
Proportionally Fair Matching with Multiple Groups

Sayan Bandyapadhyay ∗ Fedor V. Fomin†. Tanmay Inamdar‡ Kirill Simonov§

Abstract

The study of fair algorithms has become mainstream in machine learning and artificial
intelligence due to its increasing demand in dealing with biases and discrimination. Along this
line, researchers have considered fair versions of traditional optimization problems including
clustering, regression, ranking and voting. However, most of the efforts have been channeled
into designing heuristic algorithms, which often do not provide any guarantees on the quality of
the solution. In this work, we study matching problems with the notion of proportional fairness.
Proportional fairness is one of the most popular notions of group fairness where every group is
represented up to an extent proportional to the final selection size. Matching with proportional
fairness or more commonly, proportionally fair matching, was introduced in [Chierichetti et
al., AISTATS, 2019], where the problem was studied with only two groups. However, in many
practical applications, the number of groups—although often a small constant—is larger than
two. In this work, we make the first step towards understanding the computational complexity
of proportionally fair matching with more than two groups. We design exact and approximation
algorithms achieving reasonable guarantees on the quality of the matching as well as on the
time complexity. Our algorithms are also supported by suitable hardness bounds.

1 Introduction

Machine learning (ML) algorithms are ubiquitous in today’s world, constantly playing crucial roles
in decision-making which has an immeasurable impact on human lives. These algorithms trained
on past instances are extremely powerful and most of the time output correct solutions without
making any error. However, in recent times, these algorithms have faced critiques for being biased
towards underrepresented groups [4, 21, 27, 10]. Consequently, researchers have made efforts in
understanding how biases are introduced in the ML pipeline and whether it is possible to get rid of
them. This research has given rise to an entire subfield called fairness in ML. All the work done so
far in this budding subfield can broadly be classified into two types. The first one studies different
notions of fairness and their interactions [11, 22, 25, 19, 39, 18]. These works essentially show
that there is no universal definition of fairness that captures all the scenarios and it is not possible
to satisfy different fairness notions simultaneously. In the second type of works, researchers have
studied fair versions of classical problems incorporating suitable notions of fairness from the first
type. Notably the problems considered include clustering [15, 32, 7, 5], regression [34, 9, 1], ranking
[13], voting [12] and matching [16].

In this paper, we consider the proportionally fair matching problem. Matching appears natu-
rally in several applications in ML, e.g., assigning products to customers [44]; students to schools
[40]; reviewers to manuscripts [14]; and workers to firms [2]. There are scores of works that study
fair versions of matchings [16, 31, 28, 35, 38, 26]. Among these distinct notions of matchings, our
work is most relevant to (α, β)-balanced matching [16]. (α, β)-balanced matching was formulated

∗Portland State University, USA
†University of Bergen, Norway
‡University of Bergen, Norway
§Technische Universität Wien, Austria

1

ar
X

iv
:2

30
1.

03
86

2v
1

 [
cs

.D
S]

 1
0

Ja
n

20
23

by [16] by bringing proportional fairness and maximum cardinality matching together. Propor-
tional fairness is based on the concept of disparate impact [25], which in the context of matching
is defined as follows. A matching is (α, β)-balanced or proportionally fair if the ratio between the
number of edges from each group and the size of the matching is at least α and at most β.

As a motivating example of proportionally fair matching, consider the product recommendation
problem in e-commerce. With the advancement of digital marketing and advertising, nowadays
companies are interested in more fine-tuned approaches that help them reach the target groups of
customers. These groups may be representative of certain underlying demographic categorizations
into based on gender, age group, geographic location etc. Thus, the number of groups is often a
small constant. In particular, in this contemporary setting, one is interested in finding assignments
that involve customers from all target groups and have a balanced impact on all these groups. This
assignment problem can be modeled as the proportionally fair matching problem between customers
and products. In a realistic situation, one might need to assign many products to a customer and
many customers to a product. This can be achieved by computing multiple matchings in an
iterative manner while removing the edges from the input graph that are already matched.

In a seminal work, [16] obtained a polynomial-time 3/2-approximation when the number of
groups is 2. However, in many real-world situations, like in the above example, it is natural to
assume that the number of target groups is more than 2. Unfortunately, the algorithm of [16]
strongly exploits the fact that the number of groups ` = 2. It is not clear how to adapt or extend
their algorithm when we have more than two groups. The only known algorithm prior to our
work for ` > 2 groups was an nO(`)-time randomized exact algorithm [16]. The running time of
this algorithm has a “bad” exponential dependence on the number of groups, i.e., the running
time is not a fixed polynomial in n. Thus, this algorithm quickly becomes impractical if ` grows.
Our research on proportionally fair matching is driven by the following question. Do there exist
efficient algorithms with guaranteed performance for proportionally fair matching when the number
of groups ` is more than two?

1.1 Our results and contributions

In this work, we obtain several results on the Proportionally Fair Matching problem with
any arbitrary ` number of groups.

• First, we show that the problem is extremely hard for any general ` number of groups, in the
sense that it is not possible to obtain any approximation algorithm in 2o(`)nO(1) time even
on path graphs, unless the Exponential Time Hypothesis (ETH) [33] is false.

• To complement our hardness result, we design a 1/4`-approximation algorithm that runs in
2O(`)nO(1) time. Our algorithm might violate the lower (α) and upper (β) bounds by at
most a multiplicative factor of (1 + 4`/|OPT|) if |OPT| is more than 4`2, where OPT is
any optimum solution. Thus, the violation factor is at most 1 + 1/`, and tends to 1 with
asymptotic values of |OPT|.

