
Parameterized Complexity of Broadcasting in Graphs∗

Fedor V. Fomin† Pierre Fraigniaud‡ Petr A. Golovach†

Abstract

The task of the broadcast problem is, given a graph G and a source vertex s, to compute
the minimum number of rounds required to disseminate a piece of information from s to all
vertices in the graph. It is assumed that, at each round, an informed vertex can transmit the
information to at most one of its neighbors. The broadcast problem is known to NP-hard.
We show that the problem is FPT when parametrized by the size k of a feedback edge-set,
or by the size k of a vertex-cover, or by k = n − t, where t is the input deadline for the
broadcast protocol to complete.

1 Introduction

The aim of broadcasting in a network is to transmit a message from a given source node of
the network to all the other nodes. Let G = (V,E) be a connected simple graph modeling
the network, and let s ∈ V be the source of a message M . The standard telephone model [20]
assumes that the communication proceeds in synchronous rounds. At any given round, any
node u ∈ V aware of M can forward M to at most one neighbor v of u. The minimum number
of rounds for broadcasting a message from s in G to all other vertices is denoted by b(G, s), and
we let b(G) = maxs∈V b(G, s) be the broadcast time of graph G. As the number of informed
nodes (i.e., nodes aware of the message) can at most double at each round, b(G, s) ≥ ⌈log2 n⌉
in n-node networks. On the other hand, since G is connected, at least one uninformed node
receives the message at any given round, and thus b(G) ≤ n − 1. Both bounds are tight, as
witnessed by the complete graph Kn and the path Pn, respectively. The problem of computing
the broadcast time b(G, s) for a given graph G and a given source s ∈ V is NP-hard [29]. Also,
the results of [26] imply that it is NP-complete to decide whether b(G, s) ≤ t for graphