
ar
X

iv
:2

30
7.

09
38

9v
1

 [
m

at
h.

C
O

]
 1

8
Ju

l 2
02

3

Algorithms and hardness for Metric Dimension on digraphs∗

Antoine Dailly† Florent Foucaud† Anni Hakanen†‡§

July 19, 2023

Abstract

In the Metric Dimension problem, one asks for a minimum-size set R of vertices such that for
any pair of vertices of the graph, there is a vertex from R whose two distances to the vertices of the
pair are distinct. This problem has mainly been studied on undirected graphs and has gained a lot
of attention in the recent years. We focus on directed graphs, and show how to solve the problem
in linear-time on digraphs whose underlying undirected graph (ignoring multiple edges) is a tree.
This (nontrivially) extends a previous algorithm for oriented trees. We then extend the method to
unicyclic digraphs (understood as the digraphs whose underlying undirected multigraph has a unique
cycle). We also give a fixed-parameter-tractable algorithm for digraphs when parameterized by the
directed modular-width, extending a known result for undirected graphs. Finally, we show that
Metric Dimension is NP-hard even on planar triangle-free acyclic digraphs of maximum degree 6.

1 Introduction

The metric dimension of a (di)graph G is the smallest size of a set of vertices that distinguishes all
vertices of G by their vectors of distances from the vertices of the set. This concept was introduced
in the 1970s by Harary and Melter [13] and by Slater [29] independently. Due to its interesting nature
and numerous applications (such as robot navigation [17], detection in sensor networks [29] or image
processing [21], to name a few), it has enjoyed a lot of attention. It also has been studied in the more
general setting of metric spaces [3], and is generally part of the rich area of identification problems of
graphs and other discrete structures [19].

More formally, let us denote by dist(x, y) the distance from x to y in a digraph. Here, the distance
dist(x, y) is taken as the length of a shortest directed path from x to y; if no such path exists, dist(x, y)
is infinite, and we say that y is not reachable from x. We say that a set S is a resolving set of a digraph
G if for any pair of distinct vertices v, w from G, there is a vertex x in S with dist(x, v) 6= dist(x,w).
Furthermore, we require that every vertex of G is reachable from at least one vertex of S. The metric
dimension of G is the smallest size of a resolving set of G, and a minimum-size resolving set of G is
called a metric basis of G.1

We denote by Metric Dimension the computational version of the problem: given a (di)graph G,
determine its metric dimension.

For undirected graphs, Metric Dimension has been extensively studied, and its non-local nature
makes it highly nontrivial from an algorithmic point of view. On the hardness side, Metric Dimension

was shown to be NP-hard for planar graphs of bounded degree [6], split, bipartite and line graphs [8], unit
disk graphs [16], interval and permutation graphs of diameter 2 [10], and graphs of pathwidth 24 [18].
On the positive side, it can easily be solved in linear time on trees [4, 13, 17, 29]. More involved

∗Work financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and by the ANR project
GRALMECO (ANR-21-CE48-0004).

†Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Etienne, LIMOS, 63000 Clermont-
Ferrand, France.

‡Department of Mathematics and Statistics, University of Turku, FI-20014, Finland
§Research supported by the Jenny and Antti Wihuri Foundation and partially by Academy of Finland grant number

338797.
1The definition that we use has been called strong metric dimension in [1], as opposed to weak metric dimension, where

one single vertex may be unreachable from any resolving set vertex. The former definition seems more natural to us.
However, the term strong metric dimension is already used for a different concept, see [24]. Thus, to prevent confusion,
we avoid the prefix strong in this paper.

1

http://arxiv.org/abs/2307.09389v1

polynomial-time algorithms exist for unicyclic graphs [28] and, more generally, graphs of bounded cy-
clomatic number [8]; outerplanar graphs [6]; cographs [8]; chain graphs [9]; cactus-block graphs [15];
bipartite distance-hereditary graphs [23]. There are fixed parameter tractable (FPT) algorithms for the
undirected graph parameters max leaf number [7], tree-depth [12], modular-width [2] and distance to
cluster [11], but FPT algorithms are highly unlikely to exist for parameters solution size [14] and feedback
vertex set [11].

Due to the interest for Metric Dimension on undirected graphs, it is natural to ask what can
be said in the context of digraphs. The metric dimension of digraphs was first studied in [5] under a
somewhat restrictive definition; for our definitions, we follow the recent paper [1], in which the algorithmic
aspects of Metric Dimension on digraphs have been addressed. We call oriented graph a digraph
without directed 2-cycles. A directed acyclic digraph (DAG for short) has no directed cycles at all. The
underlying multigraph of a digraph is the one obtained by ignoring the arc orientations; its underlying
graph is obtained from it by ignoring multiple edges. In a digraph, a strongly connected component is a
subgraph where every vertex is reachable from all other vertices. Note that for the Metric Dimension

problem, undirected graphs can be seen as a special type of digraphs where each arc has a symmetric
arc (i.e., replace every edge of the undirected graph by a directed 2-cycle).

The NP-hardness of Metric Dimension was proven for oriented graphs in [26] and, more recently,
for bipartite DAGs of maximum degree 8 and maximum distance 4 [1] (the maximum distance being the
length of a longest directed path without shortcuts). A linear-time algorithm for Metric Dimension

on oriented trees was given in [1].

Our results. We generalize the linear-time algorithm for Metric Dimension on oriented trees from [1]
to all digraphs whose underlying graph is a tree. In other words, here we allow 2-cycles. This makes
a significant difference with oriented trees, and as a result our algorithm is nontrivial. We then extend
the used methods to solve Metric Dimension in linear time for unicyclic digraphs (digraphs with a
unique cycle). Then, we prove that Metric Dimension can be solved in time f(t)nO(1) for digraphs of
order n and modular-width t (a parameter recently introduced for digraphs in [30]). This extends the
same result for undirected graphs from [2], and is the first FPT algorithm for Metric Dimension on
digraphs. Finally, we complement the hardness result from [1] by showing that Metric Dimension is
NP-hard even for planar triangle-free DAGs of maximum degree 6 and maximum distance 4.

2 Digraphs whose underlying graph is a tree

For the sake of convenience, we call di-tree a digraph whose underlying graph is a tree. Trees are often
the first non-trivial class to study for a graph problem. Metric Dimension is no exception to this,
having been studied in the first papers for the undirected [4, 13, 17, 29] and the oriented [1] cases. In
the undirected case, a minimum-size resolving set can be found by taking, for each vertex of degree at
least 3 spanning k legs, the endpoint of k− 1 of its legs (a leg is an induced path spanning from a vertex
of degree at least 3, having its inner vertices of degree 2, and ending in a leaf). In the case of oriented
trees, taking all the sources (a source is a vertex with no in-neighbour) and k − 1 vertices in each set of
k in-twins yields a metric basis (two vertices are in-twins if they have the same in-neighbourhood). Our
algorithm, being on di-trees (which include both undirected trees and oriented trees), will reuse those
strategies, but we will need to refine them in order to obtain a metric basis. The first refinement is of
the notion of in-twins:

Definition 1. A strongly connected component E of a di-tree is an escalator if it satisfies the following
conditions:

1. its underlying graph is a path with vertices e1, . . . , ek (k ≥ 2);

2. there is a unique vertex y 6∈ E such that the arc −→ye1 (resp. −→yek) exists;

3. there can be any number (possibly, zero) of vertices z 6∈ E such that the arc −→ekz (resp. −→e1z) exists;
for every i ∈ {1, . . . , k − 1} (resp. i ∈ {2, . . . , k}), no arc −→eiz with z 6∈ E exists.

Definition 2. In a di-tree, a set of vertices A = {a1, . . . , ak} is a set of almost-in-twins if there is a
vertex x such that:

2

1. for every i ∈ {1, . . . , k}, the arc −→xai exists and the arc −→aix does not exist;

2. for every i ∈ {1, . . . , k}, either ai is a trivial strongly connected component and N−(ai) = {x}, or
ai is the endpoint of an escalator and N−(ai) = {x, y} where y is its neighbour in the escalator.

Note that regular in-twins are also almost-in-twins. The second refinement is the following (for a
given vertex x in a strongly connected component with C as an underlying graph, we call dC(x) the
degree of x in C):

Definition 3. Given the underlying graph C of a strongly connected component of a di-tree and a set D
of vertices, we call a set S of vertices inducing a path of order at least 2 in C a special leg if it verifies
the four following properties:

1. S has a unique vertex v such that v ∈ D or dC(v) ≥ 3;

2. S has a unique vertex w such that dC(w) = 1, furthermore w 6∈ D: w is called the endpoint of S;

3. all of the other vertices x of S verify dC(x) = 2 and x 6∈ D;

4. at least one of the vertices y ∈ S \ {w} has an out-arc −→yz with z /∈ C.

Note that several special legs can span from the same vertex, from which regular legs can also span.
Algorithm 1, illustrated in Figures 2 and 3, computes a metric basis of a di-tree.

. . .

. . .

(a) Two examples of a special leg in a strongly connected component.

(b) An escalator. (c) A set of almost-in-twins.

Figure 1: Illustrations of Definitions 1 to 3.

Explanation of Algorithm 1. The algorithm will compute a metric basis B of a di-tree T in linear-time.
The first thing we do is to add every source in T to B (line 1). Then, for every set of almost-in-twins,
we add all of them but one to B (lines 2-3). Those two first steps, depicted in Figure 2a, are the ones
used to compute the metric basis of an orientation of a tree [1], and as such they are still necessary for
managing the non-strongly connected components of the di-tree. Note that we are specifically managing
sets of almost-in-twins, which include sets of in-twins, since it is necessary to resolve the specific case of
escalators. The rest of the algorithm consists in managing the strongly connected components.

For each strongly connected component having C as an underlying graph, we first identify each vertex
x of C that has an in-arc coming from outside C. Indeed, since x is the "last" vertex of a path coming
from outside C, there are vertices of B "behind" this in-arc (or they can themselves be a vertex in B),
which we will call Bx. However, the vertices in Bx can be "projected" on x since, T being a di-tree, x
is on every shortest path from the vertices of B "behind" the in-arc to the vertices of C. Hence, we will
mark x as a dummy vertex (lines 5-7, depicted in Figure 2b): we will consider that it is in B for the
rest of this step, and acts as a representative of the set Bx with respect to C.

We then have to manage some specific cases whenever C is a path (lines 8-17). Indeed, the last
two steps of the algorithm do not always work under some conditions. Those specific conditions will be
highlighted in the proof, and are depicted on Figure 3.

3

Algorithm 1: An algorithm computing the metric basis of a di-tree.
Input : A di-tree T .
Output: A metric basis B of T .

1 B ← Every source of T
2 foreach set I of almost-in-twins do

3 Add |I| − 1 vertices of I to B

4 foreach strongly connected component with C as an underlying graph do

5 D ← ∅
6 foreach arc −→uv with v ∈ C and u 6∈ C do

7 Add v to D

8 if C is a path with endpoints x and y then

9 if there is no vertex in C ∩D then

10 if there is no out-arc from C to outside of C then

11 Add x to B

12 else if there is an out-arc from x (resp. y) to outside of C and no other out-arc from
C to outside of C then

13 Add y (resp. x) to B

14 else

15 Add x and y to B

16 else if there is exactly one vertex w in C ∩D, w is neither x nor y, and there is no
out-arc from w to outside of C then

17 Add x to B

18 foreach special leg L of C do

19 Add the endpoint of L to B

20 foreach vertex of degree ≥ 3 in C from which span k ≥ 2 legs of C that do not have a vertex
in B or in D do

21 Add the endpoint of k − 1 such legs to B

22 return B

The last two steps are then applied. First, we have to consider the special legs defined in Definition 3.
The idea behind those special legs is the following: for every out-arc −→yz with y in the special leg and z
outside of C, any vertex in the metric basis "before" the start of the special leg will not distinguish z
and the next neighbour of y in the special leg. Hence, we have to add at least one vertex to B for each
special leg, and we choose the endpoint of the special leg (lines 18-19, depicted in Figure 2c). Finally,
we apply the well-known algorithm for computing the metric basis of a tree to the remaining parts of C
(lines 20-21, depicted in Figure 2d). The special legs and the legs containing a dummy vertex, being
already resolved, are not considered in this part.

Theorem 4. Algorithm 1 computes a metric basis of a di-tree in linear time.

Proof. Let T be a di-tree, and B be the set of vertices returned by Algorithm 1. We need to prove that
B resolves every pair of vertices of T , that B is of minimum size, and that Algorithm 1 runs in linear
time.

First, note that, if T is either an orientation of a tree or a strongly connected graph (and thus
seen as an undirected graph), then, Algorithm 1 does compute a metric basis. In the first case, B will
contain only the vertices added in lines 1-3 (which correspond to a so-called adequate set of vertices
in [1], see Lemma 2.10 and Theorem 2.11); and in the second case, B will contain only the vertices added
in lines 20-21 (which correspond to the well-known resolving set of trees, see for example Theorem 2.4
in [17]); those two cases do form a metric basis of T .

Hence, we will consider that T contains at least one strongly connected component and at least one
non-strongly connected component. We will first show that the vertices we select in B are necessary to

4

source
source

almost-
in-twins

(a) The first step (lines 1-3) is to add every source and
manage sets of almost-in-twins.

dummy dummy

(b) The second step (lines 5-7) is to mark the dummy
vertices of the strongly connected component.

special leg

special leg

(c) The third step (lines 18-19) is to manage all the
special legs.

(d) The fourth and final step (lines 20-21) is to manage
the remaining legs with a common ancestor.

Figure 2: Illustration of Algorithm 1. For the sake of simplicity, there are only two strongly connected
components, for which we only represent the underlying graph with bolded edges, so every bolded edge
is a 2-cycle. One of the two strongly connected components is a simple path that does not require any
action. Vertices in the metric basis are colored in red.

(a) Neither in-arc nor out-arc. (b) No in-arc, out-arc at an endpoint.

(c) No in-arc, other cases. (d) One in-arc, in the middle.this is useless text

Figure 3: The cases of Algorithm 1 where a strongly connected component is a path and we have to add
specific vertices (colored in red) to the metric basis. The path is depicted as wavy bolded edges.

resolve at least one pair of vertices, and then that they do indeed form a strong resolving set, and thus
that B is a metric basis.

First, let us consider the sources. It is easy to see that each source has to be in B, since otherwise
they would not be reachable from any other vertex in B. Now, let us consider the in-twins. Again, it is
easy to see that the only way to resolve two in-twins will be to have at least one of them in B. However,

5

Algorithm 1 considers almost-in-twins, which are more general than regular in-twins. This is because of
the escalators : let u be the endpoint of an escalator having an in-arc coming from outside of it. If u
has an almost-in-twin v, then, by definition, u and v cannot be resolved without taking in B either at
least one of these or another vertex from the escalator. Thus, we choose to take either u or v, which will
resolve vertices in the escalator as well as the almost-in-twins.

Note that sources and in-twins can only exist in a non-strongly connected component. Hence, in the
rest of this part of the proof, we will consider a strongly connected component with C as an underlying
graph. Note that, by our construction, if a vertex x ∈ C is a dummy vertex, then, there will be a vertex
b ∈ B such that there is a path from b to x (even if it is is not necessarily the case yet).

We first consider the case of the special legs of C. Let L be a special leg with vertices x1, . . . , xℓ,
starting from a vertex x1 such that dC(x1) ≥ 3 or x1 is a dummy vertex, and ending at a vertex xℓ

verifying dC(xℓ) = 1. Let xi (i ∈ {1, . . . , ℓ})) be a vertex such that dC(xi) ≥ 2 and there is an arc −→xiy
with y 6∈ C. Note that, at this point, no vertex in the special leg can be in B, and there is no arc from
outside of C to a vertex of L apart from x1. This means that, for vertices of L, x1 can be seen as a
representative from the set B: every path from a vertex in B to a vertex in L has to go through x1. In
practice, this means that xi+1 and y are not resolved: since they are at the same distance from x1, they
are at the same distance from any vertex in B. Hence, it is necessary to add either a vertex from the set
{xi+1, . . . , xℓ} or y to B in order to resolve this pair. Since other such situations might occur in L, the
easiest solution to resolve this pair is to add xℓ to B, since doing so will resolve all such pairs.

We then consider the rest of C. Since T is a di-tree, C is a tree. Let L1 and L2 be two (non-special)
legs spanning from a vertex x, and assume that neither of those legs have an in-arc coming from outside
of C. If no vertex from either L1 or L2 is in B, then, the vertices from L1 and L2 cannot be resolved.
Here, we add the endpoint of either L1 or L2 to B. Note that, since C is not a path (which either is
a special case that we will consider below, or has been considered in the special leg case), if one of L1

or L2 has a dummy vertex or a vertex in B, then, the vertices from L1 and L2 will be resolved without
having to add another vertex in B.

However, note that there are cases where the above method does not create a strong resolving set.
Indeed, when C is a path with vertices x1, . . . , xk, it is possible to fall into some patterns where we need
to add specific vertices to B. The patterns are the following:

1. There is no arc −→yxi with y 6∈ C, in which case we have the following subpatterns:

(a) there is no arc −→xiy with y 6∈ C, in which case we have to add either x1 or xk to B (this is the
case where T is a path, and one endpoint forms a metric basis);

(b) there is an arc −→x1y (resp. −−→xky) with y 6∈ C and no other arc −→xiy with y 6∈ C for i 6= 1 (resp.
i 6= k), in which case we have to add xk (resp. x1) to B (since, otherwise, y and x2 (resp.
xk−1) are not resolved);

(c) in every other case, we have to add both x1 and xk to B (since, otherwise, one vertex from C
and one vertex reached by an out-arc from C will not be resolved).

2. There is exactly one arc −→yxi with y 6∈ C, i 6∈ {1, k} and there is no arc −→xiz with z 6∈ C, in which
case we have to add either endpoint to B (since, otherwise, xi−1 and xi+1 will not be resolved).

In every other case where C is a path, the cases considered above (in particular, the special leg and the
sources and almost-in-twins) will have us add to B the vertices necessary to resolve the vertices of C and
its direct out-neighbourhood.

At this point, every vertex that we added to B was necessary to resolve at least one pair of vertices
which could not be resolved any other way. At each step, when we had the choice between several
vertices, we chose as few as possible to resolve everything. Hence, we only need to check that every pair
of vertices is resolved by B, which will prove that B is a metric basis.

Assume by contradiction that two vertices u and v are not resolved by B. This means that, for every
vertex b ∈ B, either both u and v are not reachable for b, or there are two unique shortest path P b

u

between b and u and P b
v between b and v such that |P b

u| = |P
b
v |. Note that P b

u and P b
v are unique because

the underlying graph of T is a tree. Given a vertex b ∈ B, let x be the last common vertex of P b
u and P b

v

(note that we may have x = b). Note that we can consider u and v to be the out-neighbours of x on P b
u

6

and P b
v , since if those out-neighbours were resolved by any vertex b′ ∈ B then u and v would be resolved

by b′ too, a contradiction. Now, u and v cannot be in-twins, since, otherwise, one of them would be in
B, a contradiction. Thus, one vertex, say wlog u, has an in-neighbour w that is not an in-neighbour of
v. There are now several cases to consider.

If there is no arc −→uw, then, w has to be reachable from a vertex b′ ∈ B. However, since the underlying
graph of T is a tree, the only path from b′ to v (which necessarily exists, since otherwise b′ resolves u
and v since u is reachable from b′, a contradiction) goes through u, and thus dist(b′, v) = dist(b′, u) + 2,
and thus b′ resolves u and v, a contradiction.

Hence, w and u are in a common strongly connected component C. First, assume that the arc −→ux
does not exist, that is, v is not reachable from u. Note that if any vertex from C is in B, then, u and v
will be resolved, a contradiction. Now, there are only a limited number of cases where no vertex from
C has been added to B. In all those cases, the underlying graph of C is a path, and they are the cases
that were considered neither in lines 8-17 of Algorithm 1 nor in the special legs case. The first case is if
C is an escalator. The only possibility for this, by definition, is that u and v are almost-in-twins (since,
otherwise, there would be another in-arc than the one at one endpoint), in which case, either u or v are
added in B, and thus they are resolved, a contradiction. The other case is if either both endpoints of
C have in-arcs coming from outside of C, or if the in-arcs coming from outside of C the closest to the
endpoints are not followed by any out-arc from the same vertex. However, note that, in this case, there
is at least one vertex b′ ∈ B such that u is reachable from b′ but v is not (there is necessarily at least one
vertex in B "behind" every in-arc of a strongly connected component), a contradiction.

This implies that the arc −→ux exists, and thus x also belongs to C. First, if any vertex y ∈ C such
that dist(y, u) 6= dist(y, v) is in B, then, u and v are resolved, a contradiction. Hence, there are only
two possibilities: either no vertex from C is in B, or vertices in C ∩ B are either x or in a part of C
that can only reach u and v through x. As in the previous case, if no vertex from C is in B, then, we
reach a contradiction. Indeed, C cannot be an escalator: either x is an endpoint of C and then −→xv is an
out-arc that prevents C from being an escalator, or it is not an endpoint and then the in-arc arriving
at x from P b

u (x 6= b since no vertex from C is in B) prevents C from being an escalator. In the other
cases, the underlying graph of C is a path with specific properties (either both endpoints have an in-arc
coming from outside, or the two in-arcs coming from the outside the closest to the endpoints do not have
out-arcs leaving C from the same vertex), and the in-arcs coming from outside of C will allow u and v
to be resolved, a contradiction.

Thus, there is at least one vertex b′ ∈ C ∩ B, and it can only reach u and v through x. This implies
that u and w are in a leg of C with no in-arc from outside of C (since, otherwise, we would have added
a vertex in B on this side of C, which would resolve u and v, a contradiction). There are three cases.
First, if there is an in-arc from outside of C to x and v 6∈ C, then u and w are in a special leg, and thus
its endpoint would be in B and would resolve u and v, a contradiction. Now, if there is no in-arc from
outside of C to x and v 6∈ C, then either u and w are in a special leg (a contradiction, like before), or the
underlying graph of C is a path, and our construction would have added the endpoint of C on the side
of u to B, which would resolve u and v, a contradiction. Finally, if v ∈ C, then, v has to be in a regular
leg (since, otherwise, we would have added a vertex in B on this side of C, which would resolve u and v,
a contradiction), but now either the underlying graph of C is a path and it would have an in-arc or we
would have added one of its endpoints to B, resolving u and v, a contradiction; or u and v are the first
vertices in two regular legs of C spanning from the same vertex x and we would have added one of the
endpoints of the legs to B, resolving u and v, a contradiction.

Thus, by our construction, every pair of vertices is resolved, and thus B is a strong resolving set.
This proves that B is a metric basis, and thus that Algorithm 1 is correct.

Finally, it is easy to see that Algorithm 1 computes B in linear-time, which proves the statement of
Theorem 4.

In [1], the authors used the notion of removable source to characterize orientations of trees with a
weak metric dimension2 lower than the metric dimension. In the case of di-trees, however, the definition
of removable source is not so clear-cut. Indeed, there are several cases where a source meets (resp. does

2In which one vertex may be unreachable from any resolving set vertex.

7

not meet) the conditions of the removable source as defined in [1] and yet cannot (resp. can) be removed
from a metric basis in order to obtain a weak metric basis. While we do not have a proper definition of
a removable source in the context of di-trees, we get the following result:

Proposition 5. There is a polynomial-time algorithm computing a weak metric basis of a di-tree.

Proof. The result comes from two facts. The first is that every vertex we added to the metric basis
in Algorithm 1 was necessary to either guarantee that every vertex is reached from the basis (sources) or
"locally" resolve some pairs of vertices (almost-in-twins, special legs...), which still need to be resolved,
and thus we cannot avoid adding those second ones to the weak metric basis either. The second is that
the only possible infinite-vertex (that is, a vertex that is not reachable from any vertex in the basis) in
a directed graph is a source (Proposition 2.2 in [1]). Indeed, if the infinite-vertex s is not a source,
then, any vertex u such that there is a path from u to s cannot be reached from any vertex in the basis,
and thus we would have several infinite-vertices, a contradiction.

Hence, in a di-tree, the only possible way to have a weak metric basis is to remove a source from a
metric basis without creating a pair of non-resolved vertices. This is possible in polynomial-time, since
the actualization of distance vectors in a di-tree will take linear-time.

3 Orientations of unicyclic graphs

A unicyclic graph U is constituted of a cycle C with vertices c1, . . . , cn, and each vertex ci is the root
of a tree Ti (we can have Ti be simply the isolated ci itself). The metric dimension of an undirected
unicyclic graph has been studied in [25, 27, 28]. In [25], Poisson and Zhang proved bounds for the metric
dimension of a unicyclic graph in terms of the metric dimension of a tree we obtain by removing one edge
from the cycle. Sedlar and Škrekovski showed more recently that the metric dimension of a unicyclic
graph is one of two values in [27], and then the exact value of the metric dimension based on the structure
of the graph in [28]. In this section, we will show that one can compute a metric basis of an orientation
of a unicyclic graph in linear time. The algorithm mostly consists in using sources and in-twins, with a
few specific edge cases to consider.

In this section, an induced directed path
−→
P is the orientation of an induced path with only one source

and one sink which are its two endpoints. It is said to be spanning from u if u is its source endpoint,
and its length is its number of edges. We also need the following definition:

Definition 6. Let
−→
U be the orientation of a unicyclic graph. Given an orientation of a cycle

−→
C of even

length n = 2k with two sources, if its sources are ci and ci+2, its sinks are ci+1 and ci+1+k, and there

are, in
−→
C \ {ci, ci+2}, neither in-twins nor in-arcs coming from outside of

−→
C , we call an induced directed

path
−→
P an concerning path if it verifies the three following properties:

1.
−→
P spans from ci+1;

2.
−→
P has length k − 2;

3.
−→
P has no in-arc coming from outside of

−→
P ∪
−→
C ;

Furthermore, if, for every vertex in
−→
P belonging to a nonempty set I of in-twins, every vertex in I

belongs to a concerning path, then, we call
−→
P an unfixable path.