• We also consider a restricted case of the problem, referred to as the β-limited case in [16],
where we only have the upper bound, i.e., no edges might be present from some groups. In
this case, we could improve the approximation factor to 1/2` and running time to polynomial.

• Lastly, we show that the parameterized version of the problem where one seeks for a propor-
tionally fair matching of size k, can be solved exactly in 2O(k)nO(1) time. Thus the problem
is fixed-parameter tractable parameterized by k.

All of our algorithms are based on simple schemes. Our approximation algorithms use an iterative
peeling scheme that in each iteration, extracts a rainbow matching containing at most one edge

2

from every group. The exact algorithm is based on a non-trivial application of the celebrated color-
coding scheme [3]. These algorithms appear in Sections 3, 4, and 5, respectively. The hardness
proof is given in Section 6.

1.2 Related work

In recent years, researchers have introduced and studied several different notions of fairness, e.g.,
disparate impact [25], statistical parity [47, 36], individual fairness [22] and group fairness [23].
Kleinberg et al. [39] formulated three notions of fairness and showed that it is theoretically impos-
sible to satisfy them simultaneously. See also [18, 17] for similar exposures.

The notion of proportional fairness with multiple protected groups is widely studied in the
literature, which is based on disparate impact [25]. Bei et al. [6] studied the proportional candidate
selection problem, where the goal is to select a subset of candidates with various attributes from
a given set while satisfying certain proportional fairness constraints. Goel et al. [29] considered
the problem of learning non-discriminatory and proportionally fair classifiers and proposed the
weighted sum of logs technique. Proportional fairness has also been considered in the context of
Federated learning [49]. Additionally, proportional fairness has been studied in the context of
numerous optimization problems including voting [24], scheduling [37, 41], Kidney exchange [45],
and Traveling Salesman Problem [43].

Several different fair matching problems have been studied in the literature. [31] studied fair
b-matching, where matching preferences for each vertex are given as ranks, and the goal is to
avoid assigning vertices to high ranked preferences as much as possible. Fair-by-design-matching
is studied in [28], where instead of a single matching, a probability distribution over all feasible
matchings is computed which guarantees individual fairness. See also [35, 38].

Apart from the fair versions of matchings, many constrained versions are also studied [46, 8].
[46] studied the Bounded Color Matching (BCM) problem where edges are colored and from each
color class, only a given number of edges can be chosen. BCM is a special case of 3-set packing
and, hence, admits a 3/4-approximation [46]. We note that the β-limited case of Proportionally
Fair Matching is a special case of BCM and, thus, a 3/4-approximation follows in this case where
the upper bound might be violated by 3/4 factor. One should compare this factor with our violation
factor, which asymptotically tends to 1.

2 Preliminaries

For an integer ` ≥ 1, let [`] := {1, 2, . . . , `}. Consider any undirected n-vertex graph G = (V,E)
such that the edges in E are colored by colors in C = {1, . . . , `}. The function χ : E → C describes
the color assignment. For each color c ∈ C, let Ec be the set of edges colored by the color c, i.e.,
Ec = χ−1(c). A subset E′ ⊆ E is a matching in G if no two edges in E′ share a common vertex.

Definition 1. (α, β)-balanced matching. Given 0 ≤ α ≤ β ≤ 1, a matching M ⊆ E is called

(α, β)-balanced if for each color c ∈ C, we have that α ≤ |M ∩ Ec|
|M |

≤ β.

Thus a matching is (α, β)-balanced if it contains at least α and at most β fraction of edges from
every color. In the Proportionally Fair Matching problem, the goal is to find a maximum-
sized (α, β)-balanced matching. In the restricted β-limited case of the problem, α = 0, i.e., we
only have the upper bound.

For γ ≤ 1 and ∆ ≥ 1, a (γ,∆)-approximation algorithm for Proportionally Fair Matching
computes a matching of size at least γ · |OPT|, where every color appears in at least α/∆ fraction
of the edges and in at most β ·∆ fraction. OPT is an optimum (α, β)-balanced matching.

A matching is called a rainbow matching if all of its edges have distinct colors. We will need
the following result due to Gupta et al. [30].

3

Theorem 1. For some integer k > 0, suppose there is a rainbow matching in G of size k. There
is a 2k · nO(1) time algorithm that computes a rainbow matching of size k.

3 A (1
4` , 1+

4`
|OPT |)-Approximation for Proportionally Fair Matching

In this section, we design an approximation algorithm for Proportionally Fair Matching. Let
OPT be an optimum (α, β)-balanced matching, OPTc = OPT∩Ec. We design two algorithms: one
for the case when α > 0 and the other for the complementary β-limited case. In this section, we
slightly abuse the notation, and use OPT (resp. OPTc for some color c ∈ C) to refer to |OPT| (resp.
|OPTc|). The intended meaning should be clear from the context; however we will disambiguate
in case there is a possibility of confusion.

First, we consider the α > 0 case. Immediately, we have the following observation.

Observation 1. For any color c ∈ C, OPT contains at least one edge of color c and, hence, G
contains a rainbow matching of size `.

Our algorithm runs in rounds. In the following, we define a round. The input in each round is
a subgraph G′ = (V ′, E′) of G.

Round. Initially M = ∅. For every color 1 ≤ c ≤ `, do the following in an iterative manner. If
there is no edge of color c in G′, go to the next color or terminate and return (G′,M) if c = `.
Otherwise, pick any edge e of color c from G′ and add e to the already computed matching M .
Remove all the edges (including e) from G′ that share a common vertex with e. Repeat the process
for the next color with the current (or updated) graph G′ or terminate and return (G′,M) if c = `.

Thus in each round, we try to pick a rainbow matching in a greedy manner. Next, we describe
our algorithm. The most challenging part of our algorithm is to ensure that the final matching
computed is (α, β)-balanced modulo a small factor, i.e., we need to ensure both the lower and
the upper bounds within a small factor for each color. Note that just the above greedy way of
picking edges might not even ensure that at least one edge is selected from each color. We use the
algorithm of [30] in the beginning to overcome this barrier. However, the rest of our algorithm is
extremely simple.

The Algorithm. We assume that we know the size of OPT. We describe later how to remove
this assumption. Apply the algorithm in Theorem 1 on G to compute a rainbow matching M ′

of size `. If OPT ≤ 4`2, return M := M ′ as the solution and terminate. Otherwise, remove all
the edges of M ′ and the edges adjacent to them from G to obtain the graph G0. Initialize M to
M ′. Greedily pick matched edges in rounds using the Round procedure and add them to M until
exactly dOPT/(4`)e edges are picked in total. In particular, the graph G0 is the input to the 1-st
round and G1 is the output graph of the 1-st round. G1 is the input to the 2-nd round and G2

is the output graph of the 2-nd round, and so on. Note that it might be the case that the last
round is not completed fully if the size of M is reached to dOPT/(4`)e before the completion of
the round.

Note that the above algorithm is oblivious to α and β in the sense that it never uses these
values. Nevertheless, we prove that the computed matching is (α, β)-balanced modulo a small
factor. Now we analyze our algorithm.

3.1 The Analysis

Let Mc = M ∩ Ec. Also, let c∗ be a color c ∈ C such that |OPTc| is the minimum at c = c∗.

Observation 2. α ≤ 1/` ≤ β.

Proof. Let ĉ be a color c ∈ C such that |OPTc| is the minimum at c = ĉ. By definition, OPT
≥ ` · OPTc∗ , or OPTc∗/OPT ≤ 1/`. Thus, α ≤ OPTc∗/OPT ≤ 1/`. Similarly, OPT ≤ ` · OPTĉ,
or OPTĉ/OPT ≥ 1/`. Thus, β ≥ OPTĉ/OPT ≥ 1/`.

4

First we consider the case when OPT ≤ 4`2. In this case the returned matching M is a
rainbow matching of size exactly `. The existence of such a matching follows by Observation 1.
Thus, we immediately obtain a 4`-approximation. As |Mc|/|M | = 1/` in this case, by Observation
2, α ≤ |Mc|/|M | ≤ β. Thus we obtain the desired result. In the rest of the proof, we analyze the
case when OPT > 4`2. We start with the following lemma.

Lemma 1. The algorithm successfully computes a matching of size exactly dOPT/(4`)e. Moreover,
for each color c with OPTc > 4` and round i ∈ [1, dOPTc/(4`)e − 1], Gi−1 contains an edge of
color c.

Proof. Note that by Observation 1, the algorithm in Theorem 1 successfully computes a rainbow
matching M ′ of size `. Now consider any color c such that OPTc ≤ 4`. For such a color, M
already contains at least 1 ≥ dOPTc/(4`)e edge. Now consider any other color c with |OPTc| > 4`.
Consider the rainbow matching M ′ computed in the beginning. As |M ′| = `, the edges of M ′

can be adjacent to at most 2` edges from OPT, since it is a matching. In particular, the edges
of M ′ can be adjacent to at most 2` edges from the set OPTc. Hence, G0 contains at least
OPTc − 2` edges of the set OPTc. Now consider the execution of round i ≥ 1. At most ` edges
are chosen in this round. Hence, these edges can be adjacent to at most 2` edges of OPTc. It
follows that at most 2` fewer edges of the set OPTc are contained in Gi compared to Gi−1. As G0

has at least OPTc − 2` edges from the set OPTc of color c and OPTc > 4`, for each of the first
d(OPTc−2`)/(2`)e = dOPTc/(2`)e−1 rounds, the algorithm will be able to pick an edge of color c.
Thus from such a color c with OPTc > 4`, it can safely pick at least dOPTc/(2`)e ≥ dOPTc/(4`)e
edges in total. Now, as OPT =

∑
c OPTc,

∑
c∈CdOPTc/(4`)e ≥ dOPT/(4`)e. It follows that the

algorithm can pick at least dOPT/(4`)e edges. As we stop the algorithm as soon as the size of M
reaches to dOPT/(4`)e, the lemma follows.

Note that the claimed approximation factor trivially follows from the above lemma. Next, we
show that M is (α, β)-balanced modulo a small factor that asymptotically tends to 1 with the size
of OPT.

Lemma 2. For each color c ∈ C, |Mc| ≥ |OPTc∗ |/(4`).

Proof. If OPTc∗ ≤ 4`, |Mc| ≥ 1 ≥ OPTc∗/(4`). So, assume that OPTc∗ > 4`. Now suppose |Mc| <
OPTc∗/(4`) for some c. By Lemma 1, for each of the first dOPTc/(4`)e − 1 ≥ dOPTc∗/(4`)e − 1
rounds, Gi−1 contains an edge of color c. It follows that the algorithm was forcibly terminated in
some round i ≤ (OPTc∗/(4`))− 1. Thus, the number of edges chosen from each color c′ 6= c is at
most OPTc∗/(4`). Hence,

|M | =
∑
c′ 6=c
|Mc′ |+ |Mc|

< (`− 1) · (OPTc∗/(4`)) + (OPTc∗/(4`))

≤ dOPT/(4`)e.

This contradicts Lemma 1, which states that we select exactly dOPT/(4`)e edges.

Corollary 1. For each color c ∈ C, (|Mc|/|M |) ≥ α
(1+4`/OPT) .

