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Abstract. This paper reports on the industrial use of our formal-method
based interlocking verification tool, called SafeCap, and on what we
needed to change in SafeCap as a result of our experience in applying
it to a large number of commercial signalling projects. The substantial
efforts dedicated to tool improvement are caused by the novelty of the
technology and by a substantial gap to be bridged between the academic
prototype, developed initially, and the industry-strength tool SafeCap
has become now. It is our belief that when such innovative tools and
technologies are developed for industrial use it is often impossible to
fully understand and correctly elicit the complete set of requirements for
their development. The paper describes the extensions added and the
modifications made to the functionality of SafeCap after it was demon-
strated to be successful in a number of real (but not live) signalling
projects and, as a result of this, was formally approved for use in the
UK railway. We believe this experience will be useful for the developers
of formal verification methods, tools and technologies to be deployed in
industry.
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1 Introduction

Effective signalling is fundamental to the safe and efficient operation of railway
networks. At the heart of any signalling system there are one or more inter-
lockings. These devices constrain authorisation of train movements as well as
movements of the infrastructure to prevent unsafe situations arising. One of the
earliest forms of computer-based interlocking was the Solid State Interlocking
(SSI) ([4l, [1l), developed in the UK in the 1980s. Currently, SSI is the predomi-
nant interlocking technology used on UK mainline railways. It also has applica-
tions overseas, including in Australia, New Zealand, France, India and Belgium.
Running on bespoke hardware, SSI software consists of a generic application
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(common to all signalling schemes) and site specific geographic data. The latter
configures a signalling area by defining site specific rules, concerning the control
of the signalling equipment as well as internal latches and timers, that the inter-
locking must obey. Despite being referred to as data, a configuration resembles
a program in a procedural programming language and is iteratively executed in
a typical loop controlling the signalling equipment.

This paper discusses the SafeCap tool used for formal verification of geo-
graphical data of SSI and derived (Smartlock and Westlock) interlockings [§],
[9], [6]. It provides scalable and fully-automated verification by mathematical
proof. The tool is now actively used for safety verification of mainline interlock-
ings by several UK signalling companies. SafeCap is deployed at different phases
of SSI preparation to check the designs and to provide signalling engineers with
the diagnostics to help them to enhance (and, where necessary, to correct) the
design data. It has proven to be successful in improving the safety of the sig-
nalling systems and reducing the rework cycle. SafeCap is extremely efficient,
it takes but few minutes to verify the safety of any UK interlocking on a fairly
standard desktop computer.

The development of SafeCap started in 2013 in a series of public projects led
by Newcastle University. It was originally conceived as an experimental extend-
able Eclipse-based tool for railway simulation and verification.

From 2017 we have focused our work exclusively on developing a fully-
reworked version of SafeCap targeting SSI verification (described in [GE) Two
main decisions leading to the industrial adoption of the tool were made during
this period, namely,

— to focus on fully-automated scalable verification by mathematical proof;
— to ensure that the tool inputs the data developed by signalling engineers and
outputs the diagnostics reports exclusively presented in terms of these data.

These decisions in effect allowed us to successfully address the majority of the
factors limiting the acceptance of formal methods by industry (see, for example,
Section 5.5 of paper [5]).

Since 2019 we have been conducting commercial projects and making sub-
stantial improvements to SafeCap. This has been a period of extensive use,
during which we have verified over 60 interlockings in England, Wales and Scot-
land, including those controlling the most complex layouts in London and Birm-
ingham. We have worked with a mixture of SSI-derived interlocking technolo-
gies and layout complexities, written at different times by different design of-
fices. In particular, during this time it has been demonstrated that SafeCap is
now fully equipped for conducting formal, scalable and automated verification
of SSI/Smartlock/Westlock interlockings developed for ETCS (European Train
Control System). This has been an important period during which we have been
using the experience gained in the commercial projects to enhance the tool and
to make it more useful and attractive for our customers.

! The paper was prepared in 2020 and submitted to the journal in early 2021.
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This industrial paper focuses on the changes made to improve SafeCap during
the latter phase of its development and on the industry-driven research that
formed the foundations for these improvements. The experience from commercial
SafeCap applications gained during this phase has been a key for meeting the
needs of the signalling companies that use SafeCap.

The rest of the paper is structured as follows. The next section discussed the
three main categories of SafeCap improvements, providing inside information
about each improvement implemented. Section 3 reports on the comparative
statistics from the live commercial projects delivered before the improvement
phase and after the improvements were implemented. The last section discusses
some conclusions and future directions of our work on SafeCap.

2 Tool improvements

SafeCap is a novel technology for which it was not possible to define a full
set of requirements at the time when we started its development. During this
development, there has been a continuous process of eliciting new requirements
and modifying many of the initial ones. The main improvements have necessarily
been based on learning from experience.

SafeCap is a unique tool, based on substantial advances in formal methods
and supporting verification tools, which is actively used by industry. This means
that all its improvements are driven by the industrial needs, and that all research
advances supporting these improvements are driven by these needs.

The three main categories of tool improvements discussed in this paper are
improvements of safety properties (i.e., how SafeCap understands safety), of the
employed proof systems (i.e., how SafeCap verifies safety), and of the produced
diagnostics and reporting (i.e., how SafeCap reports the verification results).

2.1 Improvements of safety properties

Safety properties assert the safe behaviour of the interlocking system that Safe-
Cap verifies. When the system is demonstrated to satisfy all these properties,
it is considered to be safe. The properties play a critical role in SafeCap for-
mal verification, which is why we put substantial efforts ensure they are correct,
unambiguous and relevant for signalling engineers.

During the improvement period we have finalised and started using a system-
atic process for property engineering. The process we are applying now guides us
during property identification, modification, documentation, testing and correc-
tion, and allows us to document all these steps to make the property development
accountable.

In the railway signalling domain, opportunities to specify a complete set of
safety properties from scratch are rare and typically only occur on newly build,
stand-alone metro lines. In other cases, interlockings are usually constrained by
legacy considerations. As SafeCap targets the safety verification of UK mainline
interlockings, safety properties had to be inferred from the railway standards.



4 A. Tliasov et al.

The argument for the correctness and completeness of these safety properties
thus stems from their traceability to the standards and the pedigree of those
standards, which have evolved over many decades through design, risk assess-
ment, operational experience and lessons learnt from accidents. Identification of
the safety properties for SafeCap starts with a thorough review of the relevant
standards (we now use 22 UK standards) to elicit specific safety properties ap-
plicable to the interlocking functionalities that fall within the scope of SafeCap
verification.

When defining safety properties, consideration needs to be given not only
to the safety requirements contained in railway standards, but how those are
actually implemented in data. Failure to do this correctly results in many false
positives. The SSI data is effectively a computer program that determines site-
specific functionality of the interlocking system. It includes files defining inter-
locking identities (files of the following types: FLG, PTS, QST, ROU, SIG, TCS)
which define the names of various variables corresponding to trackside equip-
ment, and files which define functionality in terms of those identities (FOP,
IPT, MAP, OPT, PFM, PRR). During the improvement phase, in addition to
identifying the new safety properties from the textual standards, we added a
substantial number of new properties by importing new types of files (including,
IPT/OPT files) which allowed us to formulate new properties in terms on newly
added types of identities from these files and their functionalities. This includes,
for example, checking the aspect level conditions in the IPT/OPT files.

In the last three years we have increased the number of safety properties
SafeCap verifies from 40 to 136, which substantially improved the coverage and
the quality of SafeCap verification.

Dealing with false positives has became an important part of safety property
development due to the complexity of safety requirements described in standards,
which often allow for many exceptions to general rules and how the properties
are implemented in data. The false positives encountered during the SafeCap
verification process arise for various reasons: over-simplification of the property
expressed in the textual standard; failure to recognise and exclude scenarios
that cannot plausibly happen in the railway domain; the effect of safety over-
approximation in the formal representation of a property due to limited scope
of a mathematical model of railway; and, lastly, due to limitations inherent to
theorem proving in application to inductive safety invariant verification. The
first three types of false positives are dealt with by improving the properties
(which sometimes can increase their complexity and affect the verification time)
and extending railway model. Dealing with false positives of the last kind is
explained in more detail in Section 2.2, which also provides more information
about how the SafeCap prover works.

Another aspect of property engineering is the need to have robust change
management procedures. To this end, SafeCap uses regression testing to check
that previously found, and manually confirmed, violations are still present and
that no new violations appear after a property is revised. To achieve this, SafeCap
reproduces the effect of a source code error seeding by directly manipulating
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proof conjectures, generated from interlocking code (without any seeded errors)
and the safety property itself. More details about that are given in Section 2.2.