A path that is a concerning path, but not an unfixable path, will be called a fixable path.
Finally, a vertex might belong both to an unfixable path and to a fixable path; in this case, the fixable

path takes precedence (i.e., we will consider that the vertex belongs to the fixable path).

Explanation of Algorithm 2. The algorithm will compute a metric basis B of an orientation
−→
U of a

unicyclic graph U in linear-time. The result on several cases is depicted on Figures 4 and 5. The first
thing we do is to add every source in

−→
U to B (line 1). We will also manage the sets of in-twins in

−→
U

(lines 3-7), which we need to do after taking care of some special cases that might influence the choice
of in-twins. When we have the choice, we prioritize taking in-twins that are in the cycle to guarantee

8

Algorithm 2: An algorithm computing the metric basis of an orientation of a unicyclic graph.

Input : An orientation
−→
U of a unicyclic graph U .

Output: A metric basis B of
−→
U .

1 Add to B every source of
−→
U

2 Apply the special cases in Algorithm 3

3 foreach set I of in-twins in
−→
U that are not already in B do

4 if all the vertices of I are in concerning paths then

5 Add |I| − 1 vertices of I to B, prioritizing vertices in unfixable paths
6 else

7 Add |I| − 1 vertices of I to B, prioritizing vertices in the cycle
−→
C or in concerning paths,

if there are any

8 return B

Algorithm 3: Special cases of Algorithm 2.

1 if the cycle
−→
C has no sink, there is no in-arc coming from outside of C, and no vertex of C is in

a set of in-twin then

2 Add c1 to B

3 if the cycle
−→
C has no sink, there is exactly one in-arc −→uci with u 6∈

−→
C , no vertex cj with j 6= i is

an in-twin or has in-arc coming from outside of
−→
C , and u has an out-neighbour v with

N−(v) = {u} then

4 Add ci to B

5 if the cycle
−→
C has exactly one source ci then

6 if the one sink is either ci−1 or ci+1, and no vertex cj with j 6= i is an in-twin or has an

in-arc coming from outside of
−→
C then

7 Add ci−1 to B

8 else if the one sink is ci+k with k > 1, |
−→
C | ≥ 2k, ci+k−1 (resp. ci+k+1) has an out-neighbour

v such that N−(v) = {ci+k−1} (resp. N−(v) = {ci+k+1}), no vertex in {ci−1, ci−2, . . . , ci+k}
(resp. {ci+1, ci+2, . . . , ci+k}) has an in-arc, and no vertex in {ci−2, ci−3, . . . , ci+k+1} (resp.
{ci+2, ci+3, . . . , ci+k−1}) is an in-twin then

9 Add ci−1 (resp. ci+1) to B

10 else if the one sink is ci+k with k > 1, |
−→
C | = 2k, ci+k−1 has an out-neighbour v− such that

N−(v−) = {ci+k−1}, ci+k+1 has an out-neighbour v+ such that N−(v+) = {ci+k+1}, no

vertex in
−→
C except ci has an in-arc, no vertex in

−→
C \ {ci, ci−1, ci+1} is an in-twin, and ci−1

and ci+1 are not in a set I of in-twins verifying |I| ≥ 3 then

11 Add ci+k to B

12 if the cycle
−→
C has exactly two sources ci and ci+2, |

−→
C | = 2k with k > 2, the two sinks are ci+1

and ci+1+k, no vertex from
−→
C except ci and ci+2 is an in-twin or has an in-arc coming from

outside of
−→
C , there is at least one unfixable path, and there is no fixable path then

13 Add ci+1 to B

reachability of vertices in the cycle. Note that those two sets (along with the right priority) are enough
in most cases, as depicted on Figure 5.

We then have to manage six specific cases (line 2). Those special cases are handled in Algo-

rithm 3, to which the line numbers in the next five paragraphs will refer. The first two special
cases occur when the cycle has no sink. First, if the cycle has no sink, no in-twin, and no arc coming
from outside, then, we have to add one vertex of the cycle to B in order to maintain reachability (lines
1-2, depicted on Figure 4a). Then, if the cycle has no sink, only one in-arc −→uci is coming from outside of

9

it, and there is a vertex v with N−(v) = {u}, then, we have to add either ci or v to B in order to resolve
them (lines 3-4, depicted on Figure 4b).

The next three special cases occur when the cycle has one sink. First, if there is only one sink in
the cycle, it is an out-neighbour of the source, and no vertex from the cycle apart from the source is an
in-twin or has an in-arc coming from outside of the cycle, then we need to add one of the out-neighbours
of the source in the cycle to B in order to resolve them (lines 6-7), depicted on Figure 4c).

Then, there are two specific cases when the cycle has one sink, both based on the same principle.
Both happen when the source is ci, the sink is ci+k, it has no in-arc, and the cycle contains at least
2k vertices. In the fourth special case (lines 8-9), depicted on Figure 4d), the vertex ci+k−1 has an
out-neighbour v verifying N−(v) = {ci+k−1}. We can see that, if no vertex in the other path from ci
to ci+k (the path going through ci−1, ci−2, . . . , ci+k+1) is in B, then, v and ci+k will not be resolved.
Those vertices can be added to B if they have an in-arc or if they are an in-twin (they will have priority).
However, note that ci−1 might be an in-twin of ci+1, in which case it should be added to B, resolving
the conflict. Hence, if none of ci−1, ci−2, . . . , ci+k+1 has an in-arc or is an in-twin, then, we can add ci−1

to B in order to resolve v and ci+k. Note that, in this case, in comparison to just the sources and the
reoslution of sets of in-twins, we add one more vertex to B if ci−1 is the only in-twin of ci+1. The same
reasoning can be made with the symmetric case.

The fifth special case (lines 10-11), depicted on Figure 4e), occurs when the cycle contains exactly 2k
vertices and both ci+k−1 and ci+k+1 have an out-neighbour (respectively v− and v+) with in-degree 1:
the pairs of vertices (v−, ci+k) and (v+, ci+k) might not be resolved. We can see that any in-arc or in-twin
along a path from ci to ci+k will resolve ci+k and the v pendant on the other path (thus either fully
resolving those two pairs, or bringing us back to the previous special case), except if ci−1 and ci+1 are
the only in-twins in the cycle and if they do not have another in-twin. Hence, if no vertex from the cycle
except ci has an in-arc, no vertex from the cycle except ci, ci−1 and ci+1 is an in-twin, and ci−1 and ci+1

do not have another in-twin, then, we need to add at least one more vertex to B in order to resolve the
two pairs of vertices, and adding ci+k does exactly that.

Finally, the sixth special case is more complex (lines 12-13, depicted on Figure 4f, and consideration
in the choice of in-twins, depicted on Figure 5g). Assume that the cycle

−→
C is of even length n, has

neither in-twin nor in-arc coming from outside (except the sources), and that there are two sinks in the
−→
C : one at distance 1 from the sources, and the other at the opposite end of

−→
C . Now, if the first sink has

spanning concerning paths, then, the second cycle and the endpoints of those concerning paths might
not be resolved, since they are at the same distance (n2 − 1) of both sources of

−→
C . Thus, we need to

apply a strategy in order to resolve those vertices while trying to not add a supplementary vertex to B.
This is done by considering the two kinds of concerning paths, and having a priority in the selection of
in-twins. The details will be in the proof.

All the other cases of the cycle are already resolved through the sources and in-twins steps.

Theorem 7. Algorithm 2 computes a metric basis of an orientation of a unicyclic graph in linear time.

Proof. Let
−→
U be an orientation of a unicyclic graph with cycle

−→
C . First, note that sources and |I| − 1|

of each set I of in-twins must be in the metric basis B. Furthermore, when a vertex of a set I of in-
twins is in

−→
C , then, it should be prioritirized for reachability reasons. However, this is not sufficient to

obtain a metric basis, since either some vertices may be unreachable or some pairs of vertices may be
non-resolved, which is why we will need the six special cases. In those cases, we will either have to give
stronger priority to some in-twins, or have to add one more vertex to B.

The first case is if vertices in
−→
C are not reachable from any source or in-twin. This is only possible

if
−→
C contains no sink, no in-arc is coming from outside of

−→
C , and no vertex of

−→
C is an in-twin. In this

case, we need to add any vertex from
−→
C to B.

The second case is if there is exactly one in-arc −→uci with u 6∈
−→
C , the cycle has no sink, no cj with j 6= i

is an in-twin or has an in-arc coming from outside of
−→
C , and if there is a vertex v verifying N−(v) = {u}.

In this case, v and ci are not resolved, and thus we need to add at least one of them to B.
The third case is if there is only one source ci in

−→
C , the sink is either ci−1 or ci+1, and no vertex cj

with j 6= i is an in-twin or has any in-arc coming from outside of
−→
C . In this case, the out-neighbours of

ci are not in-twins but cannot be resolved without taking at least one of them into B.