Proof. By Lemma 2, |Mc| ≥ OPTc∗/(4`).

|Mc|
|M |

≥ (OPTc∗/(4`))

dOPT/(4`)e
≥ (OPTc∗/(4`))

(OPT/(4`)) + 1

=
(OPTc∗)/(OPT)

(1 + 4`/OPT)
≥ α

(1 + 4`/OPT)
.

The last inequality follows as OPT satisfies the lower bound for all colors.

5

Now we turn to proving the upper bound. Let α∗ = OPTc∗/OPT.

Lemma 3. For each color c ∈ C, |Mc| ≤ β
α∗ · (OPTc∗/(4`)) + 1.

Proof. Suppose for some c ∈ C, |Mc| > β
α∗ · (OPTc∗/(4`)) + 1. Then the number of rounds is

strictly greater than β
α∗ · (OPTc∗/(4`)). Now, for any c′, OPTc′ ≥ α∗ ·OPT and OPTc′ ≤ β ·OPT.

Thus, by the definition of α∗, β
α∗ · OPTc∗ ≥ OPTc′ . It follows that, for each c′, the number of

rounds is strictly greater than OPTc′/(4`). Hence, for each c′ ∈ C, more than (OPTc′/(4`)) + 1
edges have been chosen. Thus, the total number of edges chosen is strictly larger than∑

c′∈C
((OPTc′/(4`)) + 1) ≥ dOPT/(4`)e.

This contradicts Lemma 1, which states that we select exactly dOPT/(4`)e edges.

Corollary 2. For each color c ∈ C, (|Mc|/|M |) ≤ β · (1 + 4`
OPT).

Proof. By Lemma 3,

|Mc|
|M |

≤ (β/α∗) · (OPTc∗/(4`)) + 1

dOPT/(4`)e

≤ (β/α∗) · (OPTc∗/(4`)) + (β/α∗)

OPT/(4`)

=
β

α∗
· OPTc∗

OPT
·
(

1 +
4`

OPT

)
=

β

α∗
· α∗
(

1 +
4`

OPT

)
= β ·

(
1 +

4`

OPT

)
.

The second inequality follows, as α∗ ≤ β or β/α∗ ≥ 1.

Now let us remove the assumption that we know the size of an optimal solution. Note that
` ≤ OPT ≤ n. We probe all values between ` and n, and for each such value T run our algorithm.
For each matching M returned by the algorithm, we check whether M is (α

(1+4`/T) , β · (1 + 4`
T))-

balanced. If this is the case, then we keep this solution. Otherwise, we discard the solution. Finally,
we select a solution of the largest size among the ones not discarded. By the above analysis, with
T = OPT, the matching returned satisfies the desired lower and upper bounds, and has size exactly
dOPT/(4`)e. Finally, the running time of our algorithm is dominated by 2`nO(1) time to compute
a rainbow matching algorithm, as stated in Theorem 1.

Theorem 2. There is a 2` ·nO(1) time (1/4`, 1 + 4`/OPT)-approximation algorithm for Propor-
tionally Fair Matching with α > 0.

4 A Polynomial-time Approximation in the β-limited Case

In the β-limited case, again we make use of the Round procedure. But, the algorithm is slightly
different. Most importantly, we do not apply the algorithm in Theorem 1 in the beginning. Thus,
our algorithm runs in polynomial time.

The Algorithm. Assume that we know the size of OPT. If OPT ≤ 2`, we pick any edge and
return it as the solution. Otherwise, we just greedily pick matched edges in rounds using the
Round procedure with the following two cautions. If for a color, at least β ·OPT/(2`) edges have
already been chosen, do not choose any more edge of that color. If at least (OPT/2`) − 1 edges
have already been chosen, terminate.

6

Now we analyze the algorithm. First note that if OPT ≤ 2`, the returned matching has only one
edge. The upper bound is trivially satisfied and also we obtain a 2`-approximation. Henceforth,
we assume that OPT > 2`. Before showing the correctness and analysis of the approximation
factor, we show the upper bound for each color. Again let M be the computed matching and
Mc = M ∩ Ec. Later we prove the following lemma.

Lemma 4. The algorithm always returns a matching of size at least (OPT/2`)− 1.

Assuming this we have the following observation.

Observation 3. For each color c ∈ C, |Mc|/|M | ≤ β · (1 + 2`
|OPT|).

Proof. By Lemma 4 and the threshold put on each color in the algorithm,

|Mc|
|M |

≤ β ·OPT/(2`)

(OPT/2`)− 1
≤ β · (1 +

2`

OPT
)

The last inequality follows, as OPT > 2`.

Next, we prove Lemma 4.

Proof. Let C1 be the subset of colors such that for each c ∈ C1, the algorithm picks at least
β · OPT/(2`) edges. Note that the algorithm can terminate in two ways (i) it has already picked
at least (OPT/2`)− 1 edges, and (ii) all the edges have been exhausted. Note that if (i) happens,
then we are done. We prove that (ii) cannot happen without (i). Suppose (ii) happens, but not
(i). Let OPT′ be the subset of OPT containing edges of colors in C ′ = C \ C1. Recall that Gi−1

is the input graph to the i-th round and Gi is the output graph for i ≥ 1. The number of edges
chosen in i-th round is at most `. Hence, these edges can be adjacent to at most 2` edges in Gi−1.
In particular, at most 2` less edges of OPT′ are contained in Gi compared to Gi−1. It follows that
the algorithm can pick at least bOPT′/2`c edges of colors in C ′. As for each color in C ′, less than
β · OPT/(2`) edges are chosen, the algorithm indeed chooses at least bOPT′/2`c edges of these
colors. The total number of edges chosen by the algorithm is,∑

c∈C1

|Mc|+
∑
c∈C′
|Mc| ≥

∑
c∈C1

β ·OPT/(2`) + bOPT′/2`c

≥
∑
c∈C1

OPTc/2`+ bOPT′/2`c

≥ (OPT/2`)− 1

But, this is a contradiction to our assumption, and hence the lemma follows.