In addition, due to the critical importance of the safety properties for Safe-
Cap verification, traceability to the referred standards of all new and revised
properties are now manually checked by an independent checker from our team.

2.2 Improvements of the proof system

As its primary means of mathematical proof, SafeCap employs a custom rewriting-
based prover. A symbolic transition system, build via symbolic execution of
input signalling data, is used to generated, by instantiation of a schematic ax-
iom of inductive safety invariant, conjectures called proof obligations. Each such
proof obligation attempts to establish that a particular state transition main-
tains safety invariant. A conjecture is a logical sequent, consisting of a list of
hypotheses (derived from state transition pre-conditions) and a goal (derived
safety invariant).

Proofs are computations over the conjectures that aim to find a chain of
predefined rewrite steps resulting in a copy of a current goal in hypotheses or
demonstration of falsity of hypotheses. The prover is completely automatic — it
has a procedure for selecting a next rewrite step as well as for ignoring currently
irrelevant hypotheses. For a select few situation, the prover employs a rule trans-
lating conjecture into a SAT problem and attempting to disprove the result via
a SAT solver.

In addition to a verdict on whether a given conjecture is correct (i.e., a
theorem), the prover also constructs the complete proof script detailing all com-
putations carried out during the proof. It is not designed as a small kernel prover
— we can freely add new rewrites steps without having to prove their correctness.
Instead we rely on a generated proof script and an independent proof checker to
demonstrate proof soundness.

The first-order logic underpinning the SafeCap mathematical notation is un-
decidable, hence there is no guarantee that the prover can deliver definite result
within any fixed time. It is very rare that the prover can positively demonstrate
that a conjecture is not a theorem; in most cases we simply let the prover ex-
haust all possible venues of proof and, if the proof is still not completed, declare
the conjecture to be unproven. It is also possible to keep rewriting for an im-
practically long time because of, e.g., rewrite cycles emerging during the proof
or when the number of options presented to the prover is simply too large to
be ever explored. One typical case is the presence of disjunctive clauses with
many composite parts (in the region of hundreds). In the absence of any other
promising directions, the prover might be resigned to exploring all possible cases
of the disjunctive cases until it is forcibly stopped.

Proof complexity ranges from a few steps for very simple cases to millions of
steps for a few extreme situations. The median number, measured on a random
sample of five projects, is 802 proof steps with 37 sub goals. The mean, however,
is 2802 proof steps and 386 sub goals; hence, there is a relatively small population
of much harder-to-prove conjectures.
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The vast majority of proof conjectures we deal with are shown to be theorems.
For the same sample of five projects, 99.7% of all the generated conjectures are
shown to theorems. Thus, from the efficiency viewpoint, we aim to discharge
simpler cases of provable conjectures in fewer steps and then spend more time
on harder cases. Luckily, proofs of the same safety predicates tend to be very
similar across different projects and this enables us to construct macro-steps that
narrowly target certain patterns reappearing in the generated conjectures. Here
a macro-step is a proof script that computes a sequence of rewrite rules for a
given set of hypotheses and a goal. For most situations, the script simply encodes
pattern matching on conjecture elements to detect certain recurring situations.
In a small number of cases, scripts contain conditional steps.

In the end, we are able to discharge thousands of proof obligations within
seconds. As a comparison, it takes the Why3 framework[3] (with the Alt-Ergo
backend) around twenty seconds to discharge some simpler proof obligations.

Attempting to prove a conjecture is only the first step in the process of finding
safety violations. A failed conjecture on its own only tells us that a certain safety
property does not hold for given interlocking data. This is not useful to railway
engineers, who expect to see a link to a specific line in the interlocking data as
well as identification of relevant signalling plan elements. There is a world of
difference between saying that one or more points are not deadlocked correctly
somewhere in the data and a statement naming a specific set of points and giving
the precise location in the interlocking data where the violation occurs.

To present a failed conjecture in the manner that is useful to railway en-
gineers, SafeCap uses two techniques: (i) undoing some proof steps (without
altering the overall verdict) to reach a state that is easier to analyse and ex-
plain, and (ii) extracting the context information from a conjecture goal and
its hypotheses. The first technique undoes the proof steps in which variables or
identifiers linking the proof to the signalling plan are renamed or removed. The
second technique uses source code information provided by the data parser to
locate relevant data and extract a human-readable summary of a failed proof
state from the conjecture hypotheses (e.g. occupied tracks, locked sub routes
and etc.)

