
ar
X

iv
:2

30
3.

10
64

6v
1

 [
cs

.D
S]

 1
9

M
ar

 2
02

3

Metric dimension parameterized by treewidth in

chordal graphs⋆

Nicolas Bousquet1, Quentin Deschamps1, and Aline Parreau1

Univ. Lyon, Université Lyon 1, CNRS, LIRIS UMR 5205, F-69621, Lyon, France.

Abstract. The metric dimension has been introduced independently by
Harary, Melter [HM75] and Slater [Sla75] in 1975 to identify vertices of
a graph G using its distances to a subset of vertices of G. A resolving

set X of a graph G is a subset of vertices such that, for every pair
(u, v) of vertices of G, there is a vertex x in X such that the distance
between x and u and the distance between x and v are distinct. The
metric dimension of the graph is the minimum size of a resolving set.
Computing the metric dimension of a graph is NP-hard even on split
graphs and interval graphs.
Bonnet and Purohit [BP21] proved that the metric dimension problem
is W[1]-hard parameterized by treewidth. Li and Pilipczuk strenghtened
this result by showing that it is NP-hard for graphs of treewidth 24
in [LP22]. In this article, we prove that that metric dimension is FPT
parameterized by treewidth in chordal graphs.

1 Introduction

Determining the position of an agent on a network is a central problem. One
way to determine his position is to place sensors on nodes of the network and the
agents try to determine their positions using their positions with respect to these
sensors. More formally, assume that the agent knows the topology of the graph.
Can he, by simply looking at his position with respect to the sensors determine
for sure his position in the network? Conversely, where do sensors have to be
placed to ensure that any agent at any possible position can easily determine for
sure its position? These questions received a considerable attention in the last
decades and have been studied in combinatorics under different names such as
metric dimension, identifying codes, locating dominating sets...

Let G = (V,E) be a graph and s, u, v be three vertices of G. We say that
s resolves the pair (u, v) if the distance between s and u is different from the
distance between s and v. A resolving set of a graph G = (V,E) is a subset S
of vertices of G such that any vertex of G is identified by its distances to the
vertices of the resolving set. In other words, S is a resolving set if for every pair
(u, v) of vertices of G, there is a vertex s of S such that s resolves (u, v). The
metric dimension of G, denoted by dim(G), is the smallest size of a resolving
set of G. This notion has been introduced in 1975 by Slater [Sla75] for trees and

⋆ This work was supported by ANR project GrR (ANR-18-CE40-0032)

http://arxiv.org/abs/2303.10646v1

2 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

by Harary and Melter [HM75] for graphs to simulate the moves of a sonar. The
metric dimension of G is the smallest size of a resolving set of G. The associated
decision problem, called the Metric Dimension problem, is defined as follows:
given a graph G and an integer k, is the metric dimension of G is at most k?

The Metric Dimension problem is NP-complete [GJ79] even for restricted
classes of graphs like planar graphs [DPSvL12]. Epstein et al. [ELW15] proved
that this problem is NP-complete on split graphs, bipartite and co-bipartite
graphs. The problem also is NP-complete on interval graphs [FMN+17] or sub-
cubic graphs [HN13]. On the positive side, computing the metric dimension is
linear on trees [HM75,Sla75] and polynomial in outer-planar graphs [DPSvL12].

Parameterized algorithms. In this paper, we consider the Metric Dimension

problem from a parameterized point of view. We say a problem Π is fixed param-
eter tractable (FPT) for a parameter k if any instance of size n and parameter
k can be decided in time f(k) · nO(1). Two types of parameters received a con-
siderable attention in the litterature: the size of the solution and the ”width” of
the graph (for various widths, the most classical being the treewidth).

Hartung and Nichterlein proved in [HN13] that the Metric Dimension

problem is W[2]-hard parameterized by the size of the solution. Foucaud et
al. proved that it is FPT parameterized by the solution size in interval graphs
in [FMN+17]. This result was extended by Belmonte et al. who proved in [BFGR16]
that Metric Dimension is FPT parameterized by the size of the solution plus
the tree-length of the graph. In particular, it implies that computing the metric
dimension for chordal graph is FPT parameterized by the size of the solution.

Metric Dimension is FPT paramerized by the modular width [BFGR16].
Using Courcelle’s theorem, one can also remark that it is FPT paramerized by
the treedepth of the graph as observed in [GHK+22]. Metric dimension has
been proven W[1]-hard parameterized by the treewidth by Bonnet and Puro-
hit in [BP21]. Li and Pilipczuk strenghtened this result by showing that it is
NP-complete for graphs of treewidth, and even pathwidth, 24 in [LP22]. While
Metric dimension is polynomial on graphs of treewidth 1 (forests), its com-
plexity is unknown for graphs of treewidth 2 is open (even if it is known to be
polynomial for outerplanar graphs). Our main result is the following:

Theorem 1. Metric Dimension is FPT parameterized by treewidth on chordal
graphs. That is, Metric Dimension can be decided in time O(n3 + n2 · f(ω))
on chordal graphs of clique number ω.

Recall that, on chordal graphs, the treewidth is equal to the size of a maxi-
mum clique minus one. Our proof is based on a dynamic programming algorithm.
One of the main difficulty to compute the metric dimension is that a pair of ver-
tices might be resolved by a vertex far from them in the graph. This non-locality,
implies that it is not simple to use classical algorithmic strategies like divide-
and-conquer, induction or dynamic programming since a single edge or vertex
modification somewhere in the graph might change the whole solution1.

1 The addition of a single edge in a graph might modify the metric dimension by Ω(n),
see e.g. [EFKY15].

Metric dimension parameterized by treewidth in chordal graphs 3

The first ingredient of our algorithm consists in proving that, given a chordal
graph, if we are using a clique tree of a desirable form and make some simple
assumptions on the shape of an optimal solution, we can ensure that resolving
a pairs of vertices close to a separator implies that we resolve all the pairs
of vertices in the graph. Using this lemma, we build a dynamic programming
algorithm that computes the minimum size of a resolving set containing a given
vertex in FPT-time parameterized by treewdith.

The special type of clique tree used in the paper, inspired from [Klo94], is
presented in Section 2.1. We then give some properties of resolving sets in chordal
graphs in Section 2.2. These properties will be needed to prove the correction
and the running time of the algorithm. Then, we present the definition of the
extended problem in Section 3.1 and the rules of the dynamic programming in
Section 3.2 where we also prove the correction of the algorithm. We end by an
analysis of the complexity of the algorithm in Section 4.

Further work. The function of the treewidth in our algorithm is probbly not
optimal and we did not try to optimize it to keep the algorithm as simple as
possible. A first natural question is the existence of an algorithm running in time
2ω · Poly(n) for chordal graphs.

We know that Theorem 1 cannot be extended to bounded treewidth graphs
since Metric Dimension is NP-hard on graphs of treewidth at most 24 [LP22].
One can nevertheless wonder if our proof technique can be adapted to design
polynomial time algorithms for graphs of treewidth at most 2 on which the
complexity status of Metric Dimension is still open.

Our proof nevertheless crucially relies on the fact that a separators X of a
chordal graphs is a clique and then the way a vertex in a component of G \X
is interacting with vertices in another component of G \ X is simple. One can
wonder if there is a tree decomposition in G where all the bags have diameter
at most C, is it true that Metric Dimension is FPT parameterized by the
size of the bags plus C. Note that, since Metric Dimension is NP-complete
on chordal graphs, the problem is indeed hard parameterized by the diameter of
the bags only.

2 Preliminaries

2.1 Clique trees

Unless otherwise stated, all the graphs considered in this paper are undirected,
simple, finite and connected. For standard terminology and notations on graphs,
we refer the reader to [CLZ15]. Let us first define some notations we use through-
out the article.

Let G = (V,E) be a graph where V is the set of vertices of G and E the set
of edges; we let n = |V |. For two vertices x and y in G, we denote by d(x, y)
the length of a shortest path between x and y and call it distance between x
and y. For every x ∈ V and U ⊆ V , the distance between x and U , denoted by
d(x, U), is the minimum distance between x and a vertex of U . Two vertices x

4 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

and y are adjacent if xy ∈ E. A clique is a graph where all the pairs of vertices
are adjacent. We denote by ω the size of a maximum clique. Let U be a set
of vertices of G. We denote by G \ U the subgraph of G induced by the set of
vertices V \ U . We say that U is a separator of G if G \ U is not connected. If
two vertices x and y of V \ U belong to two different connected components in
G′, we say that U separates x and y. If the set U induces a clique, we say that
U is a clique separator of G.

Definition 1 A tree-decomposition of a graph G is a pair (X,T) where T is a
tree and X = {Xi|i ∈ V (T)} is a collection of subsets (called bags) of V (G) such
that:

–
⋃

i∈V (T) Xi = V (G).

– For each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T).
– For each x ∈ V (G), the set {i|x ∈ Xi} induces a connected sub-tree of T .

Let G be a graph and (X,T) a tree decomposition of G. The width of the
tree-decomposition (X,T) is the biggest size of a bag minus one. The treewidth
of G is the smallest width of (X,T) amongst all the tree-decompositions (X,T)
of G.

Chordal graphs are graphs with no induced cycle of length at least 4. A
characterization given by Dirac in [Dir61] ensures chordal graphs are graphs
where minimal vertex separators are cliques. Chordal graphs admit clique trees
which are tree-decompositions such that all the bags are cliques.

Our dynamic programming algorithm is performed in a bottom-up on a clique
tree of the graph with more properties than the ones given by Definition 1.
These properties permits to simplify the analysis of the algorithm. We adapt the
decomposition of [Klo94, Lemma 13.1.2] to get this tree-decomposition.

Lemma 2 Let G = (V,E) be a chordal graph. There exists a clique tree (X,T)
of G such that, (i) T is a rooted tree that contains at most 4n nodes, (ii) for
every bag i ∈ V (T), the set of vertices Xi induces a clique in G and (iii) T
contains four types of nodes which are:

– Leaf nodes which satisfy |Xi| = 1 or,
– Introduce nodes i which have exactly one child j, and that child satisfies

Xi = Xj ∪ {v} for some vertex v ∈ V (G) \Xj or,
– Forget nodes i which have exactly one child j, and that child satisfies Xi =

Xj \ {v} for some vertex v ∈ Xj or,
– Join node i which have exactly two children i1 and i2 satisfying Xi = Xi1 =

Xi2 .

Moreover, such a clique tree can be found in linear time.

The original proof uses k-trees instead of chordal graphs but the proof only
needs that the graph contains a simplicial vertex which holds for chordal graphs.
Let us define now our clique tree in which the root of the tree is fixed.

Metric dimension parameterized by treewidth in chordal graphs 5

Lemma 3 Let G = (V,E) be a chordal graph and r a vertex of G, then there
exists a clique tree (X,T) such that, T contains at most 7n nodes, T is rooted in
a node that contains only the vertex r, for every bag i ∈ V (T), the set of vertices
Xi induces a clique in G and T contains four types of nodes.

– Leaf nodes, |Xi| = 1 which have no child.
– Introduce nodes i which have exactly one child j, and that child satisfies

Xi = Xj ∪ {v} for some vertex v ∈ V (G) \Xj.
– Forget nodes i which have exactly one child j, and that child satisfies Xi =

Xj \ {v} for some vertex v ∈ Xj.
– Join node i which have exactly two children i1 and i2, and that children

satisfy Xi = Xi1 = Xi2 .

Moreover, such a clique tree can be found in linear time.

Proof. By Lemma 2, there exists a clique tree (T,X) that satisfies all the prop-
erties except that the root of T can be any bag.

Let us first modify (T,X) to ensure that the clique tree is rooted on a node
that contains only {r}. If r appears in a bag of a leaf node then it holds. Oth-
erwise, there exists a forget node i with a child i′ such that Xi = Xi′ \ {r}. Let
Xi = {v1, . . . , vk} with r = v1. We do the following modifications on T : delete
the edge ii′, add two nodes i′′ and ik such that Xi′′ = Xk = Xv, i

′′ is a join
node with child i′ and k and i is a forget node with child i′′. Ultimately, we add
the nodes ik−1 . . . , i1 such that for any 1 ≤ t ≤ k − 1, Xit = {v1, . . . , vt} and it
is the child of the node it+1 (which is a forget node). Then, r appears in a bag
of a leaf node by adding at most n nodes in T .

Let us now root T on the node whose bag is {r}. We need to check that the
property on nodes are preserved. Note that for every edge, the two bags on the
extremities differ at most on one vertex. If a node has only one child with the
same bag then merge the two nodes. If a node i had two children with different
bags, let X be the bag of i, then add a new bag with vertex set X between i and
its child with a different bag. The tree we get after these modifications satisfies
all the properties of the lemma.

All these modifications can be performed in linear time. So find the clique
tree can be performed in time O(n). ⊓⊔

In the following, a clique tree with the properties of Lemma 3 will be called
a nice clique tree and we will only consider nice clique trees (X,T) of chordal
graphs G.

Given a rooted clique tree (T,X) of G, for any node i of T , we define the
subgraph of G rooted in Xi, denoted by T (Xi), as the subset of vertices of G
containing in at least one of the bags of the subtree of T rooted in i (i.e. in the
bag of i or one of its descendants).

2.2 Clique separators and resolving sets.

In this section, we give some technical lemmas that will permit to bound by f(ω)
the amount of information we have to remember in the dynamic programming
algorithm.

6 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

Lemma 4 Let K be a clique separator of G and G1 be a connected component
of G \K. Let Gext be the subgraph of G induced by the vertices of G1 ∪K and
Gint = G \ Gext. Let x1, x2 ∈ V (Gint) be such that |d(x1,K) − d(x2,K)| ≥ 2.
Then, every vertex s ∈ V (Gext) resolves the pair (x1, x2).

Proof. Without loss of generality, assume d(x1,K)+2 ≤ d(x2,K). By triangular
inequality and since K is a clique, d(x1, s) ≤ d(x1,K)+1+d(K, s) and d(x2, s) ≥
d(x2,K) + d(K, s). The sum of these inequalities gives d(x2,K) + d(x1, s) ≤
d(x1,K) + 1 + d(x2, s) < d(x2,K) + d(x2, s). Thus, d(x1, s) < d(x2, s), meaning
that s resolves the pair (x1, x2). ⊓⊔

Before proving Lemma 6, let us extract a technical case.

Lemma 5 Let G be a chordal graph and T be a nice clique tree of G. Let X, Y
be two bags of T and x, y be two vertices in respectively X, Y . Let Y be a bag
of T such that X ∩Y = ∅. Assume d(x, y) ≥ 2 and let z be a neighbour of x that
appears in the bag the closest to Y in T amongst the bags on the path between
X and Y . Then z belongs to a shortest path between x and y.

Proof. Let Z be the bag containing z and no other vertices of N [x] with Z on
the path between X and Y . If Z = Y then z is a common neighbour of x and
y which gives the result since d(x, y) ≥ 2. Otherwise, consider a shortest path
x = x1, x2, . . . , xm = y between x and y and let xi be the first vertex of this
path belonging to Z. Such a vertex exists since Z separates x and y. If xi = z
then the result holds. Otherwise by definition of z, xi is not adjacent to x and
is adjacent to z because they both belong Z. Thus, if we replace the sub-path
x1, . . . , xi by x, z, xi, it gives a path from x to Z whose length is at most the
length of the initial path which gives the result. ⊓⊔

Lemma 6 Let S be a subset of vertices of G. Let X, Y and Z be three bags of
a nice tree-decomposition T of G such that Z is on the path P between X and Y
in T . Denote by P = X1, . . . Z . . .Xp the bags of P with X = X1 and Y = Xp.
Let x be a vertex of X and y a vertex of Y with d(x, Z) ≥ 2 and d(y, Z) ≥ 2.
Assume that any pair of vertices (u, v) with u ∈ X2 ∪ . . .∪Z, v ∈ Z ∪ . . .∪Xp,
d(u, Z) < d(x, Z) and d(v, Z) < d(y, Z) is resolved by S. Then the pair (u, v) is
resolved by S.

Proof. Let i1 be such that Xi1∩N [x] 6= ∅ and for every j > i1, Xj∩N [x] = ∅ and
i2 be such that Xi2 ∩N [y] 6= ∅ and for j < i2, Xj ∩N [y] = ∅. Let x′ be the only
neighbour of x in Xi1 and y′ be the only neighbour of y in Xi2 , they are unique
by definition of nice tree-decomposition. Note that d(x, y) ≥ 4 since d(x, Z) ≥ 2
and d(y, Z) ≥ 2. So N [x] is not adjacent to N [y] and then i1 < i2. By Lemma 5,
x′ is on a shortest path between x and Z and y′ is on a shortest path between
y and Z. So d(x′, Z) < d(x, Z) and d(y′, Z) < d(y, Z). By hypothesis, there is
a vertex s ∈ S resolving the pair (x′, y′). Let us prove that s resolves the pair
(x, y).

Metric dimension parameterized by treewidth in chordal graphs 7

If s is a neighbour of x or y then s resolves the pair (x, y) since d(u, v) ≥ 4. So
we can assume that d(s, x) ≥ 2 and d(s, y) ≥ 2. Let Xs be a bag of T containing
s and X ′

s be the closest bag to Xs on P between X and Y .

Case 1: s ∈ Xi1 and s ∈ Xi2 . Then, d(s, x
′) ≤ 1 and d(s, y′) ≤ 1. The vertex

s resolves the pair (x′, y′) so d(s, x′) 6= d(s, y′) so s = x′ or s = y′. Assume by
symmetry that s = x′, then d(s, x) = 1 and d(s, y) ≥ 3 because d(x, y) ≥ 4. So
s resolves the pair (x, y).

Case 2: s belongs to exactly one ofXi1 orXi2 . By symmetry assume that s ∈ Xi1 .
By Lemma 5, y′ is on a shortest path between y and s. So d(s, y) = d(s, y′) + 1.
As s belongs to Xi1 then d(x′, s) = 1 and d(x, s) ≤ 2. As d(y′, s) 6= d(x′, s) we
have d(y′, s) ≥ 2, so d(s, y) ≥ 3. Thus s resolves the pair (x, y).

Case 3: s /∈ Xi1 and s /∈ Xi2 . First, we consider the case where X ′
s is between

Xi1 and Xi2 . Then, d(s, x) = d(s, x′) + 1 and d(s, y) = d(s, y′) + 1 by Lemma 5
as Xi1 separates x and s and Xi2 separates x and s. Thus, s resolves the pair
(x, y).

By symmetry, we can now assume that X ′
s is between X and Xi1 . Since

i1 < i2, Xi2 separates s and y. So d(s, y) = d(s, y′)+1 by Lemma 5. To conclude
we prove that d(s, x′) < d(s, y′). Let Q be a shortest path between s and y. The
bag Xi1 separates s and y so Q ∩ Xi1 6= ∅. Let y1 ∈ Q ∩ Xi1 . By definition of
Q, d(s, y′) = d(s, y1) + d(y1, y). We know y1 6= y because y1 is a neighbour of
x. So d(y1, y) 6= 0. We also have d(s, x′) ≤ d(s, y1) + 1 because y1 ∈ Xi1 . So y1
is a neighbour of x′. As d(s, x′) 6= d(s, y′), this ensures d(s, x′) < d(s, y′). So s
resolves the pair (x, y) because d(s, x) ≤ d(s, x′) + 1 < d(s, y′) + 1 = d(s, y). ⊓⊔

The following corollary is essentially rephrasing Lemma 6 to get the result
on a set of vertices.

Corollary 7 Let G be a chordal graph and S be a subset of vertices of G. Let
Xi be a bag of T and let T1 = (X1, E1) and T2 = (X2, E2) be two connected
components of T \ Xi. Assume that any pair of vertices (u, v) of (X1 ∪ Xi) ×
(X2 ∪Xi) with d(u,Xi) ≤ 2 and d(v,Xi) ≤ 2 is resolved by S. Then any pair of
vertices (u, v) of (X1, X2) with |d(u,Xi)− d(v,Xi)| ≤ 1 is resolved by S.

Proof. Assume by contradiction, that there exist some pairs of vertices of (T1, T2)
with |d(u,Xi) − d(v,Xi)| ≤ 1 which are not resolved by S. Among all these
pairs, let (u, v) be one pair minimizing q := d(u,Xi) + d(v,Xi). If q ≤ 4 then
d(u,Xi) ≤ 2 and d(v,Xi) ≤ 2, so the pair (u, v) is resolved by the hypothesis of
the lemma. If q ≥ 5, then d(u,Xi) ≥ 2 and d(v,Xi) ≥ 2. By minimality, we know
that all pairs (u′, v′) of (T1, T2) with d(u′, Xi) < d(u,Xi) and d(v′, Xi) < d(v,Xi)
are resolved by S. So, by Lemma 6, the pair (u, v) is resolved by S. ⊓⊔

3 Algorithm description

In this section, we fix a vertex v of a chordal graph G and consider a nice clique
tree (T,X) rooted in v which exists by Lemma 3. We present an algorithm
computing the smallest size of a resolving set of G containing v.

8 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

3.1 Generalisation of the problem

The algorithm is a dynamic programming algorithm that works bottom-up from
the leaves of a nice clique tree. Our algorithm computes the solution of a problem
more general than the metric dimension but easiest to manipulate for combining
solutions. Our algorithm consists in a dynamic programming on the clique tree.
In this new problem, we will represent some vertices by vectors of distance.

We define notations to edit vectors.

Definition 8 Given a vector r, the notation ri refers to the i-th coordinate of r.

– Let r = (r1, . . . , rk) ∈ N
k be a vector of size k and m ∈ N . The vector

r′ = r|m is the vector of size k+1 with r′i = ri for 1 ≤ i ≤ k and r′k+1 = m.

– Let r = (r1, . . . , rk) ∈ N
k be a vector of size k. The vector r− is the vector

of size k − 1 with r−i = ri for 1 ≤ i ≤ k − 1.

Definition 9 Let i be a node of T and let Xi = {v1, . . . , vk} be the bag of i. For
a vertex x of G, the distance vector dXi

(x) of x to Xi is the vector of size k
such that, for 1 ≤ j ≤ k, dXi

(x)j = d(x, vj). We define the set d≤2(Xi) as the
set of distance vectors of the vertices of T (Xi) at distance at most 2 of Xi in G
(i.e. one of the coordinate is at most 2).

Definition 10 Let G be a graph and K = {v1, . . . , vk} be a clique of G. Let
x be a vertex of G. The trace of x on K, denoted by TrK(x), is the vector r
of {0, 1}k \ {1, . . . , 1} such that for every 1 ≤ i ≤ k, d(x, vi) = a + ri where
a = d(x,K).

Let S be a subset of vertices of G. The trace TrK(S) of S in K is the set of
vectors {TrK(x), x ∈ S}.

The trace is well-defined because for a vertex x and a clique K, the distance
between x and a vertex of K is either d(x,K) or d(x,K) + 1.

Definition 11 Let r1, r2 and r3 be three vectors of same size k. We say that
r3 resolves the pair (r1, r2) if

min
1≤i≤k

(r1 + r3)i 6= min
1≤i≤k

(r2 + r3)i.

Lemma 12 Let K be a clique separator of G and G1 be a connected component
of G \ K. Let (x, y) be a pair of vertices of G \ G1 and let r be a vector of
size |K|. If r resolves the pair (dK(x),dK(y)), then any vertex s ∈ V (G1) with
TrK(s) = r resolves the pair (x, y).

Proof. Let s be a vertex of G1 such that TrK(s) = r. The clique K sepa-
rates s and x (resp. y) so d(x, s) = min1≤i≤k(dK(x) +TrK(s))i + d(K, s) (resp.
d(y, s) = min1≤i≤k(dK(y) +TrK(s))i + d(K, s)). The vector r resolves the pair
(dK(x),dK(y)). So d(x, s) 6= d(y, s) and s resolves the pair (x, y). ⊓⊔

Metric dimension parameterized by treewidth in chordal graphs 9

Definition 13 Let K be a clique separator of G and G1, G2 be two (non neces-
sarily distinct) connected components of G\K. Let M be a set of vectors and let
u ∈ V (G1)∪K and v ∈ V (G2)∪K. If a vector r resolves the pair (dK(x),dK(y)),
we say that r resolves the pair (x, y). We say that the pair of vertices (u, v) is
resolved by M if there exists a vector r ∈ M that resolves the pair (u, v).

We can now define the generalised problem our dynamic programming al-
gorithm actually solves. We call it the extended metric dimension problem
(EMD for short) . We first define the instances of this problem.

Definition 14 Let i be a node of T . An instance for a node i of the EMD

problem is a 5-uplet I = (Xi , SI , Dint(I), Dext(I), Dpair(I)) composed of the bag
Xi of i, a subset SI of Xi and three sets of vectors satisfying

– Dint(I) ⊆ {0, 1}|Xi| and Dext(I) ⊆ {0, 1}|Xi|,
– Dpair(I) ⊆ [|0, 3|]|Xi| × [|0, 3|]|Xi|,
– Dext(I) 6= ∅ or SI 6= ∅,
– For each pair of vectors (r1, r2) ∈ Dpair(I), there exist two vertices x ∈

T (Xi) with dXi
(x) = r1 and d(x,Xi) ≤ 2 and y /∈ T (Xi) with dXi

(y) = r2
and d(y,Xi) ≤ 2.