Theorem 3. There is a polynomial time algorithm for Proportionally Fair Matching in the
β-limited case that returns a matching of size at least (OPT/2`)− 1 where every color appears in
at most β · (1 + 2`/OPT) fraction of the edges.

5 An Exact Algorithm for Proportionally Fair Matching

Theorem 4. There is a 2O(k)nO(1)-time algorithm that either finds a solution of size k for a
Proportionally Fair Matching instance, or determines that none exists.

Proof. We present two different algorithms using the well-known technique of color coding: one
for the case α = 0 (β-limited case), and one for the case α > 0.

7

β-limited case. We aim to reduce the problem to finding a rainbow matching of size k, which
we then solve via Theorem 1. The graph G remains the same, however the coloring is going to
be different. Namely, for each of the original colors c ∈ C we color the edges in Ec uniformly and
independently at random from a set of k′ new colors, where k′ = bβkc. Thus, the new instance
I ′ is colored in ` · k′ colors. We use the algorithm of Theorem 1 to find a rainbow matching of
size k in the colored graph in I ′. Clearly, if a rainbow matching M of size k is found, then the
same matching M is a β-limited matching of size k in the original coloring. This holds since by
construction for any original color c ∈ C, there are k′ new colors in the edge set Ec, and therefore
no more than k′ edges in |M ∩ Ec|.

In the other direction, we show that if there exists a β-limited matching M of size k with
respect to the original coloring, then with good probability M is a rainbow matching of size k
in the new coloring. Assume the original colors c1, . . . , ct, for some 1 ≤ t ≤ `, have non-empty
intersection with M , and for each j ∈ [t] denote kj = |M ∩ Ecj |. Observe that

∑t
j=1 kj = k, and

for each j ∈ [t], 1 ≤ kj ≤ k′.

Claim 1. There exists some δ > 0 such that for each j ∈ [t]:

Pr

[
M ∩

(
j⋃
i=1

Eci

)
is a rainbow matching in I ′

]
≥ exp

(
−δ

j∑
i=1

ki

)
,

Proof. We prove the claim by induction on j. For the base case, clearly (1) holds for j = 0. Now,
fix j ∈ [t] and assume the statement holds for each j′ < j, we show that (1) also holds for j.
Consider the kj edges of M ∩Ecj , they are colored uniformly and independently in k′ ≥ kj colors.
By counting possible colorings of M ∩ Ecj , it follows that

Pr
[
M ∩ Ecj is a rainbow matching

]
≥ (k′)!/(k′ − kj)!

(k′)kj
≥ kj !

k
kj
j

≥ 2−δkj ,

where the last bound is by Stirling’s formula. Now, since colors used for Ecj do not appear
anywhere else, using the inductive hypothesis we get

Pr

[
M ∩

(
j⋃
i=1

Eci

)
is a rainbow matching

]

=Pr

[
M ∩

(
j−1⋃
i=1

Eci

)
is a rainbow matching

]
· Pr

[
M ∩ Ecj is a rainbow matching

]
≥2−δ

∑j−1
i=1 ki · 2−δkj = 2−δ

∑j
i=1 ki .

Applying (1) with j = t, we obtain that M is a rainbow matching with probability at least
2−δk. By repeating the reduction above 2O(k) times independently, we achieve that the algorithm
succeeds with constant probability.

The case α > 0. We observe that in this case, if a matching is fair it necessarily contains
at least one edge from each of the groups. Thus, if the number of groups ` is greater than k,
we immediately conclude there cannot be a fair matching of size k. Otherwise, we guess how
the desired k edges are partitioned between the ` groups C = {c1, . . . , c`}. That is, we guess the
numbers kj for j ∈ [`] such that

∑`
j=1 kj = k, and αk ≤ kj ≤ βk for each j ∈ [`]. From now on,

the algorithm is very similar to the β-limited case. For each group cj , we color the edges of Ecj

8

from a set of kj colors uniformly and independently at random, where the colors used for each Ecj
are non-overlapping. Now we use the algorithm of Theorem 1 to find a rainbow matching of size k.
If there is a rainbow matching M of size k, the same matching is a fair matching of size k for the
original instance, since in each Ecj exactly kj edges are chosen, which is at least αk and at most
βk. In the other direction, if there is a fair matching M of size k in the original instance, by (1)
the matching M is a rainbow matching in the new instance with probability at least 2−δk. Again,
by repeating the coloring subprocess independently 2O(k) times, we achieve a constant probability
of success. Since there are 2O(k) options for partitioning k edges into at most ` ≤ k groups, the
running time of the whole algorithm is 2O(k)nO(1).

Finally, we note that the coloring part in both cases can be derandomized in the standard
fashion by using perfect hash families [42], leading to a completely deterministic algorithm.

6 Hardness of Approximation for Proportionally Fair Matching

In this section, we show an inapproximability result for Proportionally Fair Matching under
the Exponential Time Hypothesis (ETH) [33]. ETH states that 2Ω(n) time is needed to solve any
generic 3SAT instance with n variables. For our purpose, we need the following restricted version
of 3SAT.

3SAT-3
INPUT: Set of clauses T = {C1, . . . , Cm} in variables x1, . . . , xn, each clause being the disjunction
of 3 or 2 literals, where a literal is a variable xi or its negation x̄i. Additionally, each variable
appears 3 times.
QUESTION: Is there a truth assignment that simultaneously satisfies all the clauses?