The extracted proof state and source code tracing information are combined
to generate a human readable summary of a found safety violation. This is
formatted using the predefined templates to describe the purported violation.
The summary contains, among other things, the location, in interlocking data,
of the original source code of an offending state transition, highlights of relevant
elements on the signalling plan, and the proof context summarising, in human
readable terms, a set of signalling system states in which the violation occurs.

One common approach to identifying and reporting a property violation is
positing any one example for which the given property does not hold. Our ex-
perience clearly shows that this is not sufficient for industrial scale verification.
The first reason is that the engineers need to have all the contexts, in which the
property does not hold, reported and corrected. The second one is that in large
and complex systems, like railways, there are often a few exceptional cases where
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the engineers intentionally violate a general property for operational reasons; for
example, allowing a train to shunt backwards and forwards at low speed on a
non-passenger line without the signaller setting routes for each move. This ren-
ders possible situation where a benign case of a violation is reported and while
serious cases that need corrective actions are not. At the core of our solution
developed during the improvement period and presented earlier [7], lies an ap-
proach to name all possible violations in the terms of a unique combination of
signalling assets plus atomic section of signalling code. This makes it impossible
to wrongly combine several distinct violations.

2.3 Improvement of reporting

The SafeCap diagnostics report is the only information we provide to clients. For
each safety property, it identifies whether the interlocking data complies with
that property and, if not, where violations were found. The improvements in
the properties and proof system, described above, have enabled a step change
improvement in the precision with which violations are reported.

Previously it was only possible to group apparently similar violations based
on where they occurred in the code and the pre-conditions (context) under which
they occurred. This led to occasional misgrouping of distinctly different errors as
well as repetitive reporting of the same error, both of which made reports difficult
and time-consuming to analyse. With the new approach [7], what constitutes
an individual property violation is now clearly defined and thus instances of
the same violation identified by the proof system are grouped accordingly. Each
individual violation is separately reported making reports longer than they were,
but much easier to analyse. The approach also makes the reports consistent in
the labelling of individual violations, facilitating comparisons between reports
on different versions of the same interlocking data. This enables enumeration
of all potential errors in a given interlocking data independently from proof
obligation generation. This in turn enables us to detect missing (or extraneous)
proof obligations.

Further improvements have been made in the diagnostics information pro-
vided for property violations. The SafeCap philosophy has always been to present
findings in terms understood by signalling designers with no reference to the
formal methods, intermediate formal notations, or generated prover outputs. In-
stead property violations are presented as textual descriptions accompanied by
the section of code and graphical layout to which the violation applies and the
failed proof states (contexts) that led to the violation. This has been further im-
proved upon by additionally presenting all sub routines called by the applicable
section of code and using coloured highlighting to identify the path through the
code for which the violation was found. Illustrations of signal aspects have also
been added to facilitate diagnosis of violations of new safety properties pertain-
ing to signals.
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3 Statistics from live projects

The following tables summarise the scale and verification effort for a random
sample of industrial projects.

Table[T]shows the projects sampled from the period from 2020 to the first half
of 2022. These projects were verified for 59 predicates defining safety properties.
At that time we did not formulate any conditions for SSI logic covering output
telegrams (procedures computing messages sent to various trackside equipment)
and thus verification coverage as reflected in the first table below was only partial.

The Routes, Signals, Points, LOC columns characterise a project in terms of
the total number of routes, signals, points and the total number of lines of codes
(LOCQ) in signalling data (all types of files included).

The POs, total column gives the overall number of non-trivial proof conjec-
tures generated for a project. Simple instantiation of safety property templates
yields many more conjectures, many of which are trivial ones that have a copy
of a goal in their hypotheses. Such trivial cases are detected and dropped during
the generation phase and not included in this figure.

The POs, unf column is the number of conjectures for which proof was
forcibly stopped due to an overrun in the number of generated proof branches or
a predefined limit on proof time rather than simply running out of any applica-
ble rewrite rules (what we regard as a proper termination). Logically, these are
no different from failed, but properly terminated conjectures. In practice, their
presence indicates a weakness in the prover or domain axiomatisation as the
automated proof process is tuned to deadlock where successful proof is unlikely
(empirically and drawing from the experience in this particular domain). They
are also often indicative a computationally expensive runaway situation stem-
ming from generation of proof sub branches, derivation of new hypotheses and
possibly cyclical behaviour of rewrite rules. Finally Proof time, s gives the over-
all proof time in seconds. All time measurements are given for an AMD 5950X
PC with 128GB memory using 16 cores; it excludes extra time needed for the
construction of a state transition system from source SSI translation (typically
under 5 seconds).

