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Abstract. We give a comprehensive study of bin packing with conflicts
(BPC). The input is a set I of items, sizes s : I → [0, 1], and a conflict
graph G = (I, E). The goal is to find a partition of I into a minimum
number of independent sets, each of total size at most 1. Being a general-
ization of the notoriously hard graph coloring problem, BPC has been
studied mostly on polynomially colorable conflict graphs. An intriguing
open question is whether BPC on such graphs admits the same best
known approximation guarantees as classic bin packing.
We answer this question negatively, by showing that (in contrast to bin
packing) there is no asymptotic polynomial-time approximation scheme
(APTAS) for BPC already on seemingly easy graph classes, such as
bipartite and split graphs. We complement this result with improved ap-
proximation guarantees for BPC on several prominent graph classes. Most
notably, we derive an asymptotic 1.391-approximation for bipartite graphs,
a 2.445-approximation for perfect graphs, and a

(
1 + 2

e

)
-approximation

for split graphs. To this end, we introduce a generic framework relying
on a novel interpretation of BPC allowing us to solve the problem via
maximization techniques. Our framework may find use in tackling BPC
on other graph classes arising in applications.

1 Introduction

We study the bin packing with conflicts (BPC) problem. We are given a set I of n
items, sizes s : I → [0, 1], and a conflict graph G = (I, E) on the items. A packing
is a partition (A1, . . . , At) of I into independent sets called bins, such that for
all b ∈ {1, . . . , t} it holds that s (Ab) =

∑
`∈Ab s(`) ≤ 1. The goal is to find a

packing in a minimum number of bins. Let I = (I, s, E) denote a BPC instance.
We note that BPC is a generalization of bin packing (BP) (where E = ∅) as well
as the graph coloring problem (where s(`) = 0 ∀` ∈ I).1 BPC captures many real-
world scenarios such as resource clustering in parallel computing [2], examination
scheduling [21], database storage [16], and product delivery [4]. As the special
case of graph coloring cannot be approximated within a ratio better than n1−ε

[31], most of the research work on BPC has focused on families of conflict graphs
which can be optimally colored in polynomial time [24,17,16,23,8,6,7,15].

Let OPT = OPT(I) be the value of an optimal solution for an instance I
of a minimization problem P. As in the bin packing problem, we distinguish

1 See the formal definitions of graph coloring and independent sets in Section 2.
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between absolute and asymptotic approximation. For α ≥ 1, we say that A is
an absolute α-approximation algorithm for P if for any instance I of P we
have A(I)/OPT(I) ≤ α, where A(I) is the value of the solution returned by
A. Algorithm A is an asymptotic α-approximation algorithm for P if for any
instance I it holds that A(I) ≤ αOPT(I)+o(OPT(I)). An APTAS is a family of
algorithms {Aε} such that, for every ε > 0, Aε is a polynomial time asymptotic
(1 + ε)-approximation algorithm for P. An asymptotic fully polynomial-time
approximation scheme (AFPTAS) is an APTAS {Aε} such that Aε(I) runs in
time poly(|I|, 1ε ), where |I| is the encoding length of the instance I.

It is well known that, unless P=NP, BP cannot be approximated within ratio
better than 3

2 [10]. This ratio is achieved by First-Fit Decreasing (FFD) [28].2

Also, BP admits an AFPTAS [19], and an additive approximation algorithm
which packs any instance I in at most OPT(I) + O(log(OPT(I))) bins [14].
Despite the wide interest in BPC on polynomially colorable graphs, the intriguing
question whether BPC on such graphs admits the same best known approximation
guarantees as classic bin packing remained open.

Absolute Asymptotic

Lower Bound Upper Bound Lower Bound Upper Bound

General graphs n1−ε [31] O
(
n(log logn)2

(logn)3

)
[13] n1−ε [31] O

(
n(log logn)2

(logn)3

)
[13]

Perfect graphs · 2.445 (2.5 [8]) c > 1 2.445 (2.5 [8])

Chordal graphs · 7
3

[8] c > 1 7
3

[8]

Cluster graphs · 2 [1] 1 [7]

Cluster complement · 3/2 3/2 3/2

Split graphs · 1 + 2/e (2 [15]) c > 1 1 + 2/e (2 [15])

Bipartite graphs · 5
3

[15] c > 1 1.391 ( 5
3

[15])

Partial k-trees · 2 + ε [17] 1 [16]

Trees · 5
3

[15] ·
No conflicts 3

2
[10] 3

2
[29] 1 [26]

Table 1: Known results for Bin Packing with Conflict Graphs

We answer this question negatively, by showing that (in contrast to bin
packing) there is no APTAS for BPC even on seemingly easy graph classes,
such as bipartite and split graphs. We complement this result with improved
approximation guarantees for BPC on several prominent graph classes. For BPC
on bipartite graphs, we obtain an asymptotic 1.391-approximation. We further
derive improved bounds of 2.445 for perfect graphs,

(
1 + 2

e

)
for split graphs, and

2 We give a detailed description of Algorithm FFD in Appendix B.

2



5
3 for bipartite graphs.3 Finally, we obtain a tight 3

2 -asymptotic lower bound and
an absolute 3

2 -upper bound for graphs that are the complements of cluster graphs
(we call these graphs below complete multi-partite).

Table 1 summarizes the known results for BPC on various classes of graphs.
New bounds given in this paper are shown in boldface. Entries that are marked
with · follow by inference, either by using containment of graph classes (trees
are partial k-trees), or since the hardness of BPC on all considered graph classes
follows from the hardness of classic BP. Empty entries for lower bounds follow
from tight upper bounds. We give a detailed overview of previous results in
Appendix A.

Techniques: There are several known approaches for tackling BPC instances.
One celebrated technique introduced by Jansen and Öhring [17] relies on finding
initially a minimum coloring of the given conflict graph, and then packing each
color class using a bin packing heuristic, such as First-Fit Decreasing. A notable
generalization of this approach is the sophisticated integration of precoloring
extension [17,8], which completes an initial partial coloring of the conflict graph,
with no increase to the number of color classes. Another elegant technique is a
matching-based algorithm, applied by Epstein and Levin [8] and by Huang et al.
[15].

The best known algorithms (prior to this work), e.g., for perfect graphs [8]
and split graphs [15] are based on the above techniques. While the analyses
of these algorithms are tight, the approximation guarantees do not match the
existing lower bounds for BPC on these graph classes; thus, obtaining improved
approximations requires new techniques.

In this paper we present a novel point of view of BPC involving the solution
of a maximization problem as a subroutine. We first find an initial packing of
a subset S ⊆ I of items, which serves as a baseline packing with high potential
for adding items (from I \ S) without increasing the number of bins used. The
remaining items are then assigned to extra bins using a simple heuristic. Thus,
given a BPC instance, our framework consists of the following main steps.

1. Find an initial packing A = (A1, . . . , Am) of high potential for S ⊆ I.

2. Maximize the total size of items in A by adding items in I \ S.

3. Assign the remaining (unpacked) items to extra bins using a greedy approach
respecting the conflict graph constraints.

The above generic framework reduces BPC to cleverly finding an initial packing of
high potential, and then efficiently approximating the corresponding maximization
problem, while exploiting structural properties of the given conflict graph. One
may view classic approaches for solving BP (e.g., [20]), as an application of this
technique: find an initial packing of high potential containing the large items;
then add the small items using First-Fit. In this setting, the tricky part is to find
an initial high potential packing, while adding the small items is trivial. However,

3 Recently, Huang et al. [15] obtained a 5
3
-approximation for bipartite graphs, simul-

taneously and independently of our work. We note that the techniques of [15] are
different than ours, and their algorithm is more efficient in terms of running time.
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in the presence of a conflict graph, solving the induced maximization problem is
much more challenging.

Interestingly, we are able to obtain initial packings of high potential for BPC
on several conflict graph classes. To solve the maximization problem, we first
derive efficient approximation for maximizing the total size of items within a
single bin. Our algorithm is based on finding a maximum weight independent set
of bounded total size in the graph, combined with enumeration over items of large
sizes. Using the single bin algorithm, the maximization problem is solved via
application of the separable assignment problem (SAP) [9] framework, adapted to
our setting. Combined with a hybrid of several techniques (to efficiently handle
different types of instances) this leads to improved bounds for BPC on perfect,
split, and bipartite graphs (see Sections 3, 4, and Appendix F). Our framework
may find use in tackling BPC on other graph classes arising in applications.
Organization: In section 2 we give some definitions and preliminary results.
Section 3 presents an approximation algorithm for BPC on perfect graphs and an
asymptotic approximation on bipartite graphs. In Section 4 we give an algorithm
for split graphs. We present our hardness results in Section 5 and conclude in
Section 6. Due to space constraints, some of our results are deferred to the
Appendix. For convenience, the last page of the paper includes a table of contents.

2 Preliminaries

For any k ∈ R, let [k] = {1, 2, . . . , bkc}. Also, for a function f : A→ R≥0 and a
subset of elements C ⊆ A, we define f(C) =

∑
e∈C f(e).

Coloring and Independent Sets: Given a graph G = (V,E), an independent
set in G is a subset of vertices S ⊆ V such that for all u, v ∈ S it holds that
(u, v) /∈ E. Let IS(G) be the collection of all independent sets in G. Given weight
function w : V → R≥0, a maximum independent set w.r.t. w is an independent set
S ∈ IS(G) such that w(S) is maximal. A coloring of G is a partition (V1, . . . , Vt)
of V such that ∀i ∈ [t] : Vi ∈ IS(G); we call each subset of vertices Vi color class
i. Let χ(G) be the minimum number of colors required for a coloring of G. A
graph G is perfect if for every induced subgraph G′ of G the cardinality of the
maximal clique of G′ is equal to χ(G′); note that G′ is also a perfect graph. The
following well known result is due to [12].

Lemma 2.1. Given a perfect graph G = (V,E), a minimum coloring of G and
a maximum weight independent set of G can be computed in polynomial time.

Bin Packing with Conflicts: Given a BPC instance I, let GI = (I, E) denote
the conflict graph of I. A packing of a subset of items S ⊆ I is a partition
B = (B1, . . . , Bt) of S such that, for all i ∈ [t], Bi is an independent set in GI ,
and s(Bi) ≤ 1. Let #B be the number of bins (i.e., entries) in B.

In this paper we consider BPC on several well studied classes of perfect
graphs and the acronym BPC refers from now on to perfect conflict graphs. For
bin packing with bipartite conflicts (BPB), where the conflict graph is bipartite,
we assume a bipartition of V is known and given by XV and YV . Recall that
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G = (V,E) is a split graph if there is a partition K,S of V into a clique and an
independent set, respectively. We call this variant of BPC bin packing with split
graph conflicts (BPS).

The following notation will be useful while enhancing a partial packing
by new items. For two packings B = (B1, . . . , Bt) and C = (C1, . . . , Cr), let
B ⊕ C = (B1, . . . , Bt, C1, . . . , Cr) be the concatenation of B and C; also, for t = r
let B + C = (B1 ∪ C1, . . . , Bt ∪ Ct) be the union of the two packings; note that
the latter is not necessarily a packing. We denote by items(B) =

⋃
i∈[t]Bi the

set of items in the packing B. Finally, let I = (I, s, E) be a BPC instance
and T ⊆ I a subset of items. Define the BPC instances I ∩ T = (T, s, ET ) and
I \T = (I \T, s, EI\T ) where for all X ∈ {T, I \T} EX = {(u, v) ∈ E | u, v ∈ X}.
Bin Packing Algorithms: We use I = (I, s) to denote a BP instance, where
I is a set of n items for some n ≥ 1, and s : I → [0, 1] is the size function. Let
LI = {` ∈ I | s(`) > 1

2} be the set of large items, MI = {` ∈ I | 1
3 < s(`) ≤ 1

2}
the set of medium items, and SI = {` ∈ I | s(`) ≤ 1

3} the set of small items.
Our algorithms use as building blocks also algorithms for BP. The results in the
next two lemmas are tailored for our purposes. We give the detailed proofs in
Appendix B.4

Lemma 2.2. Given a BP instance I = (I, s), there is a polynomial-time al-
gorithm First-Fit Decreasing (FFD) which returns a packing B = (B1, . . . , Bt)
of I where #B ≤ (1 + 2 · max`∈I s(`)) · s(I) + 1. Moreover, it also holds that
#B ≤ |LI |+ 3

2 · s(MI) + 4
3 · s(SI) + 1.

Lemma 2.3. Given a BP instance I = (I, s), there is a polynomial-time algo-
rithm AsymptoticBP which returns a packing B = (B1, . . . , Bt) of I such that
t = OPT(I) + o(OPT(I)). Moreover, if OPT(I) ≥ 100 then t ≤ 1.02 ·OPT(I).

3 Approximations for Perfect and Bipartite Graphs

In this section we consider the bin packing problem with a perfect or bipartite
conflict graph. Previous works (e.g., [17], [8]) showed the usefulness of the
approach based on finding first a minimal coloring of the given conflict graph,
and then packing each color class as a separate bin packing instance (using,
e.g., algorithm FFD). Indeed, this approach yields efficient approximations for
BPC; however, it does reach a certain limit. To enhance the performance of this
coloring based approach, we design several subroutines. Combined, they cover the
problematic cases and lead to improved approximation guarantees (see Table 1).

Our first subroutine is the coloring based approach, with a simple modification
to improve the asymptotic performance. For each color class Ci, i = 1, . . . , k in
a minimal coloring of the given conflict graph, we find a packing of Ci using
FFD, and another packing using AsymptoticBP (see Lemma 2.3). We choose the
packing which has smaller number of bins. Finally, the returned packing is the
concatenation of the packings of all color classes. The pseudocode of Algorithm
Color Sets is given in Algorithm 1.

4 For more details on algorithms FFD and AsymptoticBP see, e.g., [30].
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Algorithm 1 Color Sets(I = (I, s, E))

1: Compute a minimal coloring C = (C1, . . . , Ck) of GI .
2: Initialize an empty packing B ← ().
3: for i ∈ [k] do
4: Compute A1 ← FFD((Ci, s)) and A2 ← AsymptoticBP((Ci, s)).
5: B ← B ⊕ arg minA∈{A1,A2}#A.
6: end for
7: Return B.

For the remainder of this section, fix a BPC instance I = (I, s, E). The
performance guarantees of Algorithm Color Sets are stated in the next lemma.

Lemma 3.1. Given a BPC instance I = (I, s, E), Algorithm Color Sets returns
in polynomial time in |I| a packing B of I such that #B ≤ χ(GI) + |LI |+ 3

2 ·
s(MI) + 4

3 · s(SI). Moreover, if I is a BPB instance then #B ≤ 3
2 · |LI |+

4
3 ·

(OPT(I)− |LI |) + o(OPT(I)).

Note that the bounds may not be tight for instances with many large items.
Specifically, if |LI | ≈ OPT(I) then a variant of Algorithm Color Sets was shown
to yield a packing of at least 2.5 ·OPT(I) bins [8]. To overcome this, we use an
approach based on the simple yet crucial observation that there can be at most
one large item in a bin. Therefore, we view the large items as bins and assign
items to these bins to maximize the total size packed in bins including large
items. We formalize the problem initially on a single bin.

Definition 3.2. In the bounded independent set problem (BIS) we are given a
graph G = (V,E), a weight function w : V → R≥0, and a budget β ∈ R≥0. The
goal is to find an independent set S ⊆ V in G such that w(S) is maximized and
w(S) ≤ β. Let I = (V,E,w, β) be a BIS instance.

Towards solving BIS, we need the following definitions. For α ∈ (0, 1], A is
an α-approximation algorithm for a maximization problem P if, for any instance
I of P, A outputs a solution of value at least α · OPT (I). A polynomial-time
approximation scheme (PTAS) for P is a family of algorithms {Aε} such that,
for any ε > 0, Aε is a polynomial-time (1− ε)-approximation algorithm for P.
A fully PTAS (FPTAS) is a PTAS {Aε} where, for all ε > 0, Aε is polynomial
also in 1

ε . We now describe a PTAS for BIS. Fix a BIS instance I = (V,E,w, β)
and ε > 0. As there can be at most ε−1 items with weight at least ε · β in some
optimal solution OPT for I, we can guess this set F of items via enumeration.
Then, to add smaller items to F , we define a residual graph GF of items with
weights at most ε · β which are not adjacent to any item in F . Formally, define
GF = (VF , EF ), where

VF = {v ∈ V \F | w(v) ≤ ε·β,∀u ∈ F : (v, u) /∈ E}, EF = {(u, v) ∈ E | u, v ∈ VF }

Now, we find a maximum weight independent set S in GF . Note that this can
be done in polynomial time for perfect and bipartite graphs. If w(F ∪S) ≤ β then
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we have an optimal solution; otherwise, we discard iteratively items from S until
the remaining items form a feasible solution for I. Since we discard only items
with relatively small weights, we lose only an ε-fraction of the weight relative to
the optimum. The pseudocode for the scheme is given in Algorithm 2.

Algorithm 2 PTAS((V,E,w, β), ε)

1: Initialize A← ∅.
2: for all independent sets F ⊆ V in (V,E) s.t. |F | ≤ ε−1, w(F ) ≤ β do
3: Define the residual graph GF = (VF , EF ).
4: Find a maximum independent set S of GF w.r.t. w.
5: while w(F ∪ S) > β do
6: Choose arbitrary z ∈ S.
7: Update S ← S \ {z}.
8: end while
9: if w(A) < w(F ∪ S) then

10: Update A← F ∪ S.
11: end if
12: end for
13: Return A.

Lemma 3.3. Algorithm 2 is a PTAS for BIS.

We now define our maximization problem for multiple bins. We solve a slightly
generalized problem in which we have an initial partial packing in t bins. Our
goal is to add to these bins (from unpacked items) a subset of items of maximum
total size. Formally,

Definition 3.4. Given a BPC instance I = (I, s, E), S ⊆ I, and a packing
B = (B1, . . . , Bt) of S, define the maximization problem of I and B as the
problem of finding a packing B+C of S∪T , where T ⊆ I \S and C = (C1, . . . , Ct)
is a packing of T , such that s(T ) is maximized.

Our solution for BIS is used to obtain a (1− 1
e − ε)-approximation for the

maximization problem described in Definition 3.4. This is done using the approach
of [9] for the more general separable assignment problem (SAP).

Lemma 3.5. Given a BPC instance I = (I, s, E), S ⊆ I, a packing B =
(B1, . . . , Bt) of S, and a constant ε > 0, there is an algorithm MaxSize which
returns in time polynomial in |I| a (1− 1

e−ε)-approximation for the maximization
problem of I and B. Moreover, given an FPTAS for BIS on the graph (I, E),
the weight function s, and the budget β = 1, MaxSize is a (1− 1

e )-approximation
algorithm for the maximization problem of I and B.

We use the above to obtain a feasible solution for the instance. This is done via
a reduction to the maximization problem of the instance with a singleton packing
of the large items and packing the remaining items in extra bins. Specifically, in

7



the subroutine MaxSolve, we initially put each item in LI in a separate bin. Then,
additional items from SI and MI are added to the bins using Algorithm MaxSize.
The remaining items are packed using Algorithm Color Sets. The pseudocode of
the subroutine MaxSolve is given in Algorithm 3.

Algorithm 3 MaxSolve(I = (I, s, E), ε)

1: Define T ← ({`} | ` ∈ LI).
2: A ← MaxSize(I, LI , T, ε).
3: B ← Color Sets(I \ items(A)).
4: Return A⊕ B.

The proof of Lemma 3.6 uses Lemmas 3.1, 3.3, and 3.5.

Lemma 3.6. Given a BPC instance I = (I, s, E) and an ε > 0, Algorithm
MaxSolve returns in polynomial time in |I| a packing C of I such that there are
0 ≤ x ≤ s(MI) and 0 ≤ y ≤ s(SI) such that the following holds.

1. x+ y ≤ OPT(I)− |LI |+
(
1
e + ε

)
· |LI |2 .

2. #C ≤ χ(GI) + |LI |+ 3
2 · x+ 4

3 · y.

Lemma 3.6 improves significantly the performance of Algorithm Color Sets for
instances with many large items. However, Algorithm MaxSize may prefer small
over medium items; the latter items will be packed by Algorithm Color Sets (see
Algorithm 3). The packing of these medium items may harm the approximation
guarantee. Thus, to tackle instances with many medium items, we use a reduction
to a maximum matching problem for packing the large and medium items in at
most OPT(I) bins.5 Then, the remaining items can be packed using Algorithm
Color Sets. The graph used for the following subroutine Matching contains all
large and medium items; there is an edge between any two items which can be
assigned to the same bin in a packing of the instance I. Formally,

Definition 3.7. Given a BPC instance I = (I, s, E), the auxiliary graph of
I is HI = (LI ∪MI , EH), where EH = {(u, v) | u, v ∈ LI ∪MI , s({u, v}) ≤
1, (u, v) /∈ E}.

Algorithm Matching finds a maximum matching in HI and outputs a packing
of the large and medium items where pairs of items taken to the matching
are packed together, and the remaining items are packed in extra bins using
Algorithm Color Sets. The pseudocode of the subroutine Matching is given in
Algorithm 4.

The proof of Lemma 3.8 follows by noting that the cardinality of a maximum
matching in HI in addition to the number of unmatched vertices in LI ∪MI is
at most OPT(I).

5 We note that a maximum matching based technique for BPC is used also in [8,15].
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Algorithm 4 Matching(I = (I, s, E))

1: Find a maximum matching M in HI .
2: B ← ({u, v} | (u, v) ∈M)⊕ ({v} | v ∈MI ∪ LI , ∀u ∈MI ∪ LI : (u, v) /∈M).
3: Return B ⊕ Color Sets(I \ (MI ∪ LI)).

Lemma 3.8. Given a BPC instance I = (I, s, E), Algorithm Matching returns
in polynomial time in |I| a packing A of I such that #A ≤ OPT(I) + χ(GI) +
4
3 · s(SI).

We now have the required components for the approximation algorithm for
BPC and the asymptotic approximation for BPB. Our algorithm, ApproxBPC,
applies all of the above subroutines and returns the packing which uses the
smallest number of bins. We use ε = 0.0001 for the error parameter in MaxSolve.
The pseudocode of ApproxBPC is given in Algorithm 5.

Algorithm 5 ApproxBPC(I)

1: Let ε = 0.0001.
2: Compute A1 ← Color Sets(I), A2 ← MaxSolve(I, ε), A3 ← Matching(I).
3: Return arg minA∈{A1,A2,A3}#A.

We give below the main result of this section. The proof follows by the argu-
ment that the subroutines Color Sets, MaxSolve, and Matching handle together
most of the difficult cases. Specifically, if the instance contains many large items,
then MaxSolve produces the best approximation. If there are many large and
medium items, then Matching improves the approximation guarantee. Finally,
for any other case, our analysis of the Color Sets algorithm gives us the desired
ratio. We summarize with the next result.

Theorem 3.9. Algorithm 5 is a 2.445-approximation for BPC and an asymptotic
1.391-approximation for BPB.

4 Split Graphs

In this section we enhance the use of maximization techniques for BPC to obtain
an absolute approximation algorithm for BPS. In particular, we improve upon
the recent result of Huang et al. [15]. We use as a subroutine the maximization
technique as outlined in Lemma 3.5. Specifically, we start by obtaining an
FPTAS for the BIS problem on split graphs. For the following, fix a BPS instance
I = (I, s, E). It is well known (see, e.g., [11]) that a partition of the vertices of
a split graph into a clique and an independent set can be found in polynomial
time. Thus, for simplicity we assume that such a partition of the split graph G is
known and given by KG, SG. We note that an FPTAS for the BIS problem on
split graphs follows from a result of Pferschy and Schauer [25] for knapsack with
conflicts, since split graphs are a subclass of chordal graphs. We give a simpler
FPTAS for our problem in Appendix D.
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Lemma 4.1. There is an algorithm FPTAS-BIS that is an FPTAS for the BIS
problem on split graphs.

Our next goal is to find a suitable initial packing B to which we apply MaxSize.
Clearly, the vertices KGI must be assigned to different bins. Therefore, our initial
packing contains the vertices of KGI distributed to |KGI | bins as {{v} | v ∈ KGI}.
In addition, let α ∈ {0, 1, . . . , d2 · s(I)e+ 1} be a guess of OPT(I)− |KGI |; then,
(∅)i∈[α] is a packing of α bins that do not contain items. Together, the two above
packings form the initial packing Bα. Our algorithm uses MaxSize to add items
to the existing bins of Bα and packs the remaining items using FFD. Note that
we do not need an error parameter ε, since we use MaxSize with an FPTAS (see
Lemma 3.5). For simplicity, we assume that OPT(I) ≥ 2 (else we can trivially
pack the instance in a single bin). We give the pseudocode of our algorithm for
BPS in Algorithm 6.

Algorithm 6 Split-Approx(I = (I, s, E))

1: for α ∈ {0, 1, . . . , d2 · s(I)e+ 1} do
2: Define Bα = {{v} | v ∈ KGI} ⊕ (∅)i∈[α]
3: Aα ← MaxSize(I,KGI ,Bα).
4: A∗α ← Aα ⊕ FFD(I \ items(Aα)).
5: end for
6: Return arg minα∈{0,1,...,d2·s(I)e+1}#A∗α.

By Lemmas 4.1 and 3.5 we have a
(
1− 1

e

)
-approximation for the maximization

problem of the BPS instance I and an initial partial packing B. Hence, for a
correct guess α = OPT(I)− |KGI |, the remaining items to be packed by FFD

are of total size at most s(I)
e and can be packed in 2·OPT(I)

e bins. Thus, we have

Theorem 4.2. Algorithm 6 is a
(
1 + 2

e

)
-approximation for BPS.

5 Asymptotic Hardness for Bipartite and Split Graphs

In this section we show that there is no APTAS for BPB and BPS, unless
P = NP . We use a reduction from the Bounded 3-dimensional matching (B3DM)
problem, that is known to be MAX SNP-complete [18].

For the remainder of this section, let c > 2 be some constant. A B3DM
instance is a four-tuple J = (X,Y, Z, T ), where X,Y, Z are three disjoint finite
sets and T ⊆ X × Y × Z; also, for each u ∈ X ∪ Y ∪ Z there are at most c
triples in T to which u belongs. A solution for J is M ⊆ T such that for all
u ∈ X ∪ Y ∪ Z it holds that u appears in at most one triple of M . The objective
is to find a solution M of maximal cardinality. Let OPT(J ) be the value of an
optimal solution for J . We use in our reduction a restricted instance of B3DM
defined as follows.

Definition 5.1. For k ∈ N, a B3DM instance J is k-restricted if OPT(J ) ≥ k.

10



In the next lemma we show the hardness of k-restricted B3DM. Intuitively,
since B3DM instances J with OPT(J ) ≤ k are polynomially solvable for a fixed
k (e.g., by exhaustive enumeration), it follows that restricted-B3DM must be
hard to approximate, by the hardness result of Kann [18].

Lemma 5.2. There is a constant α > 1 such that for any k ∈ N there is no
α-approximation for the k-restricted B3DM problem unless P=NP.

We give below the main idea of our reduction, showing the asymptotic hardness
of BPB and BPS. A more formal description and the proof of Lemma 5.2 are
given in Appendix E. For a sufficiently large n ∈ N, let J = (X,Y, Z, T ) be
an n-restricted instance of B3DM, and let the components of J , together with
appropriate indexing, be U = X ∪ Y ∪ Z and T , where

X = {x1, . . . , xx̃}, Y = {y1, . . . , yỹ}, Z = {z1, . . . , zz̃}, T = {t1, . . . , tt̃}.

We outline our reduction for BPB and later show how it can be modified
to yield the hardness result for BPS. Given an n-restricted B3DM instance, we
construct a sequence of BPB instances. Each BPB instance contains an item for
each element u ∈ U , and an item for each triple t ∈ T . There is an edge (u, t) if
u ∈ U and t ∈ T , and u does not appear in t, i.e., we forbid packing an element
u in the same bin with a triple not containing u, for any u ∈ U . Since we do not
know the exact value of OPT(J ), we define a family of instances with different
number of filler items; these items are packed in the optimum of our constructed
BPB instance together with elements not taken to the solution for J .

Specifically, for a guess i ∈ {n, n+ 1, . . . , |T |} of OPT(J ), we define a BPB
instance Ii = (Ii, s, E). The set of items in Ii is Ii = U ∪ Pi ∪ T ∪ Qi, where
Pi, Qi are a set of t̃− i (filler) items and a set of x̃+ ỹ + z̃ − 3 · i (filler) items,
respectively, such that Pi ∩U = ∅ and Qi ∩U = ∅. The bipartite (conflict) graph
of Ii is Gi = (Ii, E), where E = EX ∪ EY ∪ EZ is defined as follows.

EX = {(x, t) | x ∈ X, t = (x′, y, z) ∈ T, x 6= x′}
EY = {(y, t) | y ∈ Y, t = (x, y′, z) ∈ T, y 6= y′}
EZ = {(z, t) | z ∈ Z, t = (x, y, z′) ∈ T, z 6= z′}

Finally, define the sizes of items in Ii to be

∀u ∈ U, p ∈ Pi, q ∈ Qi, t ∈ T : s(u) = 0.15, s(p) = 0.45, s(q) = 0.85, s(t) = 0.55.

By the above, the only way to pack three items from x, y, z ∈ U with a triple
t ∈ T is if (x, y, z) = t; also, s ({x, y, z, t}) = 1. For an illustration of the reduction
see Figure 1.

Given a packing (A1, . . . , Aq) for the BPB instance Ii, we consider all useful
bins Ab in the packing, i.e., Ab = {x, y, z, t}, where x ∈ X, y ∈ Y, z ∈ Z and
t = (x, y, z). The triple t from bin Ab is taken to our solution for the original
n-restricted B3DM instance J . Note that taking all triples as described above
forms a feasible solution for J , since each element is packed only once. Thus, our
goal becomes to find a packing for the reduced BPB instance with a maximum

11



Fig. 1: An illustration of the BPB instance Ii = (Ii, s, E), where
i = OPT(J ) = 2. The optimal solution for Ii contains the bins
{x1, y1, z1, (x1, y1, z1)}, {x2, y2, z2, (x2, y2, z2)}, and {p, (x1, y2, z1)}; this corre-
sponds to an optimal solution (x1, y1, z1), (x2, y2, z2) for the original B3DM
instance. Note that in this example Qi = ∅.

number of useful bins. Indeed, since s(Ab) = 1 for any useful bin Ab, finding a
packing with many useful bins coincides with an efficient approximation for BPB.

For the optimal guess i∗ = OPT(J ), it is not hard to see that the optimum for
the BPB instance Ii∗ satisfies s(Ii∗) = OPT(Ii∗); that is, all bins in the optimum
are fully packed. For a sufficiently large n, and assuming there is an APTAS for
BPB, we can find a packing of Ii∗ with a large number of bins that are fully
packed. A majority of these bins are useful, giving an efficient approximation for
the original B3DM instance. A similar reduction to BPS is obtained by adding
to the bipartite conflict graph of the BPB instance an edge between any pair
of vertices in T ; thus, we have a split conflict graph. We summarize the above
discussion in the next result (the proof is given in Appendix E).

Theorem 5.3. There is no APTAS for BPB and BPS, unless P=NP.

6 Discussion

In this work we presented the first theoretical evidence that BPC on polynomially
colorable graphs is harder than classic bin packing, even in the special cases of
bipartite and split graphs. Furthermore, we introduced a new generic framework
for tackling BPC instances, based on a reduction to a maximization problem.
Using this framework, we improve the state-of-the-art approximations for BPC
on several well studied graph classes.

We note that better bounds for the maximization problems solved within our
framework will imply improved approximation guarantees for BPC on perfect,
bipartite, and split graphs. It would be interesting to apply our techniques to
improve the known results for other graph classes, such as chordal graphs or
partial k-trees.
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A Related Work

The BPC problem was introduced by Jansen and Öhring [17]. They presented
a general algorithm that initially finds a coloring of the conflict graph, and
then packs each color class separately using the First-Fit Decreasing algorithm.
This approach yields a 2.7-approximation for BPC on perfect graph. The paper
[17] includes also a 2.5-approximation for subclasses of perfect graphs on which
the corresponding precoloring extension problem can be solved in polynomial
time (e.g., interval and chordal graphs). The authors present also a (2 + ε)-
approximation algorithm for BPC on cographs and partial k-trees.

Epstein and Levin [8] present better algorithms for BPC on perfect graphs (2.5-
approximation), graphs on which the precoloring extension problem can be solved
in polynomial time ( 7

3 -approximation), and bipartite graphs ( 7
4 -approximation).

Their techniques include matching between large items and a sophisticated use of
new item weights. Recently, Huang et al. [15] provided fresh insights to previous
algorithms, leading to 5

3 -approximation for BPC on bipartite graphs and a
2-approximation on split graphs.

Jansen [16] presented an AFPTAS for BPC on d-inductive conflict graphs,
where d ≥ 1 is some constant. This graph family includes trees, grid graphs, planar
graphs, and graphs with constant treewidth. For a survey of exact algorithms for
BPC see, e.g., [15].
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B Omitted Proofs from Section 2

For completeness, we describe the well-known algorithm FFD with our notation,
and give some properties of the algorithm that will be useful for our analysis.
Given a BP instance I = (I, s), in the FFD Algorithm the items are considered in
a non-increasing order v1, . . . , vn by their sizes. Starting with an empty packing,
in each iteration FFD attempts to assign the largest unpacked item `i to an open
bin; if none of these bins can accommodate the item, the algorithm opens a new
bin to which the item is assigned. The pseudocode is given in Algorithm 7.

Algorithm 7 FFD(I = (I, s))

1: Let v1, . . . , vn be the items in I in non-increasing order by sizes.
2: Initialize an empty packing B ← ().
3: for i ∈ [n] do
4: if ∃B ∈ B s.t. s(B) + s(vi) ≤ 1 then
5: B ← B ∪ {vi}.
6: end if
7: else B ← B ⊕ {vi}
8: Return B.
9: end for

We give below several claims relating to the approximation guarantee of
Algorithm FFD. Given a BP instance I = (I, s) and 0 < ε < 0.1, let TI(ε) =
{v ∈ I | s(v) ≤ ε} be the set of tiny items and let BI(ε) = I \TI be the set of big
items of I and ε. When understood from the context, we simply use TI = TI(ε)
and BI = BI(ε).

Lemma B.1. Let I = (I, s) be a BP instance and let 0 < ε < 0.1 such that
s(TI) > 1 and s(BI) < 2. Then, (1− ε) · (#FFD(I)− 1) ≤ s(I).

Proof. Let v1, . . . , vn be the order of I obtained by Step 1. In addition, let
FFD(I) = (A1, . . . , At) such that A1, . . . , At is the order in which FFD(I) creates
new bins in Step 7. By the item ordering, we may assume that all bins in the
obtained packing that contain a large item appear as a prefix of the returned
packing. Thus, let A1, . . . , Ar be all bins in FFD(I) that contain a big item.

Claim B.2 r ≤ 3.

Proof. Assume towards a contradiction that r > 3 and consider the last item
v ∈ BI packed in FFD(I); let i ∈ [n] such that v = vi. We consider two cases.

– s(v) > 1
2 .

s(BI) ≥
∑
j∈[i]

s(vj) ≥ s((A1 +A2 +A3 +A4) ∩BI) > 4 · 1

2
= 2. (1)

15



The second inequality holds since each of the bins A1, . . . , Ar contains a big
item and due to the ordering of the items. Thus, we get a contradiction to
s(BI) < 2.

– s(v) ≤ 1
2 . By Step 4 it holds that s(Ak ∩BI) + s(v) > 1,∀k ∈ [r − 1]; thus,

s(BI) ≥ (r − 1) · (1− s(v)) + s(v) ≥ 3− 2 · s(v) ≥ 2. (2)

The second inequality holds since r > 3. The last inequality holds since
s(v) ≤ 1

2 . By (2), we reach a contradiction that s(BI) < 2.
ut

T complete the proof of the lemma we need the following claims.

Claim B.3 If t > r, then for all i ∈ [t− 1] it holds that s(Ai) ≥ 1− ε.

Proof. Consider the first item v packed in bin At in Step 7. Because t > r it
holds that v ∈ TI . Therefore, by Step 4 for all i ∈ [t− 1] we have s(Ai) + s(v) > 1
and the claim follows. ut

Claim B.4 If t = r = 3, then s(A1 ∩BI) + s(A2 ∩BI) ≥ 1.

Proof. Consider the first item v packed in bin A2 in Step 7 and let A′1 be the set
of items packed in A1 in the iteration in which the algorithm packs v. Therefore,

s(A1 ∩BI) + s(A2 ∩BI) ≥ s(A′1) + s(v) > 1

The last inequality follows by the algorithm.
ut

By Claim B.2 it holds that r ≤ 3. Thus, we we consider three cases.

1. t = r = 2. Then,

s(I) ≥ s(TI) > 1 ≥ (1− ε) · (t− 1) = (1− ε) · (#FFD(I)− 1).

2. t = r = 3. Then,

s(I) ≥ s(A1 ∩BI) + s(A2 ∩BI) + s(TI)

> 1 + 1

≥ (1− ε) · (t− 1)

= (1− ε) · (#FFD(I)− 1).

The second inequality holds by Claim B.4.
3. r < t. Then,

s(I) ≥ (1− ε) · (t− 1) = (1− ε) · (#FFD(I)− 1).

The inequality holds by Claim B.3.

This completes the proof of the lemma. �
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The next observation follows since if s(I) ≤ 3
2 for some BP instance I = (I, s)

then, clearly, the first two bins A1, A2 in FFD(I) satisfy s(A1) + s(A2) > 1.
Moreover, s(A1) ≥ 1

2 by the ordering of the items and it follows that A2 can
pack all remaining items.

Observation B.1 Let I = (I, s) be a BP instance such that s(I) ≤ 3
2 . Then,

#FFD(I) ≤ 2.

Proof of Lemma 2.2: With a slight abuse of notation, given a packing B =
(B1, . . . , Bt), we say that B ∈ B if there is i ∈ [t] such that B = Bi; otherwise,
we say that B /∈ B. Let I = {v1, . . . , vn} be the order used by FFD. Also, let
B = (B1, . . . , Bt) be the packing returned by FFD(I).

Claim B.5 There is at most one i ∈ [t] such that s(Ai) < 1−max`∈I s(`).

Proof. Assume towards a contradiction that there are i, j ∈ [t], i < j such that
s(Ai) < 1−max`∈I s(`) and s(Aj) < 1−max`∈I s(`). Consider the first item v
that is added to Bj ; by the FFD algorithm, the item should be added to Bi or
some other available bin and should not be added in a new bin Bj . Contradiction.

ut

For the following, we define weights for the elements as introduced in [8]. For
every v ∈ LI define w(v) = 1; in addition, for every v ∈MI define w(v) = s(v)+ 1

6 ;
finally, for all v ∈ SI define w(v) = s(v) + 1

12 . The next result follows by a result
of [8].6

Claim B.6 #B ≤ w(I) + 1.

Claim B.7 #B ≤ |LI |+ 3
2 · s(MI) + 4

3 · s(SI) + 1.

Proof. Let k ∈ [n] such that vk ∈ I is the first item packed in bin Bt. By Step 4,
for all i ∈ [t− 1] it holds that

s(Ai) + s(vk) > 1. (3)

We consider two cases.

– s(vk) ≤ 1
4

#B ≤ |LI |+
4

3
· s(I \ LI) + 1 ≤ |LI |+

3

2
· s(MI) +

4

3
· s(SI) + 1 (4)

The first inequality holds because there can be at most |LI | bins with a large
item; moreover, there can be at most 4

3 · s(I \ LI) + 1 bins without a large
item by (3) (each bin is at least 3

4 -full).

6 The result in [8] is stronger since their weights refine our definition of weights of
small items.
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– s(vk) > 1
4 . Let Ik = {v1, . . . , vk} and let Ik = (Ik, s). By Algorithm 7 it holds

that

#B = #FFD(Ik). (5)

The reason is that all items vk+1, . . . , vn are packed in the existing bins
B1, . . . , Bt by the definition of vk.

#B = #FFD(Ik)

≤ w(Ik) + 1

= w(LIk) + w(MIk) + w(SIk) + 1

= |LIk |+ s(MIk) +
|MIk |

6
+ s(SIk) +

|SIk |
12

+ 1

≤ |LIk |+ s(MIk) +
3 · s(MIk)

6
+ s(SIk) +

4 · s(SIk)

12
+ 1

≤ |LI |+ s(MI) +
3 · s(MI)

6
+ s(SI) +

4 · s(SI)

12
+ 1

= |LI |+
3

2
· s(MI) +

4

3
· s(SI) + 1.

(6)

The first equality follows by (5). The first inequality holds by Claim B.6. The
second equality holds by the definition of weights.

ut
The statement of the Lemma follows from Claim B.5 and Claim B.7. �

Proof of Lemma 2.3: Let APTAS and AdditiveBP be the asymptotic PTAS for
BP by [20] and the additive approximation scheme for BP by [14], respectively.
Define the following algorithm which returns the better packing resulting from
the two algorithms, where we use ε = 0.001 for APTAS. We give the pseudocode
in Algorithm 8.

Algorithm 8 AsymptoticBP(I)

1: Let ε = 0.001.
2: Compute A1 ← AdditiveBP(I), A2 ← APTAS(I, ε).
3: Return arg minA∈{A1,A2}#A.

Then, by [14], Step 2, and Step 3 of Algorithm 8, it holds that algorithm
AsymptoticBP returns a packing B = (B1, . . . , Bt) of I such that t = OPT(I) +
o(OPT(I)). In addition, if OPT(I) ≥ 100, then by [20], Step 2, and Step 3
of Algorithm 8, it holds that algorithm AsymptoticBP returns a packing B =
(B1, . . . , Bt) of I such that

t ≤ (1 + ε) ·OPT(I) + 1 ≤ 1.001 ·OPT(I) + 1 < 1.02 ·OPT(I).

The first inequality holds by [20]. The second inequality holds since ε = 0.001.
The last inequality holds since OPT(I) ≥ 100. �

18



C Omitted Proofs from Section 3

We use in the proof of Lemma 3.1 the next two lemmas.

Lemma C.1. Given a BPC instance I = (I, s, E), Algorithm Color Sets returns
a packing B of I such that #B ≤ χ(GI) + |LI |+ 3

2 · s(MI) + 4
3 · s(SI).

Proof. Let C = (C1, . . . , Ck) be the minimal coloring of GI found in Step 1 of
Algorithm 1. Now,

#B ≤
∑
i∈[k]

#FFD((Ci, s))

≤
∑
i∈[k]

(
|LI ∩ Ci|+

3

2
· s(MI ∩ Ci) +

4

3
· s(SI ∩ Ci) + 1

)
= χ(GI) + |LI |+

3

2
· s(MI) +

4

3
· s(SI).

The first inequality follows from the algorithm. The second inequality holds
by Lemma 2.2. The last equality follows because the sets in the coloring C are
disjoint and complementary; also, k = χ(GI) because C is a minimal coloring of
GI . �

Lemma C.2. Given a BPB instance I = (I, s, E), Algorithm Color Sets returns
a packing B of I such that #B ≤ 3

2 · |LI |+
4
3 · (OPT(I)− |LI |) + o(OPT(I)).

Proof. Recall that XV , YV denote the bipartition of the given conflict graph. Let
OPT = (O1, . . . , Ot) be an optimal packing of I. We define below a partition
of O1, . . . , Ot into types of bins, based on the number of large and medium
items from XV and YV ; the partition also considers the distinct cases where
the bins contain total size larger from XV or from YV . Let OPTX = {Oi | i ∈
[t], s(Oi ∩XV ) ≥ s(Oi ∩ YV )} be all bins in which the total size of items packed
from YV is at most the total size of items packed from XV . Similarly, let OPTY =
{Oi | i ∈ [t], s(Oi ∩XV ) < s(Oi ∩ YV )} be all remaining bins in OPT. We now
refine this partition. Let WV ∈ {XV , YV } and let W̄V be YV if WV = XV and
XV if WV = YV . As our definitions are symmetric for XV and YV , we define
them w.r.t. WV . Let

TL(W ) = {Oi ∈ OPTW | Oi ∩ LI ∩WV 6= ∅} (7)

be all bins in OPT that contains a large item from WV . For the following,
we use the abbreviations α = OPTW \ TL(W ), Ni,M = |Oi ∩MI ∩WV |, and
N̄i,M = |Oi ∩MI ∩ W̄V |, where Ni,M , and N̄i,M are the number of medium
elements in bin Oi from WV , W̄V , respectively. Now define the following partition
of the bins of OPTW by all possible values of Ni,M , and N̄i,M :
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T1,0,≤(W ) = {Oi ∈ α | Ni,M = 1, N̄i,M = 0, s(Oi ∩ W̄V ) ≤ 1

3
}

T1,0,>(W ) = {Oi ∈ α | Ni,M = 1, N̄i,M = 0, s(Oi ∩ W̄V ) >
1

3
}

T1,1(W ) = {Oi ∈ α | Ni,M = 1, N̄i,M = 1}
T0,0(W ) = {Oi ∈ α | Ni,M = 0, N̄i,M = 0}
T0,1(W ) = {Oi ∈ α | Ni,M = 0, N̄i,M = 1}
T2,0(W ) = {Oi ∈ α | Ni,M = 2, N̄i,M = 0}

(8)

For example, T1,0,≤(W ) is the set of all bins in OPTW \ TL(W ) = α that
contain one medium item from WV , no medium items from W̄V and the total
size from W̄ is at most 1

3 . We now define a packing of I such that each bin type
is packed separately, where items from XV and YV are also packed separately.
We now define a packing for the items in each bin type. Fix some W ∈ {X,Y }
and let TL(W ) = (A1, . . . , Ar); by adding at most 1 empty bin to TL(W ), we
may assume from now on that r ∈ Neven. Define

BL(W ) = (Ai ∩WV | i ∈ [r])⊕
(
(Ai ∪Ai+1) ∩ W̄V | i ∈ {1, 3, . . . , r − 1}

)
(9)

Claim C.3 BL(W ) is a packing of items(TL(W )) such that #BL(W ) ≤ 3
2 ·

|TL(W )|+ 1.

Proof. For all i ∈ [r] and j ∈ {1, 3, . . . , r − 1} it holds that Ai ∩WV ⊆WV and
(Aj ∪Aj+1)∩ W̄V ⊆ W̄V ; thus, Ai ∩WV and (Aj ∪Aj+1)∩ W̄V are independent
sets in G. Moreover, it holds that s(Ai ∩WV ) ≤ s(Ai) ≤ 1, where the second
inequality holds since OPT is a packing of I. Finally, it holds that

s((Aj ∪Aj+1) ∩ W̄V ) ≤ s(Aj) + s(Aj+1)− s(Aj ∩ LI ∩WV )− s(Aj+1 ∩ LI ∩WV )

≤ 1 + 1− 1

2
− 1

2
= 1.

The second inequality holds since OPT is a packing of I and since Aj ∩LI ∩
WV 6= ∅ and Aj+1 ∩ LI ∩WV 6= ∅ by (8). It follows that BL(W ) is a packing
of items(TL). By (9) it holds that #BL(W ) ≤ |TL(W )| + 1

2 · |TL(W )| + 1 =
3
2 · |TL(W )|+ 1. ut

Let Z = {{1, 0,≤}, {1, 0, >}, {1, 1}, {0, 0}, {0, 1}, {2, 0}}. For the simplicity of
the notations, in the following we use Az1, . . . , A

z
rz to denote the bins in Tz(W ),

for z ∈ Z; when understood from the context, we simply use Ai for Azi for any
i ∈ [rz]. For simplicity, note that by adding at most 5 empty bins to Tz(W ), we
assume from now on that rz = 6 · nz, nz ∈ N where

rz ≤ |Tz(W )|+ 5. (10)
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Now, define

B{1,0,≤}(W ) = (Ai ∩WV | i ∈ [rz])⊕(
(Ai ∪Ai+1 ∪Ai+2) ∩ W̄V | i ∈ {1, 4, . . . , rz − 2}

) (11)

Claim C.4 Let z = {1, 0,≤}. Then, Bz(W ) is a packing of items(Tz(W )) such
that

#Bz(W ) ≤ 4

3
· |Tz(W )|+ 7.

Proof. For all i ∈ [rz] and j ∈ {1, 4, . . . , rz − 2} it holds that Ai ∩WV ⊆WV and
(Aj ∪Aj+1 ∪Aj+2) ∩ W̄V ⊆ W̄V ; thus, Ai ∩WV and (Aj ∪Aj+1 ∪Aj+2) ∩ W̄V

are independent sets in G. Moreover, it holds that s(Ai ∩WV ) ≤ s(Ai) ≤ 1,
where the second inequality holds since OPT is a packing of I. Finally, it
holds that s((Aj ∪ Aj+1 ∪ Aj+2) ∩ W̄V ) ≤ 1

3 · 3 = 1. The inequality holds
by (8). It follows that BL(W ) is a packing of items(TL). By (11) it holds that
#Bz(W ) ≤ rz + 1

3 · rz = 4
3 · rz ≤

4
3 · |Tz(W )|+ 7. ut

We define

B{1,0,>}(W ) = ((Ai ∪Ai+1) ∩MI | i ∈ {1, 3, . . . , rz − 1})
⊕
(
(Ai ∪Ai+1) ∩ W̄V | i ∈ {1, 3, . . . , rz − 1}

)
⊕ ((Ai ∪Ai+1 ∪Ai+2) ∩ (WV \MI) | i ∈ {1, 4, . . . , rz − 2})

(12)

Claim C.5 Let z = {1, 0, >}. Then, Bz(W ) is a packing of items(Tz(W )) such
that

#Bz(W ) ≤ 4

3
· |Tz(W )|+ 7.

Proof. For all i ∈ {1, 3, . . . , rz−1}, j ∈ {1, 3, . . . , rz−1}, and k ∈ {1, 4, . . . , rz−2}
it holds that (Ai ∪ Ai+1) ∩MI ⊆ WV by (8), (Aj ∪ Aj+1) ∩ W̄V ⊆ W̄V , and
(Ak∪Ak+1∪Ak+2)∩(WV \MI) ⊆WV . Thus, (Ai∪Ai+1)∩MI , (Aj∪Aj+1)∩W̄V ,
and (Ak ∪ Ak+1 ∪ Ak+2) ∩ (WV \MI) are independent sets in G. Moreover, it
holds that s((Ai∪Ai+1)∩MI) ≤ 2 · 12 ≤ 1 by the definition of medium items; also,
s((Aj∪Aj+1)∩W̄V ) ≤ 2 · 12 by (8). Finally, s((Ak∪Ak+1∪Ak+2)∩(WV \MI)) ≤
3 · 13 , where the inequality follows because for all t ∈ {k, k + 1, k + 2} it holds
that s(At)− s(At ∩MI)− s(At ∩ W̄V ) ≤ 1− 1

3 −
1
3 = 1

3 by (8). By (12) it holds
that #Bz(W ) ≤ rz

2 + rz
2 + rz

3 ≤
4
3 · rz ≤

4
3 · |Tz(W )|+ 7.

ut

Define

B{1,1}(W ) = ((Ai ∪Ai+1) ∩ (MI ∩WV ) | i ∈ {1, 3, . . . , rz − 1})
⊕
(
(Ai ∪Ai+1) ∩ W̄V | i ∈ {1, 3, . . . , rz − 1}

)
⊕ ((Ai ∪Ai+1 ∪Ai+2) ∩ (WV \MI) | i ∈ {1, 4, . . . , rz − 2})

(13)
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Claim C.6 Let z = {1, 1}. Then, Bz(W ) is a packing of items(Tz(W )) such that

#Bz(W ) ≤ 4

3
· |Tz(W )|+ 7.

Proof. For all i ∈ {1, 3, . . . , rz−1}, j ∈ {1, 3, . . . , rz−1}, and k ∈ {1, 4, . . . , rz−2}
it holds that (Ai ∪ Ai+1) ∩ (MI ∩WV ) ⊆ WV , (Aj ∪ Aj+1) ∩ W̄V ⊆ W̄V , and
(Ak ∪ Ak+1 ∪ Ak+2) ∩ (WV \ MI) ⊆ WV . Thus, (Ai ∪ Ai+1) ∩ (MI ∩ WV ),
(Aj ∪Aj+1) ∩ W̄V , and (Ak ∪Ak+1 ∪Ak+2) ∩ (WV \MI) are independent sets
in G. Moreover, it holds that s((Ai ∪ Ai+1) ∩ (MI ∩WV )) ≤ 2 · 12 ≤ 1 by the
definition of medium items; also, s((Aj ∪ Aj+1) ∩ W̄V ) ≤ 2 · 12 by (8). Finally,
s((Ak ∪Ak+1 ∪Ak+2)∩ (WV \MI)) ≤ 3 · 13 , where the inequality follows because
for all t ∈ {k, k+1, k+2} it holds that s(At)−s(At∩(MI∩WV ))−s(At∩W̄V ) ≤
1− 1

3 −
1
3 = 1

3 by (8). By (13) it holds that #Bz(W ) ≤ rz
2 + rz

2 + rz
3 ≤

4
3 · rz ≤

4
3 · |Tz(W )|+ 7.

ut

Define

B{0,0}(W ) = Color Sets

I ∩ ⋃
i∈[rz ]

Ai

 . (14)

Claim C.7 Let z = {0, 0}. Then, Bz(W ) is a packing of items(Tz(W )) such that

#Bz(W ) ≤ 4

3
· |Tz(W )|+ 9.

Proof. Let J = I ∩
⋃
i∈[rz ]Ai. By Lemma C.1 it holds that Bz(W ) is a packing

of J . Moreover,

#Bz(W ) ≤ χ(GJ )+|LJ |+
3

2
·s(MJ )+

4

3
·s(SJ ) ≤ 2+0+0+

4

3
·rz ≤

4

3
·|Tz(W )|+9.

The first inequality holds by Lemma C.1. The second inequality holds by (8) and
since GI is bipartite.

ut

Let z = {0, 1} and Tz(W ) = (A1, . . . , Arz). For i ∈ [rz], let firsti be the first
subset of items in WV ∩ Ai that has total size at least 1

6 , where the items are
taken by some fixed non-increasing order of sizes; if there is no such subset then
define firsti = ∅.

Claim C.8 Let z = {0, 1} and i ∈ [rz]. Then, s(firsti) ≤ 1
3 ; also, if s(Ai∩WV ) <

1
2 then s(firsti) 6= ∅.

Proof. We first show that s(firsti) ≤ 1
3 . If there is an item larger than 1

6 in
Ai ∩ WV , it holds that s(firsti) ≤ 1

3 because firsti contains a single item by
definition. Otherwise, all items in firsti are of sizes smaller than 1

6 ; in this case,
let ` = arg min`′∈firsti s(`). It holds that s(firsti \ {`}) ≤ 1

6 by the definition of
firsti; hence, together with `, it holds that s(firsti) ≤ 1

6 + s(`) ≤ 1
6 + 1

6 = 1
3 . Now,

assume that s(Ai ∩WV ) > 1
2 . Then, there must be a subset of Ai ∩WV of total

size at least 1
6 . ut

22



Now, define

B{0,1}(W ) = ((Ai ∪Ai+1) ∩ (WV \ (firsti ∪ firsti+1)) | i ∈ {1, 3, . . . , rz − 1})
⊕
(
(Ai ∪Ai+1) ∩ W̄V | i ∈ {1, 3, . . . , rz − 1}

)
⊕ (firsti ∪ firsti+1 ∪ firsti+2 | i ∈ {1, 4, . . . , rz − 2})

(15)

Claim C.9 Let z = {0, 1}. Then, Bz(W ) is a packing of items(Tz(W )) such that

#Bz(W ) ≤ 4

3
· |Tz(W )|+ 7.

Proof. For all i ∈ {1, 3, . . . , rz−1}, j ∈ {1, 3, . . . , rz−1}, and k ∈ {1, 4, . . . , rz−2}
it holds that (Ai∪Ai+1)∩(WV \(firsti∪firsti+1) ⊆WV , (Aj ∪Aj+1)∩W̄V ⊆ W̄V ,
and firstk ∪ firstk+1 ∪ firstk+2 ⊆WV . Thus, (Ai ∪Ai+1) ∩ (WV \ (firsti ∪ firsti+1),
(Aj ∪ Aj+1) ∩ W̄V , and firstk ∪ firstk+1 ∪ firstk+2 are independent sets in G.
Moreover, it holds that

s((Ai ∪Ai+1) ∩ (WV \ (firsti ∪ firsti+1)) ≤ 2 · 1

2
= 1. (16)

If s(Ai∩WV ) ≤ 1
2 and s(Ai+1∩WV ) ≤ 1

2 (16) follows. Otherwise, assume that
s(Ai∩WV ) > 1

2 ; observe that s(Ai∩WV ) < 2
3 by (8). Then, by Claim C.8 it holds

that s(firsti) ≥ 1
6 and it follows that s((Ai) ∩ (WV \ firsti)) ≤ 1

2 ; by symmetric
arguments, if s(Ai+1 ∩ WV ) > 1

2 it holds that s((Ai) ∩ (WV \ firsti+1)) ≤ 1
2 .