3SAT-3 is known to be NP-hard [48]. We need the following stronger lower bound for 3SAT-3
proved in [20].

Proposition 1 ([20]). Under ETH, 3SAT-3 cannot be solved in 2o(n) time.

We reduce 3SAT-3 to Proportionally Fair Matching which rules out any approximation
for the latter problem in 2o(`)nO(1) time. Our reduction is as follows. For each clause Ci, we have
a color i. Also, we have n − 1 additional colors m+ 1, . . . ,m+ n− 1. Thus, the set of colors
C = {1, . . . ,m+ n− 1}. For each variable xi, we construct a gadget, which is a 3-path (a path
with 3 edges). Note that xi can either appear twice in its normal form or in its negated form, as
it appears 3 times in total. Let Ci1 , Ci2 and Ci3 be the clauses where xi appears. Also, suppose it
appears in Ci1 and Ci3 in one form, and in Ci2 in the other form. We construct a 3-path Pi for xi
where the j-th edge has color ij for 1 ≤ j ≤ 3. Additionally, we construct n− 1 3-paths Qi,i+1 for
1 ≤ i ≤ n− 1. All edges of Qi,i+1 is of color m + i. Finally, we glue together all the paths in the
following way to obtain a single path. For each 1 ≤ i ≤ n − 1, we glue Qi,i+1 in between Pi and
Pi+1 by identifying the last vertex of Pi with the first vertex of Qi,i+1 and the last vertex of Qi,i+1

with the first vertex of Pi+1. Thus we obtain a path P with exactly 3(n+ n− 1) = 6n− 3 edges.
Finally, we set α = β = 1/(m+ n− 1).

Lemma 5. There is a satisfying assignment for the clauses in 3SAT-3 if and only if there is an
(α, β)-balanced matching of size at least m+ n− 1.

Proof. Suppose there is a satisfying assignment for all the clauses. For each clause Cj , consider a
variable, say xi, that satisfies Cj . Then there is an edge of color j on Pi. Add this edge to a set M .
Thus, after this step, M contains exactly one edge of color j for 1 ≤ j ≤ m. Also, note that for
each path Pi, if the middle edge is chosen, then no other edge from Pi can be chosen. This is true,
as the variable xi can either satisfy the clauses where it appears in its normal form or the clauses
where it appears in its negated form, but not both types of clauses. Hence, M is a matching.
Finally, for each path Qi,i+1, we add its middle edge to M . Note that M still remains a matching.

9

Moreover, M contains exactly one edge of color j for 1 ≤ j ≤ m+n−1. As α = β = 1/(m+n−1),
M is an (α, β)-balanced matching.

Now suppose there is an (α, β)-balanced matching M of size at least m + n − 1. First, we
show that |M | = m + n − 1. Note that if |M | > m + n − 1, then the only possibility is that
|M | = 2(m + n − 1), as α = β and at most 2 edges of color j can be picked in any matching for
m+ 1 ≤ j ≤ m+n− 1. Suppose |M | = 2(m+n− 1). Then from each Qi,i+1, M contains the first
and the third edge. This implies, from each Pt, 1 ≤ t ≤ n, we can pick at most one edge. Thus,
total number of edges in M is at most 2(n − 1) + n. It follows that 2m + 2n − 2 ≤ 2n − 2 + n
or n ≥ 2m. Now, in 3SAT-3 the total number of literals is 3n and at most 3m, as each variable
appears 3 times and each clause contains at most 3 literals. This implies n ≤ m, and we obtain
a contradiction. Thus, |M | = m + n − 1. Now, consider any Pi. In the first case, the first and
third edges of Pi are corresponding to literal xi and, hence, the middle edge is corresponding to the
literal x̄i. If the middle edge is in M , assign 0 to xi, otherwise, assign 1 to xi. In the other case, if
the middle edge is in M , assign 1 to xi, otherwise, assign 0 to xi. We claim that the constructed
assignment satisfies all the clauses. Consider any clause Cj . Let e ∈ Pi be the edge in M of color j
for 1 ≤ j ≤ m. Note that e can be the middle edge in Pi or not. In any case, if e is corresponding
to x̄i, we assigned 0 to xi, and if e is corresponding to xi, we assigned 1 to xi. Thus, in either case,
Cj is satisfied. This completes the proof of the lemma.

Note that for a 3SAT-3 instance the total numbers of literals is 3n. As each clause contains at
least 2 literals, m ≤ 3n/2. Now, for the instances constructed in the above proof, the number of
colors ` = m+n− 1 ≤ 3n/2 +n− 1 = 5n/2− 1. Thus, the above lemma along with Proposition 1
show that it is not possible to decide whether there is an (α, β)-balanced matching of a given size
in time 2o(`)nO(1). Using this, we also show that even no 2o(`)nO(1) time approximation algorithm
is possible. Suppose there is a 2o(`)nO(1) time γ-approximation algorithm, where γ < 1. For
our constructed path instances, we apply this algorithm to obtain a matching. Note that the
γ-approximate solution M must contain at least one edge of every color, as α = β. By the proof in
the above lemma, |M | is exactly m+n−1. Hence, using this algorithm, we can decide in 2o(`)nO(1)

time whether there is an (α, β)-balanced matching of size m+ n− 1. But, this is a contradiction,
which leads to the following theorem.

Theorem 5. For any γ > 1, under ETH, there is no 2o(`)nO(1) time γ-approximation algorithm
for Proportionally Fair Matching, even on paths.