One conclusion to draw from Table [I] is that there is no simple correlation
between the size of a railway interlocking and the required proof effort. However,
we can notice that the projects P3 and P5 had complex swinging overlaps with
complex control logic which, in its turn, leads to a higher number of state tran-
sitions. There is also a small number of cases where proof depends on detecting

l Id ‘ Routes ‘ Signals ‘ Points ‘ LOC ‘ POs, total ‘ POs, unf ‘ Time, s‘

P1 164 71 48| 13244 12172 108 96
P2 92 45 36 9320 8098 0 60
P3 62 31 28| 11002 11711 14 203
P4 47 28 23 8750 6003 0 22
P5 59 30 24 8573 17241 2 129

Table 1. SafeCap statistics from 2020 to mid 2022
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| Id [ Routes [ Signals [ Points [ LOC [ POs, total [ POs, unf [ Time, s

P6 170 56 59| 18917 48992 0 72
p7 46 67 25| 16200 24002 0 8
P8 164 63 73| 16027 172404 0 130
P9 42 48 22| 16288 24566 0 2
P10 122 68 60| 18745 344072 6 602

Table 2. SafeCap statistics from mid 2022 to 2023

a contradiction, e.g., in timing conditions expressed as simultaneous inequalities
in hypotheses. Such proofs first exhaust all venues of rewriting and only then
translate a subset of relevant hypotheses into an external SAT solver for a con-
tradiction check. The higher number of proof obligations does normally lead to
longer verification although this is not completely clear cut: much of the proof
time is often spent discharging a small proportion of harder proof obligations.

Table 2] covers the period from the second half of 2022 to the first quar-
ter of 2023, using the current version of SafeCap with all major improvements
implemented. It verifies 136 safety properties with nearly all extra predicates
addressing output telegrams.

One relevant trait of output telegrams associated with signals is that they are
rarely small and simple — it is unusual to have signal output telegram with fewer
than 600 state transitions and some have up to 9000. This means that the output
telegram part of SSI completely dominates the rest in terms of number of state
transitions. Hence, there was a marked increase in the number of generated proof
conjectures when SSI output telegrams were included in the scope of verification.

This required efficiency improvements to the prover that were achieved mainly
through the addition of macro rewriting steps combining several existing rewrite
rules.

4 Discussion and Conclusion

The paper discusses our experience in improving the SafeCap tool since it was
approved by Network Rail for the use by the UK railway industry and started to
be used commercially. Before this, we have used real data of several (developed
earlier) SSI interlockings for demonstrating the tool’s usefulness to signalling
companies in the UK and to prepare for its official approval. Since the approval,
the real work on the live commercial projects with our industrial customers has
led us to conducting substantial targeted improvements of the tool.

Our strong belief is that the improvement phase is now coming to an end
as our substantial and diverse experience in verifying interlockings developed
by different companies and design offices clearly shows that the SafeCap tool is
sufficiently flexible and scalable.

In the course of this intensive, 3-year long period of interlocking project
verification we have also drawn several lessons about how SSI data could be
developed to make the verification process simpler and to reduce the risk of
errors. It is interesting to note here that our recommendations for achieving
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these two goals are very much overlapping, and that following them will make
understanding and maintenance of the SSI code easier as well. We are now
working on summarising this experience and these recommendations.

Our ongoing and future work on SafeCap focuses on a full tool re-development
to streamline its architecture after the period of improvements and to make the
tool more extendable to other verification applications and resilient to obsoles-
cence. This future work additionally includes the following:

— the development of the safety assurance case for use of SafeCap as an alter-
native to established manual checking processes, including:
e re-development of the software for T2 qualification in accordance with
the CENELEC EN 50128 standard [2];
e ensuring traceability and independent verification of safety properties;
e bug reporting, tracking and fixing.
— the adaption of SafeCap to other technologies, including;:
e development of a front end to import data in the ladder logic or struc-
tured text formats;
e prototyping using machine readable representations of GB relay sig-
nalling circuits, to which the existing safety properties could be applied;
e future extensions to cover ladder logic interlockings and PLCs in railway
signalling and other industries.
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