By the above, (16) follows. also, s((Aj ∪ Aj+1) ∩ W̄V ) ≤ 2 · 12 by (8). Finally,
s(firstk∪firstk+1∪firstk+2) ≤ 3 · 13 by Claim C.8. By (15) it holds that #Bz(W ) ≤
rz
2 + rz

2 + rz
3 ≤

4
3 · rz ≤

4
3 · |Tz(W )|+ 7.

ut

Define

B{2,0}(W ) = (Ai ∩WV | i ∈ [rz])⊕(
(Ai ∪Ai+1 ∪Ai+2) ∩ W̄V | i ∈ {1, 4, . . . , rz − 2}

) (17)

Claim C.10 Let z = {2, 0}. Then, Bz(W ) is a packing of items(Tz(W )) such
that

#Bz(W ) ≤ 4

3
· |Tz(W )|+ 7.

Proof. For all i ∈ [rz] and j ∈ {1, 4, . . . , rz−2} it holds that Ai∩WV ⊆WV , and
(Aj ∪Aj+1 ∪Aj+2) ∩ W̄V ⊆ W̄V . Thus, Ai ∩WV and (Aj ∪Aj+1 ∪Aj+2) ∩ W̄V

are independent sets in G. Moreover, it holds that s(Ai ∩WV ) ≤ 1 as OPT is a
packing; also, s((Aj ∪Aj+1 ∪Aj+2)∩ W̄V ) ≤ 3 · 13 because s(Ai)− s(Ai ∩WV ) ≤
1− s(Ai∩MI) ≤ 1− 2 · 13 = 1

3 by (8). By (17) it holds that #Bz(W ) ≤ rz + rz
3 ≤

4
3 · rz ≤

4
3 · |Tz(W )|+ 7. ut
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We combine the above sub-packings of WV into a packing of WV ; specifically,

B(W ) =
⊕

z∈(Z∪{L})

Bz(W ). (18)

By (8) it holds that
⋃
z∈(Z∪{L}{Tz(W )} is a partition of the bins of OPTW .

Hence, by Claims C.3-C.7 and C.9-C.10, as well as (18), it holds that B(W ) is a
packing of I ∩WV . In addition,

#B(W ) =
∑

z∈(Z∪{L})

#Bz(W )

≤ 3

2
· |TL(W )|+ 1 +

∑
z∈Z

(
4

3
· |Tz(W )|+ 9

)
≤ 3

2
· |TL(W )|+ 4

3
· (|OPTW | − |TL(W )|) +O(1).

(19)

The first equality holds by (18). The first inequality holds by Claims C.3-
C.7 and C.9-C.10, as well as (18). The last inequality holds by (18). Hence,
by (19) the packing A2 of WV computed by Algorithm 1 contains at most
#B(W ) + o(OPT(I)) bins. Therefore, the number of bins in the packing B
returned by Color Sets(I) satisfies7

#B ≤ #B(X) + #B(Y ) + o(OPT(I))

≤ o(OPT(I)) +
∑

W∈{X,Y }

3

2
· |TL(W )|+ 4

3
· (|OPTW | − |TL(W )|) +O(1)

≤ 3

2
· |LI |+

4

3
· (OPT(I)− |LI |) + o(OPT(I)).

(20)
The second inequality holds by (19). The third inequality holds by (8) and since
each bin can contain at most one large item.

Proof of Lemma 3.1: The proof follows by Lemma C.1 and Lemma C.2. �

Proof of Lemma 3.3: Let I = (V,E,w, β) be a BIS instance and ε > 0 be
the error parameter; Also, let A = PTAS(I = (V,E,w, β), ε). We use several
auxiliary claims.

Claim C.11 The running time of algorithm 2 on I, ε is poly(I)
O( 1

ε ).

Proof. Observe that the number of iterations of the for loop in Step 2 is bounded

by poly(I)
O( 1

ε ). Moreover, assuming that finding a maximum independent set
can be computed in polynomial time, Step 4 takes polynomial time. By the above,
the proof follows. ut
7 We note that the last inequality in (20) holds asymptotically, i.e., for a sufficiently

large OPT(I).
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Claim C.12 A is a feasible solution for I

Proof. If A = ∅ the proof follows. Otherwise, by Step 2, Step 5, Step 7, and
Step 10 there is an independent set F ⊆ V in G, |F | ≤ ε−1, w(F ) ≤ β, and there
is a maximum independent set S′ of GF and w and S ⊆ S′ such that A = F ∪ S
and w(F ∪ S) ≤ β. By Step 3 it holds that F ∪ S′ is an independent set in G
and therefore also F ∪ S, because F ∪ S ⊆ F ∪ S′.

ut

Claim C.13 Let OPT be some optimal solution for I. Then, w(A) ≥ (1− ε) ·
w(OPT).

Proof. Let LOPT = {v ∈ OPT | w(v) > ε · β} be the set of large items of OPT.
Observe that |LOPT| ≤ ε−1, w(LOPT) ≤ β, and that LOPT is an independent
set in (V,E); this is because OPT is a feasible solution of I. By the for loop in
Step 2, there is an iteration where F = LOPT. Also, observe that OPT \ LOPT

is an independent set in GF by the definition of GF . Therefore, in Step 4
an independent set S of GF w.r.t. w is found such that w(S) ≥ w(LOPT). If
w(F ∪ S) ≤ β, then by Step 5, Step 9, and Step 10, it holds that w(A) ≥
w(F ∪ S) ≥ w(OPT \ LOPT) + w(LOPT) = w(OPT). Otherwise, we have that

w(A) ≥ w(F ∪ S) ≥ β − ε · β = (1− ε) · β ≥ (1− ε) · w(OPT).

The first inequality holds by Step 10. The second inequality holds by Step 5. The
third inequality holds by the feasibility of OPT.

ut

The proof of Lemma 3.3 follows by Claims C.11-C.13. �

Proof of Lemma 3.5: By Definition 3.4, the maximization problem of I and B
is a special case of the separable assignment problem (SAP) [9] defined as follows.
Let U be a set of n bins, and H a set of m items; there is a value fij for assigning
item j to bin i. We are also given a separate packing constraint for each bin i.
We assume that if a set Ii is feasible for a bin i ∈ U , then any subset of Ii is
also feasible for bin i. The goal is to find a feasible assignment of items to the
bins which maximizes the aggregate value. For each bin, we define the single-bin
subproblem as the optimization problem over feasible sets associated with the
packing constraint for the bin.

We now show how the maximization problem of I and B can be cast as a SAP
instance. Let U = B be the set of bins and H = I \ S the set of items; the value
of assigning item i to bin j is s(i). For each bin Bj for j ∈ [t], the set of feasible
subsets that can be packed in Bj is Fj = {T ⊆ H | s(T ) ≤ 1− s(Bj), Bj ∪ T ∈
IS(GI)}. Note that by the definition of Fj it holds that if some T ∈ Fj then for
all T ′ ⊆ T it also holds that T ′ ∈ Fj . The objective is as in the maximization
problem of I and B, to find an assignment of items to bins of maximum aggregate
value.
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By Definition 3.2 it holds that for each bin Bj for j ∈ [t] the single bin problem
for Bj is the BIS instance (Vj , Ej , wj , βj), where the vertices are those which can
create an independent set with the set Bj : Vj = {v ∈ H | ∀u ∈ Bj : (v, u) /∈ E},
the edges are the induced edges on the set Vj : Ej = {(v, u) | v, u ∈ Vj}, the weight
function is the size function of I: for all v ∈ Vj : wj(v) = s(v), and finally the
budget is the remaining capacity of the bin Bj : βj = 1− s(Bj). By Definition 3.2
and the definition of SAP it holds that Jj is the single bin sub-problem for
I and Bj . In addition, by Lemma 3.3 there is a PTAS for the single bin sub-
problem. Hence, by the results of [9], there is an (1− 1

e − ε)-approximation for
the maximization problem of I and B �

Proof of Lemma 3.6: Let OPT = (O1, . . . , Ot) be some optimal packing of I.
Let K = {v ∈ I \ LI | v ∈ Oi, i ∈ [t], Oi ∩ LI 6= ∅} be all non-large items that
are packed in OPT in a bin that contain a large item. Then,

s(I \ items(A)) ≤ OPT(I)− |LI |+ (
1

e
+ ε) · s(K)

≤ OPT(I)− |LI |+
(

1

e
+ ε

)
· |LI |

2

(21)

The first inequality holds since by Step 2, Definition 3.4 and Lemma 3.5 it
holds that s(items(A)) ≥ s(L) + (1− 1

e − ε) · s(K). The second inequality holds

since s(K) ≤ |LI |2 because each bin in OPT that contains an item from LI as at
most half of its total size available for the items in K; moreover, there are |LI |
bins in which the items from K are packed. Let J = I \ items(A). Therefore, by
assigning x = s(MJ ) and y = s(SJ ), we have the following.

#C = #A⊕ B
= |LI |+ #Color Sets(I \ items(A))

≤ |LI |+ χ(GJ ) + |LJ |+
3

2
· s(MJ ) +

4

3
· s(SJ )

≤ |LI |+ χ(GI) +
3

2
· x+

4

3
· y.

(22)

The first equality follows by Step 4. The second equality follows by Lemma 3.5,
Definition 3.4, and Step 3. The first inequality holds by Lemma 3.1. The last
inequality holds by the definition of J , x and y. The proof follows by (21), (22),
and the definition of x and y. �

Proof of Lemma 3.8: Let OPT be some optimal packing of I; also, let m
be the number of bins in OPT that are packed with two items with LI ∪MI ;
note that there can be at most two items from LI ∪MI in a bin. Hence, all
other items from LI ∪MI are packed without any other item from LI ∪MI
in OPT; it follows that OPT(I) ≥ m + (|LI ∪MI | − 2 ·m) = |LI ∪MI | −m.
Observe that M found in Step 1 of Algorithm 4 on I contains at least m edges
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by Definition 3.7. Therefore, the number of items from LI ∪MI that are not
in some edge in the matching M is bounded by |LI ∪MI | − 2 ·m. Thus, the
packing B found in Step 2 satisfies #B ≤ |LI ∪MI | − 2 ·m+m ≤ OPT(I). Now,
let J = I \ (LI ∪MI)). To conclude the proof,

#A = #B ⊕#Color Sets(I \ (MI ∪ LI))

= #B + #Color Sets(I \ (MI ∪ LI))

≤ OPT(I) + #Color Sets(I \ (MI ∪ LI))

≤ OPT(I) + χ(GJ ) + |LJ |+
3

2
· s(MJ ) +

4

3
· s(SI)

= OPT(I) + χ(GI) +
4

3
· s(SI).

he first equality holds by Step 3. The first inequality holds because #B ≤
OPT(I). The second inequality holds by Lemma 3.1. The last inequality holds
by the definition of J . �

Lemma C.14. Given a BPC instance I = (I, s, E), Algorithm ApproxBPC
returns in polynomial time in |I| a packing A of I such that #A ≤

(
2 + 4

9

)
·

OPT(I).

Proof. We split the proof into two complementary cases.

1. s(SI) ≤ s(I)
3 . Then,

#Matching(I) ≤ OPT(I) + χ(GI) +
4

3
· s(SI)

≤ 2 ·OPT(I) +
4

3
· s(I)

3

=

(
2 +

4

9

)
·OPT(I).

The first inequality holds by by Lemma 3.8. The second inequality holds

since s(SI) ≤ s(I)
3 . Hence, the proof follows by the above and by Step 2 and

Step 3 of Algorithm 5.

2. s(SI) >
s(I)
3 . Then, by Lemma 3.6, there are 0 ≤ x ≤ s(MI) and 0 ≤ y ≤

s(SI) such that the following holds.

(a) x+ y ≤ OPT(I)− |LI |+
(
1
e + ε

)
· |LI |2 .

(b) #MaxSolve(I, ε) ≤ χ(GI) + |LI |+ 3
2 · x+ 4

3 · y.
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In this case,

#MaxSolve(I, ε) ≤ χ(GI) + |LI |+
3

2
· x+

4

3
· y

≤ χ(GI) + |LI |+
1

6
· x+

4

3
· (x+ y)

≤ χ(GI) + |LI |+
1

6
· x+

4

3
·
(

OPT(I)− |LI |+
(

1

e
+ ε

)
· |LI |

2

)
≤ χ(GI) +

x

6
+

4

3
·OPT(I)

≤ χ(GI) +
s(MI)

6
+

4

3
·OPT(I)

≤ χ(GI) +
s(I)− s(SI))

6
+

4

3
·OPT(I)

≤ χ(GI) +
2·OPT(I)

3

6
+

4

3
·OPT(I)

=

(
2 +

4

9

)
·OPT(I)

≤ 2.445 ·OPT(I)

The first inequality holds by (b). The third inequality holds by (a). The
fourth inequality holds for all 0 < ε < 0.1. The second inequality from the

end holds since s(SI) >
s(I)
3 . Hence, the proof follows by the above and by

Step 2 and Step 3 of Algorithm 5. �

Lemma C.15. Given a BPB instance I = (I, s, E), Algorithm ApproxBPC
returns in polynomial time in |I| a packing A of I such that #A ≤ 1.391 ·
OPT(I) + o(OPT(I)).

Proof. First, by Lemma 3.1, Step 2, and Step 3 of Algorithm 5, it holds that

#A ≤ 3

2
· |LI |+

4

3
· (OPT(I)− |LI |) + o(OPT(I)). (23)

Second, by Lemma 3.6, there are 0 ≤ x ≤ s(MI) and 0 ≤ y ≤ s(SI) such that
the following holds.

1. x+ y ≤ OPT(I)− |LI |+
(
1
e + ε

)
· |LI |2 .

2. #MaxSolve(I, ε) ≤ |LI |+ 3
2 · x+ 4

3 · y + o(OPT(I)).