7 Conclusions

In this paper, we study the notion of proportional fairness in the context of matchings in graphs,
which has been studied by Chierichetti et al. [15]. We obtained approximation and exact algo-
rithms for the proportionally fair matching problem. We also complement these results by showing
hardness results. It would be interesting to obtain a o(`)- or a true O(`)-approximation for Pro-
portionally Fair Matching improving our result. As evident from our hardness result, there
is a lower bound of 2Ω(`)nO(1) on the running time of such an algorithm.

Acknowledgments. Most of this work was done when all four authors were affiliated with
University of Bergen, Norway. The research leading to these results has received funding from
the Research Council of Norway via the project MULTIVAL, and the European Research Council
(ERC) via grant LOPPRE, reference 819416.

10

References

[1] A. Agarwal, M. Dudik, and Z. S. Wu, Fair regression: Quantitative definitions and
reduction-based algorithms, in International Conference on Machine Learning, PMLR, 2019,
pp. 120–129. 1

[2] S. Ahmadi, F. Ahmed, J. P. Dickerson, M. Fuge, and S. Khuller, An algorithm
for multi-attribute diverse matching, in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020, C. Bessiere, ed., ijcai.org, 2020, pp. 3–9. 1

[3] N. Alon, R. Yuster, and U. Zwick, Color-coding, Journal of the ACM (JACM), 42
(1995), pp. 844–856. 3

[4] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, Machine bias: There’s software
used across the country to predict future criminals. and it’s biased against blacks, ProPublica,
(May 23, 2016). 1

[5] S. Bandyapadhyay, F. V. Fomin, and K. Simonov, On coresets for fair clustering in
metric and euclidean spaces and their applications, CoRR, abs/2007.10137 (2020). 1

[6] X. Bei, S. Liu, C. K. Poon, and H. Wang, Candidate selections with proportional fair-
ness constraints, in Proceedings of the 19th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, A. E. F.
Seghrouchni, G. Sukthankar, B. An, and N. Yorke-Smith, eds., International Foundation for
Autonomous Agents and Multiagent Systems, 2020, pp. 150–158. 3

[7] S. Bera, D. Chakrabarty, N. Flores, and M. Negahbani, Fair algorithms for cluster-
ing, in Advances in Neural Information Processing Systems, 2019, pp. 4954–4965. 1

[8] A. Berger, V. Bonifaci, F. Grandoni, and G. Schäfer, Budgeted matching and bud-
geted matroid intersection via the gasoline puzzle, Math. Program., 128 (2011), pp. 355–372.
3

[9] R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. J. Kearns, J. Morgenstern,
S. Neel, and A. Roth, A convex framework for fair regression, CoRR, abs/1706.02409
(2017). 1

[10] J. Buolamwini and T. Gebru, Gender shades: Intersectional accuracy disparities in com-
mercial gender classification, in Conference on Fairness, Accountability and Transparency,
FAT 2018, 23-24 February 2018, New York, NY, USA, S. A. Friedler and C. Wilson, eds.,
vol. 81 of Proceedings of Machine Learning Research, PMLR, 2018, pp. 77–91. 1

[11] T. Calders and S. Verwer, Three naive bayes approaches for discrimination-free classifi-
cation, Data Mining and Knowledge Discovery, 21 (2010), pp. 277–292. 1

[12] L. E. Celis, L. Huang, and N. K. Vishnoi, Multiwinner voting with fairness constraints,
in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, J. Lang, ed., ijcai.org, 2018, pp. 144–151.
1

[13] L. E. Celis, D. Straszak, and N. K. Vishnoi, Ranking with fairness constraints, in
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, I. Chatzigiannakis, C. Kaklamanis, D. Marx, and
D. Sannella, eds., vol. 107 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
pp. 28:1–28:15. 1

11

[14] L. Charlin and R. Zemel, The toronto paper matching system: an automated paper-
reviewer assignment system, (2013). 1

[15] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, Fair clustering through
fairlets, in Advances in Neural Information Processing Systems, 2017, pp. 5029–5037. 1, 10

[16] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii, Matroids, matchings,
and fairness, in The 22nd International Conference on Artificial Intelligence and Statistics,
AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, K. Chaudhuri and M. Sugiyama,
eds., vol. 89 of Proceedings of Machine Learning Research, PMLR, 2019, pp. 2212–2220. 1, 2

[17] A. Chouldechova, Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments, Big data, 5 (2017), pp. 153–163. 3

[18] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq, Algorithmic decision
making and the cost of fairness, in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017, ACM, 2017, pp. 797–806. 1, 3

[19] C. S. Crowson, E. J. Atkinson, and T. M. Therneau, Assessing calibration of prognostic
risk scores, Statistical methods in medical research, 25 (2016), pp. 1692–1706. 1

[20] M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk, Hitting forbidden subgraphs in
graphs of bounded treewidth, Information and Computation, 256 (2017), pp. 62–82. 9

[21] A. Datta, M. C. Tschantz, and A. Datta, Automated experiments on ad privacy settings:
A tale of opacity, choice, and discrimination, Proceedings on privacy enhancing technologies,
2015 (2015), pp. 92–112. 1

[22] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, Fairness through
awareness, in Proceedings of the 3rd innovations in theoretical computer science conference,
2012, pp. 214–226. 1, 3

[23] C. Dwork and C. Ilvento, Group fairness under composition, in Proceedings of the 2018
Conference on Fairness, Accountability, and Transparency (FAT* 2018), 2018. 3

[24] S. Ebadian, A. Kahng, D. Peters, and N. Shah, Optimized distortion and proportional
fairness in voting, in Proceedings of the 23rd ACM Conference on Economics and Computa-
tion, 2022, pp. 563–600. 3