Definition 15 A set S ⊆ T (Xi) is a solution for an instance I of the EMD

problem if

– (S1) Every pair of vertices of T (Xi) is either resolved by a vertex in S or
resolved by a vector of Dext(I).

– (S2) For each vector r ∈ Dint(I) there exists a vertex s ∈ S such that
TrXi

(s) = r.
– (S3) For each pair of vector (r1, r2) ∈ Dpair(I), for any vertex x ∈ T (Xi)

with dXi
(x) = r1 and any vertex y /∈ T (Xi) with dXi

(y) = r2, if d(x,Xi) ≤ 2
and d(y,Xi) ≤ 2 the pair (x, y) is resolved by S.

– (S4) S ∩Xi = SI .

In the rest of the paper, for shortness, we will refer to an instance of the EMD

problem only by an instance.

Definition 16 Let I be an instance. We denote by dim(I) the minimum size of
a set S ⊆ T (Xi) which is a solution of I. If such a set does not exist we define
dim(I) = +∞. We call this value the extended metric dimension of I.

We now explain the meaning of each element of I. Firstly, a solution S must
resolve any pair in T (Xi), possibly with a vector of Dext(I) which represents
a vertex of V \ T (Xi) in the resolving set. Secondly, for all r in Dint(I), we
are forced to select a vertex in T (Xi) whose trace is r. This will be useful
to combine solutions since it will be a vector of Dext in other instances. The
elements in Dpair(I) will also be useful for combinations. In some sense Dpair(I)
is the additional gain of S compared to the main goal to resolve T (Xi). The set

10 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

SI constrains the intersection between S and Xi by forcing a precise subset of
Xi to be in S.

The following lemma is a consequence of Definition 15. It connects the defi-
nition of the extended metric dimension with the metric dimension.

Lemma 17 Let G be a graph, T be a nice tree-decomposition of G and r be the
root of T . Let I0 be the instance ({r}, {r}, ∅, ∅, ∅), then dim(I0) is the smallest
size of a resolving set of G containing r.

To ensure that our algorithm works well, we will need to use Lemma 4 in some
subgraphs of G. This is possible only if we know that the solution is not included
in the subgraph. This corresponds to the condition Dext(I) 6= ∅ or SI 6= ∅ and
this is why the algorithm computes the size of a resolving set containing the root
of T .

3.2 Dynamic programming

We explain how we can compute the metric dimension of an instance I given
the metric dimension of the instances on the children of Xi in T . The proof is
divided according to the different type of nodes.

Leaf node Computing the dimension of an instance for a leaf node can be done
easily with the following lemma.

Lemma 18 Let I be an instance for a leaf node i and v be the unique vertex
of Xi. Then,

dim(I) =

0 if SI = ∅, Dint(I) = ∅ and Dpair(I) = ∅
1 if SI = {v} and Dint(I) ⊆ {(0)}
+∞ otherwise

Proof. Let I be an instance for i. If SI = ∅, only the set S = ∅ can be a solution
for I. This set is a solution only if Dint(I) = ∅ and Dpair(I) = ∅. If SI = {v},
only the set S = {v} can be a solution for I. This is a solution only if Dint(I) is
empty or only contains the vector Trxi

(v). ⊓⊔

In the rest of the section, we treat the three other types of nodes. For each
type of nodes we will proceed as follows: define some conditions on the instances
on children to be compatible with I, and prove an equality between the extended
metric dimension on compatible children instances and the extended metric di-
mension of the instance of the node.

Join node. Let I be an instance for a join node i and let i1 and i2 be the
children of i.

Definition 19 A pair of instances (I1, I2) for (i1, i2) is compatible with I if

Metric dimension parameterized by treewidth in chordal graphs 11

– (J1) SI1 = SI2 = SI ,
– (J2) Dext(I1) ⊆ Dext(I) ∪Dint(I2) and Dext(I2) ⊆ Dext(I) ∪Dint(I1),
– (J3) Dint(I) ⊆ Dint(I1) ∪Dint(I2),
– (J4) Let C1 = {(r, t) ∈ Dpair(I) such that r /∈ d≤2(Xi1)} and C2 = {(r, t) ∈

Dpair(I) such that r /∈ d≤2(Xi2)}. Let D1 = {(r, t) ∈ d≤2(Xi1)×d≤2(G\Xi1)
such that there exists u ∈ Dint(I2) resolving the pair (r, t)} and D2 =
{(r, t) ∈ d≤2(Xi2)×d≤2(G\Xi2)) such that there exists u ∈ Dint(I1) resolv-
ing the pair (r, t)}
Then Dpair(I) ⊆ (r, t) ∈ (C1 ∪D1 ∪Dpair(I1)) ∩ (C2 ∪D2 ∪Dpair(I2)),

– (J5) For all r1 ∈ d≤2(Xi1), for all r2 ∈ d≤2(Xi2), (r1, r2) ∈ Dpair(I1) or
(r2, r1) ∈ Dpair(I2) or there exists t ∈ Dext(I) such that t resolves the pair
(r1, r2).

Condition (J4) represents how the pairs of vertices of V (T (Xi1))×V (T (Xi2))
can be resolved. A pair (r, t) is in (C1∪D1∪Dpair(I1)) if all the pairs of vertices
(x, y) with x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)) are resolved. If (r, t) is in C1, no
such pair of vertices exists, if (r, t) is in D1 the pairs of vertices are resolved by
a vertex outside of V (T (Xi1)) and if (r, t) is in Dpair(I1) the pairs of vertices
are resolved by a vertex of V (T (Xi1)). So a pair (r, t) is resolved if the pair is
in (C1 ∪D1 ∪Dpair(I1)) and in (C2 ∪D2 ∪Dpair(I2)).

Let FJ(I) be the set of pairs of instances compatible with I. We want to
prove the following lemma:

Lemma 20 Let I be an instance for a join node i. Then,

dim(I) = min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2)− |SI |).

We prove the equality by proving the two inequalities in the next lemmas.

Lemma 21 Let (I1, I2) be a pair of instances for (i1, i2) compatible with I with
finite values for dim(I1) and dim(I2). Let S1 ⊆ V (T (Xi1)) be a solution for I1
and S2 ⊆ V (T (Xi2)) be a solution for I2. Then S = S1 ∪ S2 is a solution for I.
In particular,

dim(I) ≤ min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2)− |SI |).

Proof. Let us prove that the conditions of Definition 15 are satisfied.
(S1) Let (x, y) be a pair of vertices of T (Xi). Assume first that x ∈ V (T (Xi1))
and y ∈ V (T (Xi1)). Either (x, y) is resolved by a vertex of S1 and then by a
vertex of S or (x, y) is resolved by a vector r ∈ Dext(I1). By condition (J2),
r ∈ Dext(I) or r ∈ Dint(I2). If r ∈ Dext(I) then (x, y) is resolved by a vector
of Dext(I1). Otherwise, there exists a vertex t ∈ S2 such that TrXi2

(t) = r. So
t ∈ S and t resolves the pair (x, y). The case x ∈ V (T (Xi2)) and y ∈ V (T (Xi2))
is symmetric. So we can assume that x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)). If
d(x,Xi) ≤ 2 and d(y,Xi) ≤ 2, the condition (J5) ensures that the pair (x, y) is
resolved by S or by a vector ofDext(I). Otherwise, either |d(x,Xi)−d(y,Xi)| ≤ 1

12 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

and (x, y) is resolved by Lemma 7 or |d(x,Xi)−d(y,Xi)| ≥ 2 and (x, y) is resolved
by Lemma 4 because Dext(I) 6= ∅ or SI 6= ∅.
(S2) Let r ∈ Dint(I). By compatibility, the condition (J3) ensures that r ∈
Dint(I1) or r ∈ Dint(I2). As S = S1 ∪ S2, S contains a vertex s such that
TrXi

(s) = r.
(S3) Let (r, t) ∈ Dpair(I) and (x, y) with x ∈ V (T (Xi)) such that dXi

(x) = y
and y /∈ T (Xi) such that dXi

(y) = t. Without loss of generality assume that
x ∈ V (T (Xi1)).

By compatibility, (r, t) ∈ (C1 ∪D1 ∪Dpair(I1))∩ (C2 ∪D2 ∪Dpair(I2)) so in
C1 ∪D1 ∪Dpair(I1). If (r, t) ∈ Dpair(I)1, then there exists s ∈ S1 that resolves
the pair (x, y) so the pair is resolved by S. If (r, t) ∈ D1, there exists u ∈ Dint(I2)
such that u resolves the pair (r, t). By compatibility, there exists s ∈ S2 such
that TrXi

(s) = u. So s resolves the pair (x, y). And (r, t) /∈ C1 since x belongs
to T (Xi1) with vector distance r.
(S4) is clear since Xi1 = Xi2 = Xi.

Thus, dim(I) ≤ dim(I1) + dim(I2) − |SI | is true for any pair of compatible
instances (I1, I2) so dim(I) ≤ min(I1,I2)∈FJ(I)(dim(I1) + dim(I2)− |SI |). ⊓⊔

Lemma 22 Let I be an instance for a join node i and let i1 and i2 be the
children of i. Then,

dim(I) ≥ min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2)− |SI |).

Proof. If dim(I) = +∞ then the result indeed holds. So assume dim(I) is finite.
Let S be a solution for I of minimal size. Let S1 = S ∩ T (Xi1) and S2 = S ∩
T (Xi2). We define now two instances I1 and I2 for i1 and i2. Let SI1 = SI2 = SI ,
Dint(I1) = TrXi

(S1), Dint(I2) = TrXi
(S2), Dext(I1) = Dext(I) ∪ Dint(I2) and

Dext(I2) = Dext(I) ∪ Dint(I1). To build the sets Dpair(I1) and Dpair(I2) we
make the following process that we explain for Dpair(I1). For all pairs of vectors
(r, t) of (d≤2(Xi1), d≤2(G \ Xi1)), consider all the pairs of vertices (x, y) with
x ∈ V (T (Xi1)), y ∈ V (G \ T (Xi1)), r ∈ d≤2(Xi), t ∈ d≤2(G \Xi1)), dXi

(x) = r
and dXi

(y) = t. If all the pairs are resolved by vertices of S1 (that for each pair,
there exists a vertex of S1 that resolves the pair), then add (r, t) to Dpair(I1).

Claim. (I1, I2) is compatible with I.

Proof. (J1), (J2) and (J3) are straightforward.
(J4) Let (r, t) ∈ Dpair(I), we want to prove that (r, t) ∈ (C1∪D1∪Dpair(I1))∩
(C2 ∪ D2 ∪Dpair(I2)). We prove that (r, t) ∈ (C1 ∪ D1 ∪ Dpair(I1)), the other
part of the proof is symmetrical.

If r /∈ d≤2(Xi1), then (r, t) ∈ C1. Otherwise, there exists a vertex x in
T (Xi1) such that dXi1

(x) = r and a vertex y in G \T (Xi) such that dXi
(y) = t

(because the pair (r, t) belongs to Dpair(I)). The pair (x, y) is resolved by S. If
there is a vertex s ∈ S ∩ T (Xi2) resolving the pair, then s resolves all the pairs
with such distance vector and then (r, t) ∈ D1. Otherwise, for any pair (x, y)
of T (Xi1) × G \ T (Xi) with dXi1

(x) = r and dXi
(y) = t, there is a vertex of

S ∩ T (Xi1) that resolves the pair (x, y), so (r, t) ∈ Dpair(I1).

Metric dimension parameterized by treewidth in chordal graphs 13

(J5) Let r1 ∈ d≤2(Xi1), r2 ∈ d≤2(Xi2) and two vertices x ∈ Xi1 and y ∈ Xi2

such that dXi1
(x) = r1 and dXi2

(y) = r2. As S is a solution of I, either the pair
(x, y) is resolved by a vector r3 ∈ Dext(I), or there exists s ∈ S resolving (x, y).
If (x, y) is resolved by s, assume by contradiction that (r1, r2) 6∈ Dpair(I1)
and (r2, r1) 6∈ Dpair(I1). Then there exist vertices x1, x

′
1 ∈ V (T (Xi1)) with

dXi1
(x1) = r1, dXi2

(x′
1
) = r1 and x2, x

′
2 ∈ V (T (Xi2)) with dXi2

(x2) = r2 and
dXi2

(x′
2
) = r2 such that the pair (x1, x2) is not resolved by a vertex of S1 and

the pair (x′
1, x

′
2) is not resolved by a vertex of S2. Let s ∈ S resolving the pair

(x1, x
′
2). If s ∈ S1, then s resolves the pair (x1, x2) and if s ∈ S2, then s resolves

the pair (x′
1, x

′
2), a contradiction. ⊓⊔

Claim. S1 is a solution of I1 and S2 is a solution of I2.

Proof. We only prove that S1 is a solution of I1 as the proof that S2 is a solution
of I2 is similar.

(S1) Let (x, y) be a pair of vertices of T (Xi1). As S is a solution of I, the pair
(x, y) is either resolved by a vertex of S or by a vector of Dext(I). If (x, y) is
resolved by a vector of Dext(I), the pair (x, y) is also resolved by a vector of
Dext(I1) since Dext(I) ⊆ Dext(I1). Otherwise let s ∈ S resolving the pair (x, y).
If s ∈ T (Xi1) then (x, y) is resolved by a vertex of S1. Otherwise s ∈ T (Xi2) and
by construction of I1, Dext(I1) contains the vector TrXi

(s) so (x, y) is resolved
by a vector of Dext(I1).
(S2) By definition, Dint(I1) = TrXi

(S1). Hence, for any vector r ∈ Dint(I1),
there is a vertex s ∈ S1 with TrXi

(s) = r.
(S3) Let (r, t) ∈ Dpair(I1), x ∈ T (Xi1) and y /∈ T (Xi1) such that dXi

(x) = r
and dXi

(y) = y. By construction of Dpair(I1) there is a vertex s ∈ S1 resolving
the pair (x, y).
(S4) SI1 = SI and since S is a solution of I, SI = S ∩Xi. ⊓⊔

Ultimately we get the announced inequality. Since S is a minimal solution for
I, we have dim(I) = |S|. The sets S1 and S2 are solutions for S1 and S2 so
dim(I1) ≤ |S1| and dim(I2) ≤ |S2|. Since |S| = |S1|+ |S2|− |SI | we get dim(I) ≥
dim(I1)+dim(I2)−|SI |. This inequality is true for a specific pair of instances so
in particular is true for a pair minimising the amount dim(I1) + dim(I2)− |SI |,
giving the result. ⊓⊔

Lemma 20 is a direct consequence of Lemma 21 and Lemma 22.

Introduce node We now consider an instance I for an introduce node i. Let j
be the child of i and v ∈ V be such that Xi = Xj ∪ {v}. Let Xi = {v1, . . . , vk}
with v = vk. The tree T (Xi) contains one more vertex than its child. The
definition of the compatibility is slightly different if we consider the same set as
a solution (type 1) or if we add this vertex to the resolving set (type 2).

Definition 23 An instance I1 is compatible with I of type 1 (resp. 2) if

– (I1) SI = SI1 (resp. = SI1 ∪ {v}).

14 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

– (I2) For all r ∈ Dext(I), r
− ∈ Dext(I1) (resp. or r = (0, . . . , 0)).

– (I3) For all r ∈ Dint(I), rk = 1 and r− ∈ Dint(I1) (resp. or r = (1, . . . , 1, 0)).
– (I4) For all (r, t) ∈ Dpair(I), (r

−, t−) ∈ Dpair(I1).
– (I5) If I1 is of type 1, for all (r, t) with t = (0, . . . , 0), (r, t) ∈ Dpair(I1).

We want to prove that the following holds:

Lemma 24 Let I be an instance for an introduce node i. Let F1(I) be the set of
instances I1 for i1 compatible with I of type 1 and F2(I) be the set of instances
I2 for i1 compatible with I of type 2. Then,

dim(I) = min { min
I1∈F1(I)

{dim(I1)}; min
I2∈F2(I)

{dim(I2) + 1}}.

Let us first prove a technical case.

Lemma 25 Let i be an introduce node, j be the child of i and v ∈ V such that
Xi = Xj ∪{v}. Let (x, y) be a pair of vertices of T (Xj). Let r be a binary vector
of size |Xi|, then r resolves (x, y) if and only if r− resolves (x, y).