Using the above,
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#ApproxBPC(I) ≤ #MaxSolve(I, ε)

≤ o(OPT(I)) + |LI |+
3

2
· x+

4

3
· y

≤ o(OPT(I)) + |LI |+
3

2
· (x+ y)

≤ o(OPT(I)) + |LI |+
3

2
·
(

OPT(I)− |LI |+
(

1

e
+ ε

)
· |LI |

2

)
≤ o(OPT(I))− 0.316 · |LI |+

3

2
·OPT(I).

(24)
The first inequality holds by by Step 2 and Step 3 of Algorithm 5. The second
inequality holds by Condition 2. The third inequality holds by Condition 1. The
fourth inequality holds for all 0 < ε < 0.0001.To conclude, we split the proof into
two cases.

– |LI | < 0.345296·OPT(I)+o(OPT(I)).Thus, it holds that #ApproxBPC(I) ≤
1.391 ·OPT(I) + o(OPT(I)) by (23).

– |LI | ≥ 0.345296 · OPT(I). Thus, it holds that #ApproxBPC(I) ≤ 1.391 ·
OPT(I) by (24). �

Proof of Theorem 3.9: The proof follows by Lemma C.14 and Lemma C.15. �

D Omitted Proofs from Section 4

Towards proving Lemma 4.1, we now present an FPTAS for BIS on a split graph.
A simple observation is that at most one vertex from KG can be in the solution.
Therefore, an FPTAS is obtained by iterating over all vertices in KG, as well
as the case where the solution contains no vertex from this set. Consider the
iteration in which the bin contains a single vertex (or, no vertex) from KG as
in an optimal solution. Then, additional vertices not adjacent to this vertex are
added using an FPTAS for the classic knapsack problem. An input for knapsack is
I = (I, p, c, β), where I is a set of items, and p, c : I → R≥0 are a profit function
and a cost function, respectively; also, β ∈ R≥0 is a budget. A solution for I is
S ⊆ I such that c(S) ≤ β; the goal is to find a solution of I of maximum profit.
We use the next well known result for knapsack (see, e.g., [30,5]).

Lemma D.1. There is an algorithm KP that is an FPTAS for the 0/1-knapsack
problem.

We use N(v) = {u ∈ I | (u, v) ∈ GI} to denote the set of neighbors of some v ∈ I.
Assume w.l.o.g. that I = {1, . . . , n} for some n ∈ N; then it follows that 0 /∈ I.
The pseudocode of our FPTAS for BIS on split graphs is given in Algorithm 9.
Proof of Lemma 4.1: Consider a BIS instance I composed of a split graph
G = (V,E), a weight function w : V → R≥0, a budget β ∈ R≥0, and an error
parameter ε > 0. Also, let OPT be an optimal solution for I. By Definition 3.2,
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Algorithm 9 FPTAS-BIS(G = (V,E), w, β, ε)

1: for v ∈ KG do
2: Av ← KP((SG \N(v), w, w, β − w(v)), ε).
3: end for
4: A0 ← KP((SG, w, w, β), ε).
5: Return arg maxA∈{Av|v∈KG∪{0} s(A).

OPT is an independent set in G; thus, |OPT∩KG| ≤ 1. If |OPT∩KG| = 0 then
A0 is a (1− ε)-approximation for I by Lemma D.1, since OPT ⊆ SG (Algorithm
KP in particular must return a (1 − ε)-approximation for OPT). Otherwise,
|OPT ∩ KG| = 1; then, there is a single v ∈ KG such that OPT ∩ KG = {v}.
Therefore, OPT\{v} ⊆ SG\N(v) (as OPT is an independent set in G). Then, Av
is a (1− ε)-approximation for I by Lemma D.1 (Algorithm KP in particular must
return a (1− ε)-approximation for OPT \ {v}). Overall, Algorithm FPTAS-BIS is
a (1− ε)-approximation for I. It follows that Algorithm FPTAS-BIS is an FPTAS
(for split graphs) since the running time is |KG| · poly

(
|I|, 1ε

)
= poly

(
|I|, 1ε

)
by

Lemma D.1. �

Proof of Theorem 4.2: Let I = (I, s, E) be a BPS instance. Trivially, the
algorithm returns a packing of I; we are left to show the approximation guarantee.
Note that KGI is a clique in GI ; thus, the items in KGI must be packed in
different bins and it follows that OPT(I) ≥ |KGI |. Moreover, it holds that

2 ≤ OPT(I) ≤ Color Sets(I) ≤ χ(GI)+d2 · s(I)e ≤ |KGI |+1+d2 · s(I)e. (25)

The third inequality holds using Lemma 3.1. Therefore, by (25) there is
α∗ ∈ {0, 1, . . . , d2 · s(I)e+ 1} such that α∗ + |KGI | = OPT(I). Then, by
Lemma 4.1 and Lemma 3.5, Algorithm MaxSize is a

(
1− 1

e

)
-approximation

for the maximization problem of I and the initial partial packing Bα∗ . Thus,

#A∗α∗ = #Aα∗ + #FFD(I \ items(Aα∗))

≤ OPT(I) +
2 ·OPT(I)

e

=

(
1 +

2

e

)
·OPT(I).

The inequality holds by the selection of α∗ and since s(items(Aα∗)) ≥
(
1− 1

e

)
s(I);

therefore, it follows that the total size of items in the instance I \ items(Aα∗) is

bounded by s(I)
e . If s(I)

e ≤ 1 then #FFD(I \ items(Aα∗)) = 1 and otherwise it

holds that #FFD(I \ items(Aα∗)) ≤ 2 · s(I)e by a simple bound on the well known
approximation guarantee of FFD. Thus, the residual instance I \ items(Aα∗)
is packed via FFD in at most max{2 · s(I)e , 1} ≤ 2·OPT(I)

e bins (recall that
OPT(I) ≥ 2). �
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E Omitted Proofs from Section 5

Lemma E.1. Given some k > 4 and a k-restricted B3DM instance J =
(X,Y, Z, T ), it holds that OPT(J ) ≥ |X|+|Y |+|Z|+|T |4·c3 .

Proof. Assume towards contradiction that OPT(J ) < p. Let OPT ⊆ T be some
optimal solution for J . Also, for t ∈ OPT such that t = (x, y, z), we say that
x, y, z ∈ t for simplicity.

|{(x, y, z) ∈ T \OPT | ∃t ∈ OPT s.t. x ∈ t or y ∈ t or z ∈ t}|

≤
∑

(x,y,z)∈OPT

∑
w∈{x,y,z}

|{t′ ∈ T \OPT | w ∈ t′,∃t ∈ OPT s.t. w ∈ t}|

≤ 3 ·OPT(J ) · c < 3 · |T |
c3
· c ≤ |T |

c

(26)

The first inequality holds by the union bound. The second inequality holds
since J is a Bounded-3DM instance.

|{t ∈ T \OPT | OPT ∪ {t} is a feasible solution for J }|
≥ |T | −OPT(J )− |{(x, y, z) ∈ T \OPT | ∃t ∈ OPT s.t. x ∈ t or y ∈ t or z ∈ t}|

≥ |T | −OPT(J )− |T |
c

≥ |T | ·
(

1− 2

c

)
≥ 4 · 2

3
≥ 1.

(27)
The first inequality holds by the definition of solution of a B3DM instance. The

second inequality holds by (26). The third inequality holds because OPT(J ) < |T |
c3

by our assumption. The fourth inequality holds because J is k-restricted for
k > 4. By (27), there is an elements t ∈ T such that OPT ∪ {t} is a solution

of J . This is a contradiction to the optimality of OPT. Thus, OPT(J ) ≥ |T |c3 .
Therefore,

OPT(J ) ≥ |T |
c3
≥ |T |

4 · c3
+
|T |

4 · c3
+
|T |

4 · c3
+
|T |

4 · c3
≥ |T |

4 · c3
+
|X|

4 · c3
+
|Y |

4 · c3
+
|Z|

4 · c3
.

The last inequality holds because each u ∈ X ∪ Y ∪Z appears in at least one
element of T . �

Proof of Lemma 5.2: Assume towards contradiction that for all α > 1 there is
an algorithm Restricted-Solver that is an α-approximation for k-restricted B3DM
problem, for some fixed k ∈ N. Let Enumk be the algorithm that given a B3DM
instance J = (X,Y, Z, T ) iterates over all subsets of T of at most k elements
and chooses the best feasible solution found in the enumeration.
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Observation E.1 Given a non-k-restricted B3DM instance J , Algorithm
Enumk returns an optimal solution for J .

Now, given a B3DM instance J = (X,Y, Z, T ), we compute Enumk(J ) and
Restricted-Solverk(J ) and return the better solution among the solutions found by
the two algorithms. Note that the running time is polynomial by our assumption
for Restricted-Solver and since k is a constant. Indeed, the number of subsets of T
with at most k elements is O(|T |k). If J is a restricted B3DM instance then we

return a solution of cardinality at least OPT(J )
α ; otherwise, by Observation E.1

we return an optimal solution. Overall, we conclude that the above is an α-
approximation for B3DM for any α > 1. A contradiction aince B3DM does not
admit a PTAS [18]. �

Proof of Theorem 5.3: We give the proof for BPB. At the end of the proof, we
explain how a minor modification in the reduction can be used to obtain a similar
result also for BPS. Assume towards contradiction that there is a polynomial-time
algorithm ALG such that ALG is an asymptotic d-approximation for BPB for all
d > 1. By Lemma 5.2 there is α > 1 such that there is no α-approximation for
the k-restricted B3DM problem, for all k ∈ N. Therefore, there is n ∈ N such that
for any BPB instance I with OPT(I) ≥ n it holds that #ALG(I) < d ·OPT(I)
for

d =
(1− 1

α )

80 · c3
(28)

The selection of d becomes clear towards the end of the proof. We show that
using ALG we can approximate n-restricted B3DM within a constant ratio of less
than α; this is a contradiction to Lemma 5.2. For completeness of this section,
we repeat some of the notations given in Section 5. Let J = (X,Y, Z, T ) be an
n-restricted instance of B3DM and let

U = X ∪ Y ∪ Z,
X = {x1, . . . , xx̃}, Y = {y1, . . . , yỹ}, Z = {z1, . . . , zz̃}, T = {t1, . . . , tt̃}.

(29)

We assume w.l.o.g. that each u ∈ X ∪ Y ∪ Z appears in at least one triple of T
(otherwise this element can be omitted from the instance without changing the
set of solutions). We define additional filler elements; these elements are packed in
the optimum of our constructed BPB instance together with elements not taken
to the solution for J . Since we do not know the exact value of the optimum of
J , except that it is a number between n and |T |, we define a family of instances
with different number of filler items. Specifically, for all i ∈ {n, n+ 1, . . . , |T |}, let
Pi, Qi be a set of t̃− i elements and a set of x̃+ ỹ+ z̃− 3 · i elements, respectively,
such that Pi ∩ U = ∅ and Qi ∩ U = ∅. Let Ii = U ∪ Pi ∪ T ∪Q and define the
following bipartite graph: Gi = (Ii, Ei), where E = EX ∪EY ∪EZ such that the
following holds.
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EX = {(x, t) | x ∈ X, t = (x′, y, z) ∈ T, x 6= x′}
EY = {(y, t) | y ∈ Y, t = (x, y′, z) ∈ T, y 6= y′}
EZ = {(z, t) | z ∈ Z, t = (x, y, z′) ∈ T, z 6= z′}

(30)

In words, we define the bipartite graph between the items in U and the triples
in T and connect edges between pairs of an item and a triple such that the item
does not belong to the triple. Now, define the following BPB instances (for all
i ∈ {n, n+ 1, . . . , |T |}):

Ii = (Ii, s, E) s.t.

∀u ∈ U, p ∈ Pi, q ∈ Qi, t ∈ T :

s(u) = 0.15, s(p) = 0.45, s(q) = 0.85, s(t) = 0.55.

(31)

By (31) and that J is n-restricted,then in particular, there are at least
|T | = t̃ ≥ n number of items with sizes strictly larger than 1

2 in Ii. Thus,
OPT(Ii) ≥ n. Therefore, we conclude that ALG can find a feasible packing of Ii
in at most d ·OPT(Ii) bins. Let ALG(Ii) = (B1, . . . , BRi) for Ri ≤ d ·OPT(Ii);
when understood from the context, we use R = Ri. Now, define the following
solution for J :

Si = {(x, y, z) ∈ T | ∃r ∈ [R] s.t. Br = {x, y, z, (x, y, z)}}. (32)

Claim E.2 Si is a solution of J .

Proof. First, by (32) it follows that Si ⊆ T . Now, let (x, y, z) ∈ Si. Since
(B1, . . . , BR) is a partition of Ii by the definition of packing, x, y, z cannot appear
in any other element in Si. ut

Claim E.3 For i = OPT(J ) it holds that OPT(Ii) = s(Ii) = t̃+ x̃+ ỹ+ z̃−3 · i.

Proof. Let OPT be an optimal solution for J . Let Pi = {p1, . . . , pt̃−i} and
Qi = {q1, . . . , qx̃+ỹ+z̃−3·i}. Also, let Xi = {x′1, . . . , xx̃−i}, Yi = {y′1, . . . , y′ỹ−i},
and Zi = {z′1, . . . , z′z̃−i} be all elements in X,Y, Z that do not belong to any
element in OPT, respectively; finally, let T \OPT = {t1, . . . , tt̃−i}. Now, define
the following packing for Ii.

Wi = A⊕B ⊕ C s.t.

A = ({x, y, z, (x, y, z)} | (x, y, z) ∈ OPT)

B =
(
{tk, pk} | k ∈ [t̃− i]

)
C = ({x′k, qk} | k ∈ {1, . . . , x̃− i})
⊕ ({y′k, qk} | k ∈ {x̃− i+ 1, . . . , x̃+ ỹ − 2 · i})
⊕ ({z′k, qk} | k ∈ {x̃+ ỹ − 2 · i+ 1, . . . , x̃+ ỹ + z̃ − 3 · i})

(33)

By (30), (31), and (33) it holds that Wi is a packing of Ii such that Wi =
(R1, . . . , Rr) and for all k ∈ [r] it holds that s(Rk) = 1 and therefore #Wi = s(Ii).
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The proof follows since OPT(Ii) ≥ s(Ii) and thus Wi is an optimal packing for
Ii. Moreover, by (33) it holds that r = t̃+ x̃+ ỹ + z̃ − 3 · i. ut

Claim E.4 |Si| ≥ OPT(J )
α .