[25] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubra-
manian, Certifying and removing disparate impact, in proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015, pp. 259–268. 1, 2, 3

[26] R. Freeman, E. Micha, and N. Shah, Two-sided matching meets fair division, (2020). 1

[27] H. N. Garb, Race bias, social class bias, and gender bias in clinical judgment, Clinical
Psychology: Science and Practice, 4 (1997), pp. 99–120. 1

[28] D. Garćıa-Soriano and F. Bonchi, Fair-by-design matching, Data Min. Knowl. Discov.,
34 (2020), pp. 1291–1335. 1, 3

[29] N. Goel, M. Yaghini, and B. Faltings, Non-discriminatory machine learning through
convex fairness criteria, in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, AIES 2018, New Orleans, LA, USA, February 02-03, 2018, J. Furman, G. E.
Marchant, H. Price, and F. Rossi, eds., ACM, 2018, p. 116. 3

12

[30] S. Gupta, S. Roy, S. Saurabh, and M. Zehavi, Parameterized algorithms and kernels for
rainbow matching, Algorithmica, 81 (2019), pp. 1684–1698. 3, 4

[31] C. Huang, T. Kavitha, K. Mehlhorn, and D. Michail, Fair matchings and related
problems, Algorithmica, 74 (2016), pp. 1184–1203. 1, 3

[32] L. Huang, S. Jiang, and N. Vishnoi, Coresets for clustering with fairness constraints, in
Advances in Neural Information Processing Systems, 2019, pp. 7589–7600. 1

[33] R. Impagliazzo and R. Paturi, On the complexity of k-sat, Journal of Computer and
System Sciences, 62 (2001), pp. 367–375. 2, 9

[34] M. Joseph, M. J. Kearns, J. Morgenstern, and A. Roth, Fairness in learning: Classic
and contextual bandits, in Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, eds., 2016,
pp. 325–333. 1

[35] Y. Kamada and F. Kojima, Fair matching under constraints: Theory and applications,
(2020). 1, 3

[36] T. Kamishima, S. Akaho, and J. Sakuma, Fairness-aware learning through regularization
approach, in Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference
on, Vancouver, BC, Canada, December 11, 2011, M. Spiliopoulou, H. Wang, D. J. Cook,
J. Pei, W. Wang, O. R. Zäıane, and X. Wu, eds., IEEE Computer Society, 2011, pp. 643–650.
3

[37] D. Kesavan, E. Periyathambi, and A. Chokkalingam, A proportional fair scheduling
strategy using multiobjective gradient-based african buffalo optimization algorithm for effective
resource allocation and interference minimization, International Journal of Communication
Systems, 35 (2022), p. e5003. 3

[38] B. Klaus and F. Klijn, Procedurally fair and stable matching, Economic Theory, 27 (2006),
pp. 431–447. 1, 3

[39] J. Kleinberg, S. Mullainathan, and M. Raghavan, Inherent trade-offs in the fair de-
termination of risk scores, in 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. 1, 3

[40] R. Kurata, N. Hamada, A. Iwasaki, and M. Yokoo, Controlled school choice with soft
bounds and overlapping types, Journal of Artificial Intelligence Research, 58 (2017), pp. 153–
184. 1

[41] Y. Lu, The optimization of automated container terminal scheduling based on proportional
fair priority, Mathematical Problems in Engineering, 2022 (2022). 3

[42] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandom-
ization, in Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS 1995), IEEE, 1995, pp. 182–191. 9

[43] M. H. Nguyen, M. Baiou, V. H. Nguyen, and T. Q. T. Vo, Nash fairness solutions for
balanced tsp, in 10th International Network Optimization Conference (INOC), 2022. 3

[44] P. Ristoski, P. Petrovski, P. Mika, and H. Paulheim, A machine learning approach
for product matching and categorization, Semantic web, 9 (2018), pp. 707–728. 1

13

[45] W. St-Arnaud, M. Carvalho, and G. Farnadi, Adaptation, comparison and prac-
tical implementation of fairness schemes in kidney exchange programs, arXiv preprint
arXiv:2207.00241, (2022). 3

[46] G. Stamoulis, Approximation algorithms for bounded color matchings via convex decompo-
sitions, in Mathematical Foundations of Computer Science 2014 - 39th International Sympo-
sium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, E. Csuhaj-
Varjú, M. Dietzfelbinger, and Z. Ésik, eds., vol. 8635 of Lecture Notes in Computer Science,
Springer, 2014, pp. 625–636. 3

[47] B. L. Thanh, S. Ruggieri, and F. Turini, k-nn as an implementation of situation testing
for discrimination discovery and prevention, in Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August
21-24, 2011, C. Apté, J. Ghosh, and P. Smyth, eds., ACM, 2011, pp. 502–510. 3

[48] M. Yannakakis, Node- and edge-deletion np-complete problems, in Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego, California,
USA, R. J. Lipton, W. A. Burkhard, W. J. Savitch, E. P. Friedman, and A. V. Aho, eds.,
ACM, 1978, pp. 253–264. 9

[49] G. Zhang, S. Malekmohammadi, X. Chen, and Y. Yu, Equality is not equity: Propor-
tional fairness in federated learning, arXiv preprint arXiv:2202.01666, (2022). 3

14

	1 Introduction
	1.1 Our results and contributions
	1.2 Related work

	2 Preliminaries
	3 A (14,1+4|OPT|)-Approximation for Proportionally Fair Matching
	3.1 The Analysis

	4 A Polynomial-time Approximation in the -limited Case
	5 An Exact Algorithm for Proportionally Fair Matching
	6 Hardness of Approximation for Proportionally Fair Matching
	7 Conclusions