10

The fourth and fifth case are linked. In both cases, the cycle
−→
C contains at least 2k vertices, one

source ci, and one sink ci+k with no in-arc. The problem will be when an in-neighbour of the sink has an
out-neighbour v with in-degree 1: v and ci+k might not be resolved. Let us see when this can happen.

In the fourth case, either ci+k−1 or ci+k+1 has one out-neighbour v with in-degree 1. Without loss of
generality, we will consider that it is ci+k−1. Assume furthermore that no vertex from {ci−1, ci−2, . . . , ci+k+1}
has an in-arc, and no vertex from {ci−2, ci−3, . . . , ci+k+1} is an in-twin (since, otherwise, v and ci+k would
be resolved). Now, whether ci−1 is an in-twin of ci+1 or not, we add ci−1 to B, resolving v and ci+k.
Note that ci−1 could have been added to B at the in-twin step, but we ensure that it is added in order
to resolve the two conflicting vertices.

In the fifth case,
−→
C contains exactly 2k vertices, and both ci+k−1 and ci+k+1 have out-neighbours

v− and v+, respectively, with in-degree 1. Assume furthermore that no vertex in
−→
C \ {ci} has an in-arc,

and that no vertex in
−→
C \ {ci, ci−1, ci+1} is an in-twin. Now, if ci−1 and ci+1 are in-twins and have

another in-twin, then, they will both be added to B, and the pairs (v−, ci+k) and (v+, ci+k) are resolved.
Otherwise, at least one of v− and v+ will remain non-resolved with ci+k, and thus we add ci+k to B in
order to resolve the two pairs with the addition of just one vertex.

Finally, for the sixth case, assume that
−→
C is of even length and contains two sources ci and ci+2,

that the two sinks are at equal distance of the sources (so they are ci+1 and ci+1+n

2
), and that there is

neither in-twin nor in-arc coming from outside of
−→
C (except the sources themselves). Now, if there are

concerning paths, then, their endpoints and ci+1+n

2
might not be resolved, since they are all at distance

n
2 −1 from the sources. Hence, we have to pick carefully among the potential sets of in-twins, and we may
need to add another vertex to B. There are three cases to cover. First, if all the concerning paths are
fixable paths, then, by prioritizing the in-twins that are in the fixable paths, the endpoints and ci+1+n

2

will be resolved without having to add another vertex in B. Now, if all the concerning paths are unfixable
paths, then, every in-twin along the concerning paths belongs to an concerning path, and thus we will
need to add a supplementary vertex to B in order to resolve the endpoints and the sink ci+1+ n

2
; here, we

choose the sink ci+1. Finally, if there are both unfixable paths and fixable paths, then, we can resolve
the endpoints and the second sink by having the following priority on in-twins: those on unfixable paths
followed by those on fixable paths followed by those on non-concerning paths. Doing this will guarantee
that the endpoints and ci+1+n

2
are resolved. This settles the sixth and last special case.

We will now prove that the vertices we added to B (sources, in-twins, and the four special cases) do
form a strong resolving set. Since they were necessary to add, this will prove that B is indeed a metric
basis.

First, note that every vertex in
−→
U is reached from some vertex in B. Furthermore, recall that

Algorithm 2 gives priority to vertices in the cycle when resolving a set of in-twins, which will be important
in some parts of the proof: if we know that the cycle contains a in-twin, we know that it will be in B.

Now, assume by contradiction that two vertices u and v are not resolved by B. Since they are
reachable, there is a vertex b ∈ B such that there are paths P b

u and P b
v from b to u and v, respectively.

Let x be the last common vertex of P b
u and P b

v (we can have x = b), and we can assume that every
pair of predecessors of u and v is resolved (since, otherwise, we can just take the first unresolved pair of
vertices on both paths). There are two cases to consider:

1. u, v ∈ N+(x). Since u and v are not resolved, they cannot be in-twins (since, otherwise, one of
them would be in B, a contradiction), and hence there is a vertex w such that, wlog, the arc −→wu
exists and the arc −→wv does not exist. Now, w has to be reachable from a vertex in B, so there are
two more possibilities.
First, assume that there is a path from x to w. There are two subcases here. In the first subcase, u,
w and x are in the cycle

−→
C (of which x is the only source and u is the only sink). Then, whether v

is also in the cycle or not, either there is an in-twin or an in-arc coming from outside of
−→
C along the

cycle, which would resolve u and v, a contradiction; or we are in the third special case considered
in Algorithm 2, and thus u and v are resolved, a contradiction. In the second subcase, the path
from x to w goes through u, and thus u and w are both in the cycle

−→
C (which has no sink). Then,

either there is an in-arc reaching v or a vertex in
−→
C , or there is an in-twin in

−→
C , or we are in the

second special case considered in Algorithm 2, and thus u and v are resolved, a contradiction.
Now, assume that there is no such path, and thus there exists a vertex b′ ∈ B such that there is a
path of length k from b′ to w. Since u is an out-neighbour of w, this implies that there is a path of

11

source

c1

(a) First special case: there is neither
source, nor in-twin or in-arc coming

from outside in
−→
C .

source
ci

(b) Second special case: there is no
source or in-twin in the cycle, and
there is a unique in-arc −→uci and a ver-
tex v with N−(v) = {u}.

source

ci−1

(c) Third special case: there is one

source ci in
−→
C , the sink is either ci−1

or ci+1, and there is neither in-twin

nor in-arc in
−→
C \ {ci}.

sourcesource

ci+k v

(d) Fourth special case: |
−→
C | ≥ 2k,

there is one source ci in
−→
C , the

sink is ci+k, ci+k−1 (wlog) has an
out-neighbour v with in-degree 1,
no vertex in {ci−1, ci−2, . . . , ci+k}
has an in-arc, and no vertex in
{ci−2, ci−3, . . . , ci+k+1} is an in-twin.

source

in-twins

ci+k

v−

v+

(e) Fifth special case: |
−→
C | = 2k,

there is one source ci in
−→
C , the

sink is ci+k, ci+k−1 and ci+k+1 both
have out-neighbours v

−
and v+ with

in-degree 1, no vertex in
−→
C \ {ci}

has an in-arc, no vertex in
−→
C \

{ci, ci−1, ci+1} is an in-twin, and ci−1

and ci+1 are not in a set of in-twins
of size at least 3.

source

source

in-twins

ci+1

(f) Sixth special case: there are two

sources ci and ci+2 in
−→
C , the sinks

are ci+1 and ci+1+n

2
, there is neither

in-twin nor in-arc in
−→
C \ {ci, ci+2},

and there is at least one unfixable
path (in bolded arcs) and no fixable
path.

Figure 4: The special cases of Algorithm 2, managed in Algorithm 3, where we have to add to B one
more vertex other than the sources and the resolution of sets of in-twins. Vertices in B are in red, and
the supplementary vertex added to B is identified by a square around it.

length k + 1 from w to v. There are two subcases here. First, x and b′ (or a representative along
the path from b′ to w) are the two sources of the cycle

−→
C , u and v are its two sinks, and

−→
C contains

at least 6 vertices. In this subcase, it is necessary that, in
−→
C , a vertex outside of the two sources is

an in-twin or has an in-arc coming from outside of
−→
C , which resolves u and v, a contradiction. The

second subcase is if the path from b′ to v goes through x (whether b = b′ or not). But then, either
there is an in-twin or an in-arc which resolves u and v, a contradiction, or we are in the fourth or
fifth special case considered in Algorithm 2, and thus u and v are resolved, a contradiction.

2. u, v 6∈ N+(x), hence, u and v each have a predecessor (respectively, u′ and v′) on P b
u and P b

v . By
hypothesis, there exists a vertex b′ ∈ B that resolves u′ and v′ but not u and v, so there is a path
of length k from b′ to u′ and a path of length k + 1 from b′ to v that does not go through v′.
Note that b′ cannot be behind x in P b

u or P b
v since otherwise it would not resolve u′ and v′, and

it cannot be after in P b
u or P b

v since otherwise it would resolve u and v, a contradiction. Hence, b′

(or a representative along the path from b′ to v) and x are the two sources of the cycle
−→
C , u′ and

v are its two sinks, and
−→
C contains at least six vertices. Like in the previous case, it is necessary

that, either we are in the sixth special case considered in Algorithm 2, or, in
−→
C , a vertex outside

of the two sources is an in-twin or has an in-arc coming from outside of
−→
C , which resolves u and

v, a contradiction.

Hence, Algorithm 2 resolves every pair of vertices in
−→
U , and thus it returns a metric basis of a

unicyclic graph. Finally, it is easy to see that it computes B in linear-time; for the concerning paths in
the sixth special case, we can do a breadth-first search of the graph starting from the sink ci+1 to identify
them, then go through the search tree again to compute, for each set of in-twins, which are all comprised
of vertices in concerning paths (giving us unfixable paths) and which are not (giving us fixable paths),
and a third loop to relabel correctly the concerning paths.