Proof. Below we give a lower bound for the number of bins in ALG(Ii) =
(B1, . . . , BR) that are packed with total size at most 0.9.

|{r ∈ [R] | s(Br) ≤ 0.9}| = R− |{r ∈ [R] | s(Br) > 0.9}|
≥ R− |Si| − |Qi| − |Pi|
≥ t̃+ x̃+ ỹ + z̃ − 3 · i− |Si| − (x̃+ ỹ + z̃ − 3 · i)− (t̃− i)
= i− |Si|

(34)
The first inequality holds by the sizes in (31) and (32); that is, by (31) all bins

in ALG(Ii) that do not contain an item from Qi, an item from Pi, or belong to Si
cannot be of total size more than 0.9. The second inequality holds by Claim E.3.
We use the following inequality,

OPT(J ) ≥ t̃+ x̃+ ỹ + z̃

4 · c3
≥ t̃

4 · c3
≥ OPT(Ii)

4 · c3
. (35)

The first inequality holds by Lemma 47. The last inequality holds by (31). Let
F = |{r ∈ [R] | s(Br) ≤ 0.9}| be the number of bad bins in ALG(Ii). Therefore,

F ≥ i− |Si| ≥ OPT(J )− OPT(J )

α
≥

(1− 1
α )

4 · c3
·OPT(Ii). (36)

The first inequality holds by (34). The second inequality holds by the assump-
tion on |Si|. The last inequality holds by (35). Thus,

R ≥ F +(s(Ii)−
9

10
·F ) =

F

10
+OPT(I) ≥

(1− 1
α )

10 · 4 · c3
·OPT(I)+OPT(I). (37)

The first inequality holds because the R bins in ALG(Ii) must contain the
total size of Ii; thus, since each bin in the bad bins is at most 9

10 full, the number
of non-bad bins is at least the total size remaining by deducting the upper bound
of total size 9

10 · F on the total size packed in the bad bins. The first equality
holds by Claim E.3. The last inequality holds by (36). Finally, by (37) we reach

a contradiction since R ≤ d ·OPT(Ii) <
(1− 1

α )

40·c3 ·OPT(I) + OPT(I) by (28). ut

Finally, by Claim E.4 we reach a contradiction to the existence of ALG.
By iterating over all i′ ∈ {n, . . . , |T |}, constructing Ii′ , and returning the best
solution Si∗ , we can in particular find i = OPT(J ) and return Si; by Claim E.4
it holds that the returned solution is an α-approximation. The running time of
constructing the reduction is polynomial, since |T | is polynomial, the constructions
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in (31) and (32) are polynomial, and ALG is polynomial by the assumption. This
is a contradiction that B3DM has an α approximation.

We now give a minor modification to adjust the result for BPS instead of
BPB. The only necessary change is in (31), where for BPS we define

Ii = (Ii, s, E ∪ (T × T )) (38)

(instead of Ii = (Ii, s, E) for BPB). That is, it holds that Ii as defined in (38)
is a BPS instance with a partition T, Ii \ T into a clique T and independent set
Ii \ T (The definition of E is given in (30)). From here, the proof for BPS follows
by symmetric argument to the proof for BPB. �

F A 5
3
-approximation for BPB

In this section, we continue to use maximization subroutines, this time for an
absolute approximation algorithm for bin packing with bipartite conflicts. Note
that Algorithm ApproxBPC (given in Section 3) does not improve the absolute
7
4 -approximation for BPB of Epstein and Levin [8]. Specifically, it fails to find a
packing with better approximation ratio for instances with constant optimum.
In these cases, the exact packing of relatively large items is crucial for the
approximation guarantee; as an example, note that the absolute hardness of
classic BP comes from instances with optimum 2 [10].

To improve Algorithm ApproxBPC, we rely on additional linear program
for assigning items to partially packed bins; this slightly resembles Algorithm
MaxSolve. Although, here we exploit the constant size of the optimum and that
the graph is bipartite to obtain a nearly optimal assignment of items to the bins.

For the following, fix a BPB instance I = (I, s, E) and an error parameter
ε = 0.0001; let TI = {v ∈ I | s(v) ≤ ε} be the set of tiny items and let BI = I \TI
be the set of big items. Such a classification of the items is useful as an optimal
packing of the big items can be easily found using enumeration for fixed size
optimum. We use a linear program to add the tiny items from one side of the
conflict graph to a packing of the big items. We require that assigned items form
an independent set with the already packed big items; however, since we add
tiny items only from one side of the graph, no constraint is needed to guarantee
that the assigned items form an independent set. Formally,

Definition F.1. Given a BPB instance I = (I, s, E), a packing A = (A1 . . . , At)
of the big items of I, and W ∈ {XI ∩ TI , YI ∩ TI} the tiny items from one of the
sides of the bipartition of GI . For all i ∈ [t], let Qi = {v ∈W | Ai∪{v} ∈ IS(GI)}.
Then, define the assignment of I,A,W as the following linear program.
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assignment(I,A,W ) : max
∑
i∈[t]

x̄i,v

s.t.

x̄i,v = 0 ∀i ∈ [t], v ∈W \Qi
s(Ai) +

∑
v∈W

x̄i,v · s(v) ≤ 1 ∀i ∈ [t]∑
i∈[t]

x̄i,v ≤ 1 ∀v ∈W

x̄i,v ∈ [0, 1] ∀i ∈ [t], v ∈W
(39)

For a basic feasible solution x̄ of assignment(I,A,W ), we use fractional(x̄) =
{v ∈ W | ∃i ∈ [t] s.t. λ̄i,v ∈ (0, 1)} to denote the set of all items assigned
fractionally, and by integral(x̄) = W \ fractional(x̄). As we do not use constraints
for most edges in the conflict graph, in the next result we have some nice
integrality properties of (39), based on the ratio between the number of variables
to the number of independent constraints in (39). The analysis of the next lemma
uses the results of [22,27].

Lemma F.2. There is a polynomial time algorithm Round that given a BPC
instance I = (I, s, E) such that OPT(I) ≤ 100, a packing A = (A1 . . . , At) of
I ∩BI , and W ∈ {XI ∩ TI , Yi ∩ TI}, returns a packing B of I ∩ (BI ∪W ) such
that #B = #A and |items(B) \BI | ≥ OPT(assignment(I,A,W ))− t.

By Lemma F.2, if the packing of the big items has a small number t of bins,
and ε is small enough w.r.t. t, then we can assign all fractional items to one extra
bin. Also, the tiny items from the opposite side of W in the bipartition are packed
in extra bins as well. This gives us the Assign subroutine, which enumerates over
packings of the big items and for each packing performs the above assignment
approach. We limit the enumeration only for packings with at most 100 bins, so
the running time remains polynomial. The pseudocode is given in Algorithm 10.

Algorithm 10 Assign(I = (I, s, E),W )

1: Initialize B ← Color Sets(I).
2: for all packings A of I ∩BI such that #B ≤ 100 do
3: Compute C ← Round(I,A,W ).
4: Let BA ← C ⊕ Color Sets(I \ (items(C) ∪BI)).
5: if #B > #BA then
6: B ← BA.
7: end if
8: end for
9: Return B.
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In the analysis of the next lemma, we focus on an iteration in which the
big items are packed as in some optimal solution (there is such an iteration for
OPT(I) ≤ 100). In this iteration, by Lemma F.2, all items from W can be packed
by Round(I,A,W ) by adding at most one bin. Other extra bins are added for
the tiny items not in W by FFD.

Lemma F.3. Given a BPP instance I = (I, s, E) and W ∈ {XI ∩ TI , Yi ∩ TI},
Algorithm 10 returns a packing B of I, such that if OPT(I) ≤ 100 it holds that
#B ≤ OPT(I) + 1 + #FFD(I ∩ (TI \W )).

We use the algorithm of [8] for BPB as a subroutine; this handles well instances
with optimum bounded by 3. Specifically,

Lemma F.4. There is a polynomial time algorithm App-BPB that is a 7
4 -

approximation for BPB.

Using the above, we have all subroutines for the algorithm. The algorithm com-
putes Color Sets, App-BPB on the instance; in addition, the algorithm computes
Assign on both sides of the bipartition. Finally, the algorithm returns the best
packing resulting from the above four attempts. The pseudocode is given in
Algorithm 11.

Algorithm 11 Abs-BPB(I)

1: A1 ← Color Sets(I), A2 ← App-BPB(I), A3 ← Assign(I, XI ∩ TI), A4 ←
Assign(I, YI ∩ TI).

2: Return arg minA∈{A1,A2,A3,A4}#A.

The next theorem follows by a case analysis for different sizes of the optimum.
For OPT(I) ≤ 3 we use Lemma F.4. For 3 < OPT(I) ≤ 100, if there are many
tiny items from both sides of the bipartition, the preferred packing is by Algorithm
Color Sets; otherwise, Algorithm Assign for the side of the bipartition dominating
the number of tiny items gives the improve bound. Finally, for OPT(I) > 100 an
absolute 5

3 -approximation can be easily obtained by the asymptotic guarantee of
Algorithm Color Sets.

Theorem F.5. Algorithm 11 is a 5
3 -approximation for BPB.

F.1 Deferred Proofs from Section F

Proof of Lemma F.2: By the results of [22,27] and also demonstrated in [3],
there is a polynomial time algorithm that given a basic feasible solution x̄ for
(39), finds a non feasible solution ȳ for (39) such that the following holds.

1. If x̄i,v = 0 , then ȳi,v = 0, and if x̄i,v = 1, then ȳi,v = 1.
2. For each i ∈ [t] there is at most one item ui ∈W such that ȳi,ui ∈ (0, 1) and
s(Ai) +

∑
u∈W\{ui} x̄i,v · s(v) ≤ 1.
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Using ȳ, we define the following packing. For all i ∈ [t] define Bi = Ai ∪
{v ∈ W | ȳi,v = 1}. Observe that B = (B1, . . . , Bt) is indeed a packing by
(39), Condition 1, and Condition 2. Finally, we note that |items(B) \ BI | ≥
OPT(assignment(I,A,W ))− t by Condition 1 and Condition 2. �

Proof of Lemma F.3: We use two auxiliary claims.

Claim F.6 The running time of algorithm 2 on I, ε is poly(I).

Proof. By Lemma F.2 and Lemma 3.1 the running time of each iteration of the
for loop in Step 2 is polynomial. Thus, to conclude that the overall running time
is polynomail we bound the number of iterations of the loop. If s(BI) > 100,
then there are no packings of I ∩BI with at most 100 bins; thus, in this case the
running time is polynomial by Step 2 . Otherwise, by the definition of big items
it holds that |BI | ≤ 100

ε . Thus, in this case the number of packings of I ∩ BI
with at most 100 bins is bounded by 100

100
ε ; since ε = 0.0001, the number of such

packins is a constant. Therefore, the running time is polynomial by Step 2. ut

Claim F.7 If OPT(I) ≤ 100, B is a packing for I such that #B ≤ OPT(I) +
1 + #FFD(I ∩ (TI \W ))

Proof. Let OPT = (A1, . . . , An) be an optimal packing for I. Because n =
OPT(I) ≤ 100, then there is an iteration of the for loop of Step 2 such that the
considered packing A = A(OPT) of I ∩BI satisfies:

A(OPT) = (A1 ∩BI , . . . , An ∩BI). (40)

Let C(OPT) = Round(I,A(OPT),W ). We use the following inequality.

s (W \ (items(C(OPT)) ∪BI)) ≤ ε · |W \ (items(C) ∪BI)|
≤ ε · (|W | − (|W | −OPT(I)))

≤ ε · 100

≤ 1.

(41)

The first inequality holds because I\(items(C)∪BI) ⊆ TI . The second inequal-
ity holds since by (39) it holds that the optimum of assignment(I,A(OPT),W )
is |W |. Therefore, by Lemma F.2 it holds that Round(I,A,W ) is a packing in
#A(OPT) ≤ OPT(I) bins of BI and also at least |W | − OPT(I) items from
W . The third inequality holds because OPT(I) ≤ 100. The last inequality holds
since ε < 0.01.

#B ≤ BA(OPT)

= #C(OPT)⊕ Color Sets(I \ (items(C(OPT)) ∪BI))

= #A(OPT)⊕ Color Sets(I \ (items(C(OPT)) ∪BI))

≤ OPT(I) + #FFD ((I \ (items(C(OPT)) ∪BI))) ∩W )

+#FFD ((I \ (items(C(OPT)) ∪BI))) ∩ (TI \W ))

≤ OPT(I) + 1 + #FFD(I ∩ (TI \W )).

(42)
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The first inequality holds by Step 5. The first equality holds by Step 3 and
Step 4. The second equality holds by Lemma F.2. The second inequality holds
by (40), Step 4, and Step 5 of Algorithm 1. The last inequality holds because
s (W \ (items(C(OPT)) ∪BI)) ≤ 1 by (41), thus the algorithm assign the items
in W \ (items(C(OPT)) ∪BI) to a single bin. ut

Observe that Algorithm 10 returns a packing of I also if OPT(I) ≥ 100 by
Step 1, Step 3, Step 4, and Step 6. Therefore, the proof of Lemma F.3 follows by
Claim F.6, Claim F.7. �

Proof of Lemma F.5: Let I = (I, s, E) be a BPB instance. First, observe
that the algorithm returns a packing for I in polynomial time by Lemma F.4,
Lemma 3.1, Lemma F.3, Step 1, and Step 1 of Algorithm 11. For the approxi-
mation guarantee, we split the proof into several complementary cases by the
optimum value of I. Let B = Abs-BPB(I).

Claim F.8 If OPT(I) ≤ 3 then Algorithm 11 returns a packing of at most
5
3 ·OPT(I) bins.

Proof. By Lemma F.4, it holds that #App-BPB(I) ≤ 7
4 ·OPT(I). Observe that

in this case, for OPT(I) = 1 it holds that #App-BPB(I) = 1; for OPT(I) = 2 it
holds that #App-BPB(I) = 3; and for OPT(I) = 3 it holds that #App-BPB(I) =
5. Therefore, the proof follows by Step 1 and Step 2 of Algorithm 11. ut

Claim F.9 If OPT(I) = 4, s(YI ∩ TI) > 1, and s(XI ∩ TI) > 1, then #B ≤
5
3 ·OPT(I).