Proof. Let r1 = TrXi
(x) and r2 = TrXi

(y). Note that the set Xi \ {v} separates
v from x and y so (r1)k = (r2)k = 1.

Assume first that r resolves (x, y) and by contradiction that r− does not re-
solve (x, y). Since r resolves (x, y), min1≤l≤k (r1 + r)ℓ 6= min1≤ℓ≤k (r2 + r)ℓ and
min1≤ℓ≤k−1 (r1 + r)ℓ = min1≤ℓ≤k−1 (r2 + r)ℓ by Definition 11. So the minimum
change in at least one case. Assume by symmetry that min1≤ℓ≤k (r1 + r)ℓ 6=
min1≤ℓ≤k−1 (r1 + r)ℓ. So for ℓ < k we have (r1 + r)ℓ > (r1 + r)k. Since (r1)k =
1, it implies that d(x, v) < d(x, vj) for all ℓ ≤ k − 1. A contradiction since
{v1, . . . , vk−1} separates x from v.

Assume now that r− resolves (x, y) and by contradiction that r does not
resolve (x, y). Then by symmetry we can assume that min1≤j≤k (r1 + r)j 6=
min1≤j≤k−1 (r1 + r)j meaning (r1 + r)k < min1≤j≤k−1 (r1 + r)j . Since (r1)k =
1, (r1 + r)k ≥ 1 and (r1 + r)j = 2 for 1 ≤ j ≤ k − 1. So r1 = (1, . . . 1) which
contradicts the fact that Xi \ {v} separates v from x. ⊓⊔

Lemma 26 Let I1 be a compatible instance of type 1 and S be a solution of I1,
then S is a solution of I.

Proof. Let us prove that the conditions of Definition 15 are satisfied.
(S1) Let (x, y) be a pair of vertices of T (Xi). First assume that x 6= v and
y 6= v. If the pair (x, y) is not resolved by a vertex of S, since S is a solution for
I1, (x, y) is resolved by a vector of Dext(I). Let r ∈ Dext(I) resolving the pair
(x, y). As I1 is compatible of type 1, r− ∈ Dext(I1). Then r− resolves (x, y) by
Lemma 25. So we can assume that x = v. The pair (x, y) is also resolved by S
since (dXj

(x1), (0, . . . , 0)) ∈ Dpair(I1). As S is a solution for I1, there is a vertex
s ∈ S that resolves the pair (x, y).
(S2) Let r ∈ Dint(I). Since I1 is compatible with I, there exists r1 ∈ Dint(I1)
such that r = r1|1. Let s ∈ S such that TrXj

(s) = r1, then TrXi
(s) = r. Indeed,

Metric dimension parameterized by treewidth in chordal graphs 15

the vertex v is not the closest vertex of Xi from s. If s ∈ Xj , that is clear.
Otherwise Xj is a separator between s and v, so the shortest path between s
and v crosses a vertex of Xj . Thus, TrXi

(s) = r1|1.
(S3) Let (r, t) ∈ Dpair(I). Let x ∈ V (T (Xi)) such that dXi

(x) = r and y /∈
T (Xi) such that dXi

(y) = t. Then dXj
(x1) = r− and dXj

(x2) = t− so the pair

(x, v) is resolved by S because (r−
1
, r−

2
) belongs to Dpair(I1).

(S4) As SI = SI1 we have S ∩Xi = SI . ⊓⊔

Lemma 27 Let I2 be a compatible instance of type 2 and S a solution of I2,
then S′ = S ∪ {v} is a solution of I.

Proof. Let us prove that the conditions of Definition 15 are satisfied.
(S1) Let (x, y) be a pair of vertices of T (Xi) with x 6= v and y 6= v. If the
pair (x, y) is not resolved by a vertex of S, since S is a solution for I2, (x, y)
is resolved by a vector r ∈ Dext(I2). By compatibility there exists r′ ∈ Dext(I)
such that r′− = r. By Lemma 25, r′ resolves the pair (x, y). Ultimately, if v = x
or v = y, the pair (x, y) is also resolved by S′ as v ∈ S′.
(S2) Let r ∈ Dint(I). If r = (1, . . . , 1, 0), as TrXi

(v) = r, there is a vertex in
S′ with trace r. Otherwise, as I1 is compatible, there exists r1 ∈ Dint(I2) such
that r = r1|1. Let s ∈ S such that TrXj

(s) = r1, then TrXi
(s) = r. Indeed, the

vertex v is not the closest vertex of Xi from s. If s ∈ Xj , that’s clear. Otherwise
Xj is a separator between s and v, so the shortest path between s and v crosses
a vertex of Xj . Thus, TrXi

(s) = r1|1.
(S3) Let (r, t) ∈ Dpair(I). Let x ∈ V (T (Xi)) such that dXi

(x) = r and y /∈
T (Xi) such that dXi

(y) = t. Then dXj
(x) = r− and dXj

(y) = t− so the pair
(x, y) is resolved by S because (r−, t−) belongs to Dpair(I1).
(S4) As SI = SI1 ∪ {v} we have S ∩Xi = SI1 ∪ {v} = SI . ⊓⊔

Lemma 28 Let I be an instance for an introduce node i. Let F1(I) be the set of
instances I1 for i1 compatible with I of type 1 and F2(I) be the set of instances
I2 for i1 compatible with I of type 2. Then,

dim(I) ≤ min { min
I1∈F1(I)

{dim(I1)}, min
I2∈F2(I)

{dim(I2) + 1}}.

Proof. The proof directly follows from the fact that, for any instance I1 for j
compatible with I, we can get a solution of I of size dim(I1) if I1 ∈ F1 by
Lemma 26 and of size dim(I1) + 1 if I1 ∈ F2 by Lemma 27. ⊓⊔

Lemma 29 Let S be a solution for I with v /∈ S. Then there exists I1 ∈ F1

such that S is a solution of I1.

Proof. Let I1 be the instance defined by SI1 = SI , Dint(I1) = (∪r∈Dint(I)r
−),

Dext(I1) = (∪r∈Dext(I)r
−) and Dpair(I1) = ∪(r,t)∈Dpair(I)(r

−, t−)). One can
easily remark that I1 is compatible with I of type 1.

We prove that S is a solution of I1.
(S1) Let (x, y) be a pair of vertices of T (Xj). As S is a solution for I, either there
exists s ∈ S that resolves the pair (x, y), or there is a vector r ∈ Dext(I) that

16 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

resolves (x, y). In the second case, by construction of I1, the vector r− belongs
to Dext(I1) and resolves (x, y) by Lemma 25. So the pair (x, y) is resolved in
both cases.

(S2) Let r ∈ Dint(I1). By construction, there is r′ ∈ Dint(I) such that r′− = r.
Let s ∈ S such that TrXi

(s) = r′, then TrXj
(s) = r.

(S3) Let (r, t) ∈ Dpair(I1), x ∈ T (Xi) with dXj
(x) = r and y /∈ T (Xj) with

dXj
(y) = t with d(x,Xj) ≤ 2 and d(y,Xj) ≤ 2. Let (r′, t′) ∈ Dpair(I) such that

(r, t) = (r′−, t′−). First d(x, v) = d(x,Xj) + 1 because Xj separates x and v.
This is true for any vertex of Xj so the last component of r′ is d(x,Xj) + 1. So
dXi

(x) = r′. If dXi
(y) = t′, then (x, y) is resolved by a vertex of s. Otherwise,

as (r′, t′) ∈ Dpair(I), there exist a vertex z /∈ T (Xj) such that dXi
(z) = t′

and s is S that resolves the pair (x, z). Then s resolves the pair (x, y) because
d(s, y) = d(s, z).

(S4) We have SI = SI1 and v /∈ SI so S ∩Xj = SI1 .

Finally, S is a solution of I1 so dim(I1) ≤ |S| ≤ dim(I). In particular
dim(I) ≥ minI1∈F1

{dim(I1)}. ⊓⊔

Lemma 30 Let S be a solution for I of minimal size with v ∈ S. Then there
exists I2 ∈ F2 such that S \ {v} is a solution of I2.

Proof. Let I2 be the instance where SI1 = SI \ {v}, Dint(I2) = (∪r∈Dint(I)r
−),

Dext(I2) = {∪r∈Dext(I)r
−} ∪ {(0, . . . 0)} and Dpair(I2) = ∪(r,t)∈Dpair(I)(r

−, t−).
One can easily remark that I2 is compatible with I of type 2.