12

source

(a) No source in the cycle, but there
is an in-arc and we are not in the
second special case.

in-twins

(b) No source in the cycle, but there
is an in-twin, which has priority.

source

source

(c) A source ci, a sink either ci−1 or
ci+1, but an in-arc coming from out-
side.

source

in-twins

(d) A source ci, and a sink that is
neither ci−1 nor ci+1.

source

in-twins

ci+k

v−

v+

(e) |
−→
C | = 2k, there is one source ci

in
−→
C , the sink is ci+k, ci+k−1 and

ci+k+1 both have out-neighbours v
−

and v+ with in-degree 1, no vertex in
−→
C \ {ci} has an in-arc, no vertex in
−→
C \ {ci, ci−1, ci+1} is an in-twin, but
ci−1 and ci+1 are in a set of in-twins
of size at least 3.

source

source

source
in-twins

(f) There are two sources ci and ci+2

in
−→
C , the sinks are ci+1 and ci+1+n

2
,

and there is at least one unfixable
path (in bolded arcs) and no fixable
path, but there is an in-arc coming

from outside of
−→
C .

source
source

in-twins

in-twins

(g) There are two sources ci and ci+2

in
−→
C , the sinks are ci+1 and ci+1+n

2
,

there is neither in-twin nor in-arc in
−→
C \ {ci, ci+2}, and there is at least
one unfixable path (in bolded arcs),
but there is at least one fixable path
(in bolded and dashed arcs).

source

source

(h) Two sources, not in the special
case configuration.

source

source source

(i) More than two sources.

Figure 5: The standard cases of Algorithm 2, when a metric basis B of an orientation of a unicyclic graph
contains every source and resolves every set of in-twins (with some priority, identified with a diamond).
Vertices in B are in red.

13

4 Modular width

In a digraph G, a set X ⊆ V (G) is a module if every vertex not in X ’sees’ all vertices of X in the same
way. More precisely, for each v ∈ V (G) \X one of the following holds: (i) (v, x), (x, v) ∈ E(G) for all
x ∈ X , (ii) (v, x), (x, v) /∈ E(G) for all x ∈ X , (iii) (v, x) ∈ E(G) and (x, v) /∈ E(G) for all x ∈ X , (iv)
(v, x) /∈ E(G) and (x, v) ∈ E(G) for all x ∈ X . The singleton sets, ∅, and V (G) are trivially modules of
G. We call the singleton sets the trivial modules of G.

Figure 6: An example on how to decompose and draw a digraph using modules.

The graph G[X] where X is a module of G is called a factor of G. A family X = {X1, . . . , Xs} is
a factorization of G if X is a partition of V (G), and each Xi is a module of G. If X and Y are two
non-intersecting modules, then the relationship between x ∈ X and y ∈ Y is one of (i)-(iv) and always
the same no matter which vertices x and y are exactly. Thus, given a factorization X , we can identify
each module with a vertex, and connect them to each other according to the arcs between the modules.
More formally, we define the quotient G/X with respect to the factorization X as the graph with the
vertex set X = {X1, . . . , Xs} and (Xi, Xj) ∈ E(G/X) if and only if (xi, xj) ∈ E(G) where xi ∈ Xi and
xj ∈ Xj . A quotient depicts the connections of the different modules of a factorization to each other
while omitting the internal structure of the factors. Each factor itself can be factorized further (as long
as it is nontrivial, i.e. not a single vertex). By factorizing the graph G and its factors until no further
factorization can be done, we obtain a modular decomposition of G. The width of a decomposition is
the maximum number of sets in a factorization (or equivalently, the maximum number of vertices in
a quotient) in the decomposition. The modular width of G is defined as the minimum width over all
possible modular decompositions of G, and we denote it by mw(G). An optimal modular decomposition
of a digraph can be computed in linear time [20]. Metric Dimension for undirected graphs was shown
to be fixed parameter tractable when parameterized by modular width by Belmonte et al. [2]. We will
generalize their algorithm to directed graphs and strong and weak metric dimensions.

The following result lists several useful observations.

Proposition 8. Let X = {X1, . . . , Xs} be a factorization of G, and let W ⊆ V (G) be a resolving set of
G.

(i) For all x, y ∈ Xi and z ∈ Xj, i 6= j, we have distG(x, z) = distG(y, z) and distG(z, x) = distG(z, y).

(ii) For all x ∈ Xi and y ∈ Xj, i 6= j, we have distG(x, y) = distG/X (Xi, Xj).

(iii) For all x, y ∈ V (G) we have either distG(x, y) ≤ mw(G) or distG(x, y) =∞.

(iv) The set {Xi ∈ X |W ∩Xi 6= ∅} is a resolving set of the quotient G/X .

(v) For all distinct x, y ∈ Xi, where Xi ∈ X is nontrivial, we have distG(w, x) 6= distG(w, y) for some
w ∈ W ∩Xi.

(vi) Let w1, w2 ∈ Xi. If distG(w1, x) 6= distG(w2, x), then x ∈ Xi and distG(w1, x) 6= distG(w1, y) or
distG(w2, x) 6= distG(w2, y) for each y /∈ Xi.

The basic idea of our algorithm (and that of [2]) is to compute metric bases that satisfy certain con-
ditions for the factors and combine these local solutions into a global solution. We know that nontrivial
modules must contain elements of a resolving set, as modules must be resolved locally (Proposition 8 (i)).
While combining the local solutions of nontrivial modules, we need to make sure that a vertex x ∈ Xi,
where Xi is nontrivial, is resolved from all y /∈ Xi. If x and y are resolved as described in Proposi-
tion 8 (vi), then we need to do nothing special. However, if x ∈ Xi is such that distG(w, x) = d for all
w ∈ Wi and a fixed d ∈ {1, . . . ,mw(G),∞}, there might exist a vertex y /∈ Xi such that Wi does not

14

resolve x and y. We call such a vertex x d-constant (with respect to Wi). We need to keep track of
d-constant vertices and make sure they are resolved when we combine the local solutions. There are at
most mw(G) + 1 d-constant vertices in each factor due to Proposition 8 (iii). We need to also make sure
vertices in different modules that contain no elements of the solution set are resolved. To do this, we
might need to include some vertices from the trivial modules in addition to the vertices we have included
from the nontrivial modules.

In the algorithm presented in [2], the problems described above are dealt with by computing values
w(H, p, q) for every factor H , where w(H, p, q) is the minimum cardinality of a resolving set of H (with
respect to the distance in G) where some vertex is 1-constant iff p = true and some vertex is 2-constant
iff q = true (for undirected graphs these are the only two relevant cases). The same values are then
computed for the larger graph by combining different solutions of the factors and taking their minimum.
Our generalization of this algorithm is along the same lines as the original, however, we have more
boolean values to keep track of. One difference to the techniques of the original algorithm is that we
do not use the auxiliary graphs Belmonte et al. use. These auxiliary graphs were needed to simulate
the distances of the vertices of a factor in G as opposed to only within the factor. In our approach, we
simply use the distances in G and not the distances in the factors or the auxiliary graphs.

Theorem 9. The metric dimension of a digraph G with mw(G) ≤ t can be computed in time O(t52t
2

n+
n3 +m) where n = |V (G)| and m = |E(G)|.

Proof. Let us consider one level of an optimal modular decomposition of G. Let H be a factor somewhere
in the decomposition, and let X = {X1, . . . , Xs} be the factorization of H according to the modular
decomposition. For the graph H (and its nontrivial factors H [Xi]) we denote by w(H,p) the minimum
cardinality of a set W ⊆ V (H) such that

(i) W resolves V (H) in G,

(ii) p = (p1, . . . , pmw(G), p∞) where pd = true if and only if H contains a d-constant vertex with respect
to W .

If such a set does not exist, then w(H,p) = ∞. In order to compute the values w(H,p), we next
introduce the auxiliary values ω(p, I, P). The values w(H [Xi],p) are assumed to be known for all p
and nontrivial modules Xi. Let the factorization X be labeled so that the modules Xi are trivial for
i ∈ {1, . . . , h} and nontrivial for i ∈ {h+ 1, . . . , s}. Let I ⊆ {1, . . . , h} and

P =

p
h+1

...
p
s

.

We define ω(p, I, P) = |I| +
∑s

i=h+1 w(H [Xi],p
i) if the conditions (a)-(d) hold. In what follows, a

representative of a module Xi is denoted by xi.

(a) The set Z = {Xi ∈ X | i ∈ I ∪ {h + 1, . . . , s}} resolves the quotient H/X with respect to the
distances in G.

(b) For d ∈ {1, . . . ,mw(G),∞} and i ∈ {h + 1, . . . , s}, if pid = true, then for each trivial module
Xj = {xj} where j /∈ I we have distG(xi, xj) 6= d or there exists Xk ∈ Z \ {Xi} such that
distG(xk, xi) 6= distG(xk, xj).

(c) For d1, d2 ∈ {1, . . . ,mw(G),∞} and distinct i, j ∈ {h + 1, . . . , s}, if pid1
= pjd2

= true, then
distG(xi, xj) 6= d1, or distG(xj , xi) 6= d2, or there exists Xk ∈ Z\{Xi, Xj} such that distG(xk, xi) 6=
distG(xk, xj).

(d) For all d ∈ {1, . . . ,mw(G),∞}, we have pd = true (in p) if and only if for some i ∈ {1, . . . , h} \ I
we have distG(xj , xi) = d for all Xj ∈ Z, or for some i ∈ {h + 1, . . . , s} we have pid = true and
distG(xj , xi) = d for all Xj ∈ Z \ {Xi}.

If these conditions cannot be met, then we set ω(p, I, P) =∞.
Here we give an outline of a proof for the equality w(H,p) = minI,P ω(p, I, P).

15

We will first show that w(H,p) ≤ minI,P ω(p, I, P). This clearly holds if minI,P ω(p, I, P) =∞. So
assume that I and P are such that ω(p, I, P) is as small as possible. Let W ⊆ V (G) be such that each
Wi = Xi ∩W is a w(H [Xi],p

i)-set for i ∈ {h+1, . . . , s}, |W | = ω(p, I, P), and W fulfills the conditions
(a)-(d). We will show that W fulfills the conditions (i) and (ii), and thus |W | ≥ w(H,p).

(i) W resolves V (H) in G: If x, y ∈ Xi, then i ∈ {h+1, . . . , s} and x and y are resolved by Wi. Assume
that x ∈ Xi and y ∈ Xj , i 6= j. Suppose that x and y are not resolved due to Proposition 8 (vi).
Then at least one of them is d-constant or they are both in trivial modules. Now, if i, j ∈ {1, . . . , h},
then x and y are resolved due to condition (a). If i ∈ {1, . . . , h} and j ∈ {h + 1, . . . , s}, then x
and y are resolved due to condition (b). If i, j ∈ {h+ 1, . . . , s}, then x and y are resolved due to
condition (c).

(ii) This holds due to condition (d).

Therefore, w(H,p) ≤ minI,P ω(p, I, P).
Let us then show that w(H,p) ≥ minI,P ω(p, I, P). Again, if w(H,p) = ∞, then the claim clearly

holds. So assume that W ⊆ V (G) is such that |W | = w(H,p) and W fulfills conditions (i) and (ii).
Denote Wi = Xi ∩W for i ∈ {h + 1, . . . , s}. Each Wi resolves Xi in G due to Proposition 8 (v), and
thus |Wi| ≥ w(H [Xi],p

i) for p
i defined with respect to Wi. Let P be defined with these p

i’s, and let
I = {i ∈ {1, . . . , h} |W ∩ Xi 6= ∅}. Now, |W | ≥ |I| +

∑s
i=h+1 w(H [Xi],p

i). Moreover, the conditions
(a)-(d) hold:

(a) Holds due to condition (i).

(b) Assume to the contrary that pid = true and j ∈ {1, . . . , h} \ I is such that distG(xk, xi) =
distG(xk, xj) for all Xk ∈ Z \ {Xi}. Let x ∈ Xi be d-constant. Since W resolves x and y, there
exists w ∈ Wi such that distG(w, x) 6= distG(w, xj), and thus distG(xi, xj) = distG(w, xj) 6= d.

(c) Can be shown with the same technique as (b).

(d) Clear.

Therefore, |W | ≥ ω(p, I, P) and w(H,p) ≥ minI,P ω(p, I, P).
Let us then discuss the complexity of this algorithm. As a preprocessing step, we need to compute

the distances between all pairs of vertices. This can be done using Floyd-Warshall in O(n3) time. An
optimal modular decomposition can be computed in O(n + m) time [20]. We then need to compute
the values w(H,p) for each factor H starting from the trivial modules and working our way up in the
decomposition. The values w(H,p) are computed using the auxiliary values ω(p, I, P). There are O(2t

2

)
different possibilities for I and P and their combinations (note that the vector p is determined based
on I and P). For each pair I,P , we need to check the conditions (a)-(d), out of which (c) is the most
costly time-wise and can be checked in O(t5) time. Thus, computing the values w(H,p) can be done in
O(t52t

2

) time for each H . The total computing time then follows from the fact that there are at most 2n
factors in any modular decomposition of a graph with n vertices. (The decomposition can be presented
as a rooted tree where the vertices represent the factors and edges represent inclusion. In this tree the
leaves are exactly the trivial modules, and there are n of them. Every internal vertex has degree at least
3, except the root has degree at least 2. Using the handshake lemma it is then straightforward to show
that this tree can have at most 2n vertices.)

The original algorithm of Belmonte et al. has conditions (a)-(g), of which (a) is (essentially) the same
as (a) above, (b) and (c) are covered by (b), (d) and (e) by (c), and (f) and (g) by (d). Notice that our
condition (c) is true whenever distG(xi, xj) = distG(xj , xi) and d1 6= d2. Specifically, if G is undirected,
we do not need to care about (c) for pairs where d1 6= d2.

5 NP-hardness for restricted DAGs

We now complement the hardness result from [1], which was for bipartite DAGs of maximum degree 8
and maximum distance 4.

16

Theorem 10. Metric Dimension is NP-complete, even on planar triangle-free DAGs of maximum
degree 6 and maximum distance 4.

Proof. We reduce from Vertex Cover on 2-connected planar cubic graphs, which is known to be
NP-complete [22, Theorem 4.1].

Given a 2-connected planar cubic graph G, we construct a DAG G′ as follows. First of all, note
that by Petersen’s theorem, G contains a perfect matching M ⊂ E(G), that can be constructed in
polynomial time. A planar embedding of G can also be constructed in polynomial time, so we fix
one. We let V (G′) = V (G)

⋃

e=uv∈E(G){ae, be, ce, d
u
e , d

v
e}

⋃

e=uv∈M{fe, ge, he}. For every edge e = uv

of G, we add the arcs {
−−→
aebe,

−−→
bece,

−−→
ced

u
e ,
−−→
ced

v
e ,
−−→
udue ,

−→
vdve}. For every edge e = uv of the perfect matching

M of G, assuming the neighbours of u (in the clockwise cyclic order with respect to the planar em-
bedding of G) are v, x, y and those of v are u, s, t, we arbitrarily fix one side of the edge uv to place
the vertices fe, ge and he (say, on the side that is close to the edges ux and vt). We add the arcs
{
−−→
fege,

−−→gece,
−−→
gehe,

−−→
heu,

−→
hev,
−−−→cecuy,

−−−→cecvs,
−−−→
hecux,

−−−→
hecvt}.

Using the embedding of G, G′ can also be drawn in a planar way, it has maximum degree 6 (the
vertices of type ce are of degree 6 when e ∈ M), has no triangles, and no shortest directed path of
length 5. See Figure 7 for an illustration.

u v
due dve

ae

be

ce
fe

ge

he

y

duuy

cuy

dyuy

auy

buy

x

duuxcux

dxux

aux

bux

s

dvvs

cvs

dsvs

avs

bvs

t

dvvt cvt

dtvt

avt

bvt

Figure 7: Illustration of the reduction for an edge e = uv of G in M , and the surrounding edges ux, uy,
vs and vt. Squared vertices are the original ones from G.

Now, we claim that G has a vertex cover of size at most k if and only if G′ has metric dimension at
most k + |E(G)|+ |M | = k + 4|E(G)|/3 = k + 2|V (G)|.

If G has a vertex cover C of size k, we construct a resolving set R(C) of G′ as follows. Include the
vertices of C in R(C), as well as all vertices of {ae | e ∈ E(G)} ∪ {fe | e ∈ M}. The vertices in R(C)
are clearly uniquely resolved. For a given edge e of G, vertex be and ce are uniquely at distance 1 and 2
from ae, respectively, so all vertices of these types are uniquely resolved. Among the other vertices, due
and dve are the only ones at distance 3 from ae; moreover, due is at distance 1 from u and dve at distance 1
from v, but not vice-versa, so C ∩{u, v} resolves due and dve . Thus, all vertices of these types are uniquely
resolved. Among the remaining vertices, ge and he are uniquely at distance 1 and 2 from fe, respectively,
so all vertices of these types are uniquely resolved. Finally, the vertices in V (G) \R(C) are resolved by
the unique vertex of type fe from which each of them is at distance 3. Hence, all vertices are uniquely
resolved and R(C) is indeed a resolving set of G′.

Conversely, let R be a resolving set of G′ of size at most k+ |E(G)|+ |M |. Notice that for each edge
e of G, one of ae, be belongs to R in order to resolve these two pairs, and similarly, for each edge e in
M , one of fe, ge belongs to R (in the case of strong metric dimension, ae and fe belong to the solution,
since they are sinks).

We construct a potential vertex cover C(R) by taking R ∩ V (G). Moreover, for each edge e =
uv in M , we add to C(R) any of u, v (if possible, one that is not yet in C(R)) in case the set
{ae, be, ce, fe, ge, he, d

u
e , d

v
e} contains three vertices of R. If it contains at least four, both u, v are put

into C(R). Similarly, for each edge e = uv in E(G) \M , we add to C(R) any of u, v in case the set
{ae, be, ce, due , d

v
e} contains two vertices of R (if possible, we add one that is not yet in C(R)), and we

add both u, v if it contains more than two vertices of R.

17

By the above paragraph, the resulting set C(R) contains at most |R| − |E(G)| − |M | ≤ k vertices.
Now, consider a pair due , d

v
e for some edge e. If u or v is in R, it is also in C(R), and e is covered by C(R).

Assume now that none of u, v is in R. If e ∈ M , necessarily one of u, v, due , d
v
e belongs to R to resolve

that pair, and so, as none of u, v are in R, |ae, be, ce, fe, ge, he, d
u
e , d

v
e | ≥ 3 and by our construction,

either u or v (or both) have been added to C(R). Thus, e is covered by C(R). If e /∈ M , the only
vertices that can resolve due , d

v
e are again u, v, due , d

v
e , or a vertex he′ where e′ 6= e is an edge of G in

M incident with u or v and he′ is not adjacent to ce. Again, as none of u, v is in R, if one of due , d
v
e

belongs to R, |ae, be, ce, due , d
v
e | ≥ 2 and by our construction, either u or v (or both) have been added to

C(R). Otherwise, it must be that some vertex he′ is in R, where e′ 6= e is an edge of G in M incident
with u or v (say, u and e′ = uw) and he′ is not adjacent to ce. But notice that he′ does not resolve
due′ and dwe′ , as e′ ∈ M . Thus, either w ∈ R and |ae′ , be′ , c′e, fe′ , ge′ , he′ , d

u
e′ , d

w
e′ | ≥ 3, or w /∈ R and

|ae′ , be′ , c′e, fe′ , ge′ , he′ , d
u
e′ , d

w
e′ | ≥ 4. In both cases, by our construction, we would have added u to C(R).

Thus, in all cases, one of u, v belongs to C(R) and e is covered. Thus, C(R) is a vertex cover of size at
most k, as needed.

6 Conclusion

Metric Dimension can be solved in polynomial time on outerplanar graphs, using an involved algo-
rithm [6]. Can one generalize our algorithms for trees and unicyclic graphs to solve Metric Dimension

for directed (or at least, oriented) outerplanar graphs in polynomial time? Extending our algorithm to
cactus graphs already seems nontrivial.

Is Metric Dimension NP-hard on planar bipartite subcubic DAGs?
Also, it would be interesting to see which hardness results known for Metric Dimension of undi-

rected graphs also hold for DAGs, or for oriented graphs.

References

[1] J. Araujo, J. Bensmail, V. Campos, F. Havet, A. K. Maia de Oliviera, N. Nisse, and A. Silva.
On finding the best and worst orientations for the metric dimension. Algorithmica, to appear.
https://doi.org/10.1007/s00453-023-01132-0.

[2] R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan. Metric dimension of bounded
tree-length graphs. SIAM Journal on Discrete Mathematics, 31(2):1217–1243, 2017.

[3] L. M. Blumenthal. Theory and Applications of Distance Geometry. Oxford University Press, United
Kingdom, 1953.

[4] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann. Resolvability in graphs and the
metric dimension of a graph. Discrete Applied Mathematics, 105(1):99–113, 2000.

[5] G. Chartrand, M. Raines, and P. Zhang. The directed distance dimension of oriented graphs.
Mathematica Bohemica, 125:155–168, 2000.

[6] J. Díaz, O. Pottonen, M. J. Serna, and E. J. van Leeuwen. Complexity of metric dimension on
planar graphs. Journal of Computer and System Sciences, 83(1):132–158, 2017.

[7] D. Eppstein. Metric dimension parameterized by max leaf number. J. Graph Algorithms Appl.,
19(1):313–323, 2015.

[8] L. Epstein, A. Levin, and G. J. Woeginger. The (weighted) metric dimension of graphs: Hard and
easy cases. Algorithmica, 72(4):1130–1171, 2015.

[9] H. Fernau, P. Heggernes, P. van ’t Hof, D. Meister, and R. Saei. Computing the metric dimension
for chain graphs. Inf. Process. Lett., 115(9):671–676, 2015.

[10] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, and P. Valicov. Identification, location-
domination and metric dimension on interval and permutation graphs. II. algorithms and complexity.
Algorithmica, 78(3):914–944, 2017.

18

https://doi.org/10.1007/s00453-023-01132-0

[11] E. Galby, L. Khazaliya, F. M. Inerney, R. Sharma, and P. Tale. Metric dimension parameterized by
feedback vertex set and other structural parameters. In 47th International Symposium on Mathemat-
ical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria, volume
241 of LIPIcs, pages 51:1–51:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[12] T. Gima, T. Hanaka, M. Kiyomi, Y. Kobayashi, and Y. Otachi. Exploring the gap between treedepth
and vertex cover through vertex integrity. Theoretical Computer Science, 918:60–76, 2022.

[13] F. Harary and R. A. Melter. On the metric dimension of a graph. Ars Combinatoria, 2:191–195,
1976.

[14] S. Hartung and A. Nichterlein. On the parameterized and approximation hardness of metric dimen-
sion. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto,
California, USA, 5-7 June, 2013, pages 266–276. IEEE Computer Society, 2013.

[15] S. Hoffmann, A. Elterman, and E. Wanke. A linear time algorithm for metric dimension of cactus
block graphs. Theoretical Computer Science, 630:43–62, 2016.

[16] S. Hoffmann and E. Wanke. Metric dimension for gabriel unit disk graphs is np-complete. In
A. Bar-Noy and M. M. Halldórsson, editors, 8th International Symposium on Algorithms for Sensor
Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS 2012),
pages 90–92, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[17] S. Khuller, B. Raghavachari, and A. Rosenfeld. Landmarks in graphs. Discrete Applied Mathematics,
70(3):217–229, 1996.

[18] S. Li and M. Pilipczuk. Hardness of metric dimension in graphs of constant treewidth. Algorithmica,
84(11):3110–3155, 2022.

[19] A. Lobstein. Watching systems, identifying, locating-dominating and discriminating codes in graphs:
a bibliography. Published electronically at https://www.lri.fr/ lobstein/debutBIBidetlocdom.pdf,
2022.

[20] R. M. McConnell and F. de Montgolfier. Linear-time modular decomposition of directed graphs.
Discrete Applied Mathematics, 145(2):198–209, 2005.

[21] R. A. Melter and I. Tomescu. Metric bases in digital geometry. Computer Vision, Graphics, and
Image Processing, 25(1):113–121, 1984.

[22] B. Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial Theory,
Series B, 82(1):102–117, 2001.

[23] M. Moscarini. Computing a metric basis of a bipartite distance-hereditary graph. Theoretical
Computer Science, 900:20–24, 2022.

[24] O. R. Oellermann and J. Peters-Fransen. The strong metric dimension of graphs and digraphs.
Discrete Applied Mathematics, 155(3):356–364, 2007.

[25] C. Poisson and P. Zhang. The metric dimension of unicyclic graphs. The journal of combinatorial
mathematics and combinatorial computing, 40:17–32, 2002.

[26] B. Rajan, I. Rajasingh, J. A. Cynthia, and P. Manuel. Metric dimension of directed graphs. Inter-
national Journal of Computer Mathematics, 91(7):1397–1406, 2014.

[27] J. Sedlar and R. Škrekovski. Bounds on metric dimensions of graphs with edge disjoint cycles.
Applied Mathematics and Computation, 396:125908, 2021.

[28] J. Sedlar and R. Škrekovski. Vertex and edge metric dimensions of unicyclic graphs. Discrete Applied
Mathematics, 314:81–92, 2022.

[29] P. J. Slater. Leaves of trees. Congressius Numerantium, 14:549–559, 1975.

19

[30] R. Steiner and S. Wiederrecht. Parameterized algorithms for directed modular width. In Algorithms
and Discrete Applied Mathematics - 6th International Conference, CALDAM 2020, Hyderabad,
India, February 13-15, 2020, Proceedings, volume 12016 of Lecture Notes in Computer Science,
pages 415–426. Springer, 2020.

20

	Introduction
	Digraphs whose underlying graph is a tree
	Orientations of unicyclic graphs
	Modular width
	NP-hardness for restricted DAGs
	Conclusion