Proof. We use the following inequality

s(BI) ≤ s(I)−s(TI) ≤ OPT(I)−s(YI ∩TI)−s(XI ∩TI) < 4−1−1 = 2. (43)

The second inequality holds since s(I) ≤ OPT(I). Assume towards a contradiction
that #Color Sets(I) ≥ 7. Therefore, by Step 4, Step 5, and Step 7 of Algorithm 1
it holds that #FFD(I ∩XI) ≥ 4 or #FFD(I ∩ YI) ≥ 4. We split the proof into
several complementary cases.

1. #FFD(I ∩XI) ≥ 5. Then, by Claim B.1 it holds that s(XI) ≥ 4− 4 · ε > 3
(recall that ε < 0.1); this is a contradiction that s(XI ∩ TI) > 1.

2. #FFD(I ∩ YI) ≥ 5. Symmetric argument as in Case 1.
3. #FFD(I ∩XI) = 4. Then,

s(YI) ≤ s(I)− s(XI) ≤ OPT(I)− (3− 3 · ε) ≤ 4− 2.99 = 1.01. (44)

The second inequality holds by Claim B.1. By (44) and Observation B.1 it
holds that #FFD(I ∩ YI) ≤ 2. Hence, we reach a contradiction, since by
Step 4, Step 5, and Step 7 of Algorithm 1 the returned packing is of at most
#FFD(I ∩XI) + #FFD(I ∩ YI) = 4 + 2 = 6 bins.

4. #FFD(I ∩ YI) ≥ 5. Symmetric argument as in Case 1.
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Therefore, we reach a contradiction that #Color Sets(I) ≥ 7. Thus, by Step 1
and Step 2 it holds that #B ≤ 6. ut

Claim F.10 If OPT(I) = 4, then Algorithm 11 returns a packing of at most
5
3 ·OPT(I) bins.

Proof. We split the proof into several sub-cases.

1. s(XI ∩ TI) ≤ 1. Then,

#B ≤ OPT(I) + 1 + #FFD(I ∩ (TI \W )) ≤ OPT(I) + 2 = 6.

The first inequality holds by Lemma F.3, Step 1, and Step 2 of Algorithm 11.
The second inequality holds by Step 4 and Step 5 of Algorithm FFD and
that s(XI ∩ TI) ≤ 1 (i.e., no second bin is opened in the course of FFD as all
items fit in a single bin). The third inequality holds since OPT(I) = 4.

2. s(YI ∩ TI) ≤ 1. Then, #B ≤ 6 by symmetric arguments to Case 1.
3. s(YI ∩ TI) > 1 and s(XI ∩ TI) > 1. The proof follows by Claim F.9. ut

We define t =
⌊
2·OPT(I)

3

⌋
as the extra number of bins allowed to reach our

approximation guarantee.

Claim F.11 If 5 ≤ OPT(I) ≤ 100, #FFD(XI ∩ TI) > t − 1, and #FFD(YI ∩
TI) > t−1, then (#FFD(XI)−1) ·(1−ε) ≤ s(XI) and (#FFD(YI)−1) ·(1−ε) ≤
s(YI).

Proof. We use the following inequality.

s(BI) ≤ s(I)− s(TI)

≤ OPT(I)− s(YI ∩ TI)− s(XI ∩ TI)

≤ OPT(I)− 2 · (t− 1) · (1− ε)
≤ OPT(I)− 2 · t+ 2 + 2ε · (t− 1)

≤ OPT(I)− 2 ·
(

2

3
·OPT(I)− 2

3

)
+ 2 + 200 · ε

≤ 3 +
1

3
+ 0.1− OPT(I)

3

≤ 3 +
2

3
− OPT(I)

3
≤ 2

(45)

The third inequality holds because #FFD(XI∩TI) > t−1, #FFD(YI∩TI) > t−1,

and by Claim B.1. The fifth inequality holds since
⌊
2·OPT(I)

3

⌋
≥ 2·OPT(I)

3 − 2
3 .

The sixth inequality holds since ε < 0.0001. The last inequality holds since
OPT(I) ≥ 5. Because #FFD(XI ∩ TI) > t− 1 and #FFD(YI ∩ TI) > t− 1, then
for OPT(I) ≥ 5 it holds that s(TI ∩XI) > 1 and s(TI ∩ YI) > 1 (FFD returns a
packing with a single bin for instances with total size at most one). Thus, by (45)
and that s(TI ∩XI) > 1 and s(TI ∩ YI) > 1, by Claim B.1 the proof follows. ut
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Claim F.12 If 5 ≤ OPT(I) ≤ 100, then Algorithm 11 returns a packing of at
most 5

3 ·OPT(I) bins.

Proof. The proof follows by the several sub-cases below.

1. #FFD(XI ∩ TI) ≤ t− 1. Then,

#B ≤ OPT(I)+1+#FFD(I∩(TI\W )) ≤ OPT(I)+1+t−1 = OPT(I)+t ≤ 5

3
·OPT(I).

The first inequality holds by Lemma F.3, Step 1, and Step 2 of Algorithm 11.
The second inequality holds by the definition of Algorithm FFD and that
#FFD(XI ∩ TI) ≤ t− 1 (i.e., no second bin is opened in the course of FFD).

2. s(YI ∩ TI) ≤ 1. Then, #B ≤ 5
3 ·OPT(I) by symmetric arguments to Case 1.

3. #FFD(XI ∩ TI) > t− 1 and #FFD(YI ∩ TI) > t− 1. Therefore,

#B ≤ Color Sets(I)

≤ #FFD(XI)⊕#FFD(YI)

≤ s(XI)

1− ε
+ 1 +

s(YI)

1− ε
+ 1

≤ (s(XI) + s(YI)) · (1 + 2 · ε) + 2

≤ s(I) · 1.0002 + 2

≤ OPT(I) + 0.0002 ·OPT(I) + 2

≤ OPT(I) + 3

≤ 5

3
·OPT(I).

The first inequality holds by Step 2 of Algorithm 11. The second inequality
holds by Step 4, Step 5, and Step 7 of Algorithm 1. The third inequality
holds by Claim F.11. The sixth inequality holds since ε = 0.0001. The last
inequalities hold since 5 ≤ OPT(I) ≤ 100.

ut

In the following proof, we use the next result of [8].

Claim F.13 For all BPP instance I = (I, s, E), it holds that OPT(I ∩XI) +
OPT(I ∩ YI) ≤ 3

2 ·OPT(I) + 1.

Now,

Claim F.14 If OPT(I) ≥ 100, Algorithm 11 returns a packing of at most
5
3 ·OPT(I) bins.
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Proof.
#B ≤ Color Sets(I)

≤ #AsymptoticBP(XI)⊕#AsymptoticBP(YI)

≤ 1.02 ·OPT(I ∩XI) + 1.02 ·OPT(I ∩ YI)
= 1.02 · (OPT(I ∩XI) + OPT(I ∩ YI))
≤ 1.02 · (1.5 ·OPT(I) + 1)

≤ 1.53 ·OPT(I) + 1.02

≤ 1.53 ·OPT(I) + 0.02 ·OPT(I)

≤ 1.55 ·OPT(I)

≤ 5

3
·OPT(I).

The first inequality holds by Step 1 and Step 2 of Algorithm 11. The second
inequality holds by Step 4, Step 5, and Step 7 of Algorithm 1. The third inequality
holds by Lemma 2.3. The fourth inequality holds by Claim F.13. The sixth
inequality uses 100 ≤ OPT(I).

ut

Finally, the proof of Theorem F.5 follows by Claim F.8, Claim F.10, Claim F.12,
and Claim F.14. �

G Complete Multi-partite Conflict Graphs

In this section we give an asymptotic lower bound for Bin Packing with multi-
partite conflict graph (BPM), and show that it matches the (absolute) approxima-
tion guarantee of Algorithm Color Sets. The main idea is to use the 3

2 -hardness
of approximation result for classic bin packing. Specifically, we duplicate a BP
instance I with OPT(I) = 2 to generate a BPM instance. Interestingly, we derive
an asymptotic hardness result for the BPM instance using the absolute hardness
of BP. The next results resolve the complexity status of BPM.

Lemma G.1. For any α < 3
2 , there is no asymptotic α-approximation for BPM,

unless P=NP.

Lemma G.2. Algorithm 1 is a 3
2 -approximation for BPM.

We now prove Lemmas G.1 and G.2. Recall that a multipartite graph G =
(V,E) has a partition V1, . . . , Vk of V such that for all i ∈ [k] it holds that Vi
is an independent set and for all u ∈ Vi, v ∈ Vj , i, j ∈ [k], i 6= j it holds that
(u, v) ∈ E. Therefore, for simplicity we use I =

(
I, {G1, . . . , Gn}, s

)
to denote a

BPM instance, where I is a set of items, {G1, . . . , Gn} is the unique partition
of I into independent sets, and s is the size function. Also, let Ij = (Gi, s) be
the corresponding BP instance to the j-th set Gj . Finally, given a packing A
w.r.t. I let A(Gj) be the packing w.r.t. Ij containing all bins in A that contain
items from Gj (observe that each bin in A contains item from only one Gj by
the definition of complete multipartite graph).
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Lemma G.3. For any BPM instance I =
(
I, {G1, . . . , Gn}, s

)
it holds that

OPT(I) =
∑
j∈[n]

OPT(Ij).

Proof. Let A = (A1, . . . , Am) be an optimal packing for I. Since for each j ∈ [n]
the items of Gj must be packed in bins that contain only items from Gj , there
must be at least OPT(Ij) such bins in the packing A. If there are more than
OPT(Ij) such bins it follows that A is not optimal for I. �

Lemma G.4. For any BPM instance I =
(
I, {G1, . . . , Gn}, s

)
such that for

all j ∈ [n] it holds that OPT(Ij) = 2, and a packing A = (A1, . . . , Am) of I
with #A < 1.5 ·OPT(I), there is j ∈ [n] such that |A(Gj)| ≤ 2 and A(Gj) is a
packing for Gj.

Proof. Assume towards a contradiction that for all j ∈ [n] it holds thatA(Gj) ≥ 3.
Therefore,

m =
∑
j∈[n]

A(Gj) ≥ 3n =
3

2

∑
j∈[n]

OPT (Gj) =
3

2
OPT (I). (46)

The first equality is because in BPM each bin contains items only from one
group. The first inequality is by the assumption that A(Gj) ≥ 3. The second
equality is because for all j ∈ [n] it holds that OPT (Gj) = 2. The last equality
is by Lemma G.3. By (46) it holds that m ≥ 1.5 ·OPT(I) in contradiction. �

We define a duplication of a BP instance, which is simply duplicate the set of
items and giving each item the original size. Formally,

Definition G.5. Let G = (I, s) be a BP instance. A duplication of G is a BP
instance G′ = (I ′, s′) where there is a bijection σ : I ′ → I such that for all i ∈ I ′
it holds that s(i) = s (σ(i)).

Lemma G.6. Let G = (I, s) be a BP instance and G′ = (I ′, s′) be a duplication
of G. Then, there is a polynomial time algorithm that given a packing of G′ with
size m finds a packing of G with size m.

Proof. Let (A′1, . . . , A
′
m) be a packing of G′ and let σ : I ′ → I be the bijection

promised by Definition G.5. Observe that σ can be found in polynomial time by
sorting the items according to their sizes. For all a ∈ [m] define Aa = {σ(i) | i ∈
A′a}. Note that for all i ∈ I there is a ∈ [m] such that i ∈ Aa since there is i′ ∈ I ′
such that σ(i′) = i because σ is a bijection. In addition, for all a ∈ [m] it holds
that s(Aa) = s(A′a) ≤ 1. The first equality is by the definition of σ. Hence, it
follows that (A1, . . . , Am) is a packing of G. �

Lemma G.7. For any n ∈ N, it is NP-hard to find a packing with size 2 of a
BP instance G = (I, s) with |I| ≥ n and OPT(G) = 2.
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Proof. We use a reduction from BP, which is known to be NP-hard even for
instances G with OPT (G) = 2 [10]. The reduction is defined as follows given
a BP instance G = (I, s) with OPT (G) = 2. If |I| ≥ n, then return G′ = G.
Otherwise, let G′ = (I ∪ I ′, s′) where |I ′| = n − |I|, for all i ∈ I it holds that
s′(i) = s(i), and for all i ∈ I ′ it holds that s′(i) = 0. Given a packing of G′ with
size m we can find a packing to G with size m, by removing the items from I ′.
Moreover, given a packing of G with size m we can find a packing to G′ with size
m by adding each i ∈ I ′ to one of the bins in the packing arbitrarily. This results
in a feasible packing since the size of the items in I ′ is 0. The claim follows. �

Proof of Lemma G.1: Assume towards a contradiction that there is α < 1.5
such that there is an asymptotic α-approximation for BPM, and denote by X
the algorithm achieving the above approximation. Denote by X(I) the packing
returned by X on some instance I and let c = 1.5−α

2 . By the definition of
asymptotic α-approximation, there is n ∈ N such that for all n′ ≥ n and a BPM
instance I with OPT(I) = n′ it holds that

#X(I) ≤ α ·OPT(I) + c ·OPT(I) = (α+ c) ·OPT(I) < 1.5 ·OPT(I). (47)

The first inequality is because X is an asymptotic α-approximation for BPM.
The second inequality is because α < 1.5. Let J = (I, s) be a BP instance
such that |I| ≥ n. Let (G1, s), . . . , (Gn, s) be n distinct duplications of I and
let In =

(
In, {G1, . . . , Gn}, s

)
where In =

⋃
j∈[n]Gj . Note that the construction

of In can be done in polynomial time because |I| ≥ n. Let A = X(In) and
let A = (A1, . . . , Am). By Lemma G.3 it follows that OPT(In) ≥ n and by
Equation 47 it holds that |A| < 1.5 ·OPT(I). Therefore, by Lemma G.4 there is
j ∈ [n] such that |A(Gj)| ≤ 2 and that A(Gj) is a packing for Ij . Then, using
A(Gj), we can find in polynomial time a packing for J with size at most 2 by
Lemma G.6. Unless P=NP, this is a contradiction by Lemma G.7. �

Proof of Lemma G.2: Let I = (I, {G1, . . . , Gn}, s) be a BPM instance. Then,

#Color Sets(I) =
∑
j∈[n]

#FFD(Ij) ≤
∑
j∈[n]

3

2
OPT(Ij) =

3

2

∑
j∈[n]

OPT(Ij) =
3

2
OPT(I).

The first equality is by Algorithm 1. The first inequality is is since FFD is a
3
2 -approximation for BP. The last equality is by Lemma G.3. �
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