We prove that S is a solution of I2. (S1) Let (x, y) be a pair of vertices of
T (Xj). As S is a solution for I, either there exists s ∈ S that resolves the pair
(x, y) or there is a vector r ∈ Dext(I) that resolves (x, y). If (x, y) is resolved
by a vertex of S \ {v}, then the pair (x, y) is resolved in I2. If (x, y) is resolved
by v, then the vector (0, . . . 0) of Dext(I2) resolves the pair. If (x, y) is resolved
by a vector r of Dext(I), then by Lemma 25. So r− resolves the pair (x, y) and
r− ∈ Dext(I2) by construction.

(S2) Let r ∈ Dint(I1). By construction, there is r′ ∈ Dint(I) such that r′− = r.
Let s ∈ S such that TrXi

(s) = r′, then TrXj
(s) = r.

(S3) Let (r, t) ∈ Dpair(I1), x ∈ T (Xi) with dXj
(x) = r and y /∈ T (Xj) with

dXj
(y) = t with d(x,Xj) ≤ 2 and d(y,Xj) ≤ 2. Let (r′, t′) ∈ Dpair(I) such that

(r, t) = (r′−, t′−). First d(x, v) = d(x,Xj) + 1 because Xj separates x and v.
This is true for any vertex of Xj so the last component of r′ is d(x,Xj) + 1. So
dXi

(x) = r′. If dXi
(y) = t′, then (x, y) is resolved by a vertex of s. Otherwise,

as (r′, t) ∈ Dpair(I), there exist a vertex z /∈ T (Xj) such that dXi
(y) = t′

and s in S that resolves the pair (x, z). Then s resolves the pair (x, y) because
d(s, y) = d(s, z).

(S4) We have SI = SI1 and v /∈ SI so S ∩Xj = SI1 .

Finally, S \ {v} is a solution of I2, thus dim(I2) ≤ |S − 1| ≤ dim(I). In
particular dim(I) ≥ minI2∈F2

{dim(I2) + 1}. ⊓⊔

Lemma 24 is a consequence of Lemmas 28, 29 and 30.

Metric dimension parameterized by treewidth in chordal graphs 17

Forget node We now consider an instance I for an forget node i. Let j be the
child of i and v ∈ V be such that Xj = Xi ∪ {v}. Let Xj = {v1, . . . , vk} with
v = vk. The trees T (Xi) and T (Xj) contain the same vertices, the definition of
compatibility gives conditions to have the same solution for I and for an instance
on the child node.

We introduce three functions on vectors representing how the trace of a vertex
can be modified when one considers two separators that differ by one vertex.

Definition 31 Let r be any binary vector. We define the functions f , f− and f+

which return a vector with one more component. The function f− is defined as
f−(r) = r|min(ri) if r is not constant and f−(r) = r|(r1 − 1) if r is constant. We
define f+ as f+(r) = r|max(ri) is r is not constant and f+(r) = r|(r1 + 1) if r
is constant. We define f as f(r) = r|min(ri) is r is not constant and f(r) = r|r1
if r is constant.

The function f is introduced only to deal with the case of constant vector.
These functions are defined to deal with the following case. Let Xi and Xj be
two bags such that Xi = Xj \ {v} for some vertex v. Let x be any vertex,
then dXj

(x) is equal to f(dXi
(x)), f+(dXi

(x)) or f−(dXi
(x)). Moreover, if Xi

separates x and v, dXj
(x) = f+(dXi

(x)).

Definition 32 Let I be an instance for a forget node i and let j be the child of
i and v ∈ V such that Xi = Xj \ {v}. Let Xj = {v1, . . . , vk} with v = vk. An
instance I1 for j is compatible with I if

– (F1) SI = SI1 \ {v}.
– (F2) For all r ∈ Dext(I), r|1 ∈ Dext(I1).

– (F3) For all r ∈ Dint(I), r|0 ∈ Dint(I1) or r|1 ∈ Dint(I1).

– (F4) ∀(r, t) ∈ Dpair(I), if there exist two vertices x ∈ T (Xi) with dXj
(x) =

f−(r) (resp. f(r), (f+(r)) and y /∈ T (Xi) with dXj
(y) = f+(t) with d(x,Xj) ≤

2 and d(y,Xj) ≤ 2 then (f−(r), f+(t)) (resp. (f(r), f+(t)), (f+(r), f+(t)))
belongs to Dpair(I1).

Lemma 33 Let I be an instance for a forget node i. Let FF (I) be the set of
instances I1 for j compatible with I. Then,

dim(I) = min
I1∈FF (I)

{dim(I1)}.

The end of this section is devoted to prove Lemma 33 by proving both in-
equalities in a similar way than for join and introduce nodes.

We prove a technical lemma similar to Lemma 25 with a similar proof.

Lemma 34 Let i be a forget node, j be the child of i and v ∈ V such that
Xi = Xj \ {v}. Let (x, y) be a pair of vertices of T (Xj). Let r be a binary vector
of size k with rk = 1. Then r resolves (x, y) if and only if r− resolves (x, y).

18 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

Proof. Let t1 = TrXi
(x) and t2 = TrXi

(y). Assume r resolves (x, y) and by
contradiction that r− does not resolve (x, y). As r resolves (x, y) we have by Def-
inition 11, min1≤l≤k (t1 + r)l 6= min1≤l≤k (t2 + r)l and min1≤l≤k−1 (t1 + r)l 6=
min1≤l≤k−1 (t2 + r)l. So the minimum change in at least one case, assume by
symmetry that min1≤l≤k (t1 + r)l 6= min1≤i≤k−1 (t1 + r)l. Thus, for l < k, we
have (t1 + r)l > (t1 + r)k. We know rk = 1, so, for l < k, we have (t1 + r)l > 1.
That gives r = (1, . . . , 1) which contradicts the fact that Xj separates v from
x1, one vertex of Xj is strictly closer to x than v. Assume r− resolves (x, y)
and by contradiction that r does not resolve (x, y). Then, by symmetry we can
assume that min1≤l≤k (t1 + r)l 6= min1≤l≤k−1 (t1 + r)l, meaning (t1 + r)k <
min1≤l≤k−1 (t1 + r)l. We know rk = 1 so (t1 + r)k ≥ 1 and (t1 + r)l = 2 for
1 ≤ l ≤ k − 1. So r = (1, . . . 1) which contradicts the fact that Xj separates v
from s. ⊓⊔

Lemma 35 Let I1 ∈ FF (I) and S be a solution for I1, then S is a solution
for I.

Proof. Let us prove that the conditions of Definition 15 are satisfied.
(S1) Let (x, y) be a pair of vertices of T (Xi). As T (Xi) = T (Xj), the pair is
resolved by a vertex of S or by a vector r of Dext(I1). If (x, y) is resolved by
r ∈ Dext(I1) then by Lemma 34, r− resolves the pair (x, y) and r− ∈ Dext(I)
by compatibility.
(S2) Let r ∈ Dint(I). By compatibility, r|0 ∈ Dint(I1) or r|1 ∈ Dint(I1). Let
s ∈ S such that TrXi

(s) ∈ {r|0, r|1}, then TrXj
(s) = r.

(S3) Let (r, t) ∈ Dpair(I), x ∈ V (T (Xi)) and y /∈ T (Xi) such that dXi
(x) = r

and dXi
(y) = t. Assume also d(x,Xi) ≤ 2 and d(y,Xi) ≤ 2. The setXj separates

v and y so dXj
(y) = f+(t). As dXj

(x) is equal either to f−(r), f(r) or to f+(r),
the pair (x, y) is resolved by a vertex of S.
(S4) is clear. ⊓⊔

Lemma 36 Let S be a solution for I of minimal size. Then there exists I1
compatible with I such that S is a solution of I1.

Proof. Let S be an solution for I of minimal size. Let I1 be the following
instance: SI1 = S ∩ Xj , Dint(I1) = {TrXj

(s), s ∈ S}, Dext(I1) = {r|1, r ∈
Dext(I)}, Dpair(I1) = {(f−(r), f+(t)), (r, t) ∈ Dpair(I)} ∪ {(f(r), f+(t)), (r, t) ∈
Dpair(I)} ∪ {(f+(r), f+(t))(r, t) ∈ Dpair(I)}. We first check the compatibility.
(F1), (F2) and (F4) are straightforward.
(F3) Let r ∈ Dint(I) and s ∈ S such that TrXi

(s) = r. By construction,
r′ = TrXj

(s) belongs toDint(I1) and r′ = r− so r|0 ∈ Dint(I1) or r|1 ∈ Dint(I1).

We prove now S is a solution for I1.
(S1) Let (x, y) be a pair of vertices of T (Xj). As T (Xi) = T (Xj), the pair is
resolved by a vertex of S or by a vector r of Dext(I). If (x, y) is resolved by
r ∈ Dext(I) then by Lemma 34, r|1 resolves the pair (x, y) and r|1 ∈ Dext(I1)
by construction.

Metric dimension parameterized by treewidth in chordal graphs 19

(S2) Let r ∈ Dint(I1). By construction there is s ∈ S such that TrXj
(s) = r.

(S3) Let (r, t) ∈ Dpair(I1), x ∈ V (T (Xj)) and y /∈ T (Xj) such that dXj
(x) = r

and dXj
(y) = t. Assume also d(x,Xi) ≤ 2 and d(y,Xi) ≤ 2. Then TrXj

(y) =
f+(t) and TrXj

(x) ∈ {f−(r), f(r), f+(r)}. Since S is a solution of I, the pair
(x, y) is resolved by a vertex of S.
(S4) is clear. ⊓⊔

Lemma 33 is a consequence of Lemmas 35 and 36.

3.3 Algorithm

Given as input a nice clique tree, the algorithm computes the extended metric
dimension of all the possible instances bottom up from the leaves. The algorithm
computes the values for leaves using Lemma 18, for join nodes using Lemma 20,
for introduce nodes using Lemma 24 and forget nodes using Lemma 33. The
correction of the algorithm is straightforward by these lemmas.

We denote this algorithm by IMD in the following which takes as input a
nice clique tree T and outputs the minimal size of a resolving set of G containing
the root of T .

4 Proof of Theorem 1

Let us finally explain how we can compute the metric dimension of G.

Lemma 37 The metric dimension of G is minv∈G{IMD(T (v))} where T (v) is
a nice clique tree of G rooted in v.

Proof. For any input, IMD(T (v)) outputs the size of a resolving set of G. So,
minv∈G{IMD(T (v))} ≥ dim(G). Let S be a minimum resolving set of G and let
v ∈ S. By Lemma 17, IMD(T (v)) outputs the minimum size of a resolving set
containing v so minv∈G{IMD(T (v))} ≤ dim(G) which complete the proof. ⊓⊔

In particular, n executions of the IMD algorithm with different inputs are
enough to compute the metric dimension. Lemma 3 ensures that we can find for
any vertex v of G a nice clique tree in linear time, the last part is to compute
the complexity of the IMD algorithm.

To get the announced complexity, we add a first step to the IMD algorithm:
for each bag X , we compute d≤2(X) ∩ T (X) and d≤2(X) ∩ (G \ T (X)). This
computation can be done in O(n2) times (recall that T has a linear number of bag
by Lemma 3). Note also that the size of d≤2(X)∩T (X) and d≤2(X)∩(G\T (X))
depends only of |Xi|.

To compute the complexity, we need to compute the number of instances and

the time to solve an instance. For simplicity we let α(k) := 2k · 22
k

· 22
k

· 24
2k

.

Lemma 38 Let I be any instance for a node i and assume dim(I ′) is known
for every instance I ′ compatible with I for every child of i . Then dim(I) can be
computed in time O(f(|Xi|)) for a computable function f .

20 Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

Proof. If i is a leaf node then dim(I) can be computed in constant time by
Lemma 18. Otherwise, let us prove that one can compute for all the instances on
the child nodes (at most two child nodes) all the compatible instances. Given a
5-uplet (Xi, SI , Dint(I), Dext(I), Dpair(I)), checked if it is an instance according
to Definition 15 can be done in time O(|I| · g(|Xi|)) where g gives the size of
d≤2(Xi)∩T (Xi) plus the size d≤2(Xi)∩(G\T (Xi)). The number of such 5-uplet
(Xi, SI , Dint(I), Dext(I), Dpair(I)) is bounded by α(|Xi|). Thus, identifying the
instances among all the 5-uplet ca be done in time depending only of |Xi|.

Checking the compatibility can be done in a time that only depends on |Xi|.
Condition (J5) can be checked in time O(|Xi|2 · |I|) to check for each pair of
vectors if a vector of Dext(I) resolves it. Condition (I5) can be checked in time
O(|Xi|) and condition (F4) in time O(|Xi|2). The other compatibility conditions
can be checked in time O(|I|) and by Definition 15, |I| is bounded by a function
of |Xi|. Then, computing the minimum using the formulas of Lemmas 20, 24
and 33 can be done in time O(α(Xi)). Ultimately the computation of dim(I) is
done in time bounded by a function of Xi. ⊓⊔

Corollary 39 The algorithm for IMD runs in time O(n(T)2 + n(T) · f(ω))

where n(T) is the number of vertices of the input tree T and f = O(k2 · 2O(42
k
))

is a function that only depends on the size of a maximum clique ω.

Proof. By definition of the treewidth, for any bag X of T , |X | ≤ ω. The first
step of computation to get d≤2(Xi)∩T (Xi) and d≤2(Xi)∩(G\T (Xi)) takes time
O(n2). Then, the number of instances to compute for each vertex of T is bounded
by α(ω) and each instance I can be computed in time bounded O(ω2 · |I|) by
Lemma 38. ⊓⊔

We now have all the ingredients to prove Theorem 1:

Proof. For each vertex v of G, one can compute a nice clique tree of size at
most 7n according to Lemma 3. Given this clique tree, the IMD algorithm
outputs the size of a smallest resolving set containing v by Lemma 17 in time
O(n(T)2 + n(T) · f(ω)) for a computable function f according to Corollary 39.
Repeat this for all vertices of G permits to compute the metric dimension of G
by Lemma 37 in time O(n3 + n2 · f(ω)). ⊓⊔

References

BFGR16. Rémy Belmonte, Fedor V. Fomin, Petr A. Golovach, and M. S. Ramanujan.
Metric dimension of bounded tree-length graphs. CoRR, abs/1602.02610,
2016.

BP21. Édouard Bonnet and Nidhi Purohit. Metric dimension parameterized by
treewidth. Algorithmica, 83(8):2606–2633, 2021.

CLZ15. Gary Chartrand, Linda Lesniak, and Ping Zhang. Graphs and Digraphs.
Chapman and Hall/CRC, 6th edition, 2015.

Dir61. Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem

Mathematischen Seminar der Universität Hamburg, volume 25, pages 71–
76. Springer, 1961.

Metric dimension parameterized by treewidth in chordal graphs 21

DPSvL12. Josep Dı́az, Olli Pottonen, Maria Serna, and Erik Jan van Leeuwen. On
the complexity of metric dimension. In Leah Epstein and Paolo Ferragina,
editors, Algorithms – ESA 2012, 2012.

EFKY15. Linda Eroh, Paul Feit, Cong X Kang, and Eunjeong Yi. The effect of vertex
or edge deletion on the metric dimension of graphs. J. Comb, 6(4):433–444,
2015.

ELW15. Leah Epstein, Asaf Levin, and Gerhard J Woeginger. The (weighted) metric
dimension of graphs: hard and easy cases. Algorithmica, 72(4):1130–1171,
2015.

FMN+17. Florent Foucaud, George B Mertzios, Reza Naserasr, Aline Parreau, and
Petru Valicov. Identification, location-domination and metric dimension on
interval and permutation graphs. ii. algorithms and complexity. Algorith-

mica, 78(3):914–944, 2017.
GHK+22. Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and

Yota Otachi. Exploring the gap between treedepth and vertex cover through
vertex integrity. Theoretical Computer Science, 918:60–76, 2022.

GJ79. Garey and Johnson. A Guide to the Theory of NP-completeness. Journal
of algorithms, 1979.

HM75. Frank. Harary and Robert. A. Melter. On the metric dimension of a graph.
Ars Combinatoria, 2:191-195, 1975.

HN13. Sepp Hartung and André Nichterlein. On the parameterized and approxi-
mation hardness of metric dimension. In 2013 IEEE Conference on Com-

putational Complexity, pages 266–276. IEEE, 2013.
Klo94. Ton Kloks. Treewidth: computations and approximations. Springer, 1994.
LP22. Shaohua Li and Marcin Pilipczuk. Hardness of metric dimension in graphs

of constant treewidth. Algorithmica, 84(11):3110–3155, 2022.
Sla75. Peter J. Slater. Leaves of trees. Congressus Numerantium, 14, 1975.

	Metric dimension parameterized by treewidth in chordal graphs

