRR abs/1512.04455 (2015), http://arxiv.org/abs/1512.04455

9. Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., Munos, R.: Recurrent experience re-
play in distributed reinforcement learning. In: International Conference on Learning Repre-
sentations (2019), https://openreview.net/forum?id=r1lyTjAqYX

10. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977. pp.
46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32, https://doi.
org/10.1109/SFCS.1977.32

11. Umili, E., Argenziano, F., Barbin, A., Capobianco, R.: Visual reward machines. In: Pro-
ceedings of the 17th International Workshop on Neural-Symbolic Learning and Reason-
ing, La Certosa di Pontignano, Siena, Italy, July 3-5, 2023. pp. 255–267 (2023), https:
//ceur-ws.org/Vol-3432/paper23.pdf

12. Umili, E., Capobianco, R.: Deepdfa: a transparent neural network design for dfa induction
(2023). https://doi.org/10.13140/RG.2.2.25449.98401

13. Umili, E., Capobianco, R., Giacomo, G.D.: Grounding ltlf specifications in images. In: Pro-
ceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning
as part of the 2nd International Joint Conference on Learning & Reasoning (IJCLR 2022),
Cumberland Lodge, Windsor Great Park, UK, September 28-30, 2022. pp. 45–63 (2022),
http://ceur-ws.org/Vol-3212/paper4.pdf

14. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural networks
using queries and counterexamples. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th
International Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 80, pp. 5247–5256. PMLR (10–15 Jul 2018), https://proceedings.mlr.press/v80/
weiss18a.html

15. Zakirzyanov, I., Morgado, A., Ignatiev, A., Ulyantsev, V.I., Marques-Silva, J.: Efficient sym-
metry breaking for sat-based minimum dfa inference. In: LATA (2019)

https://doi.org/https://doi.org/10.1016/j.artint.2021.103649
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://doi.org/10.1109/ICRA.2019.8794170
http://arxiv.org/abs/1512.04455
https://openreview.net/forum?id=r1lyTjAqYX
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://ceur-ws.org/Vol-3432/paper23.pdf
https://ceur-ws.org/Vol-3432/paper23.pdf
https://doi.org/10.13140/RG.2.2.25449.98401
http://ceur-ws.org/Vol-3212/paper4.pdf
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.mlr.press/v80/weiss18a.html

	Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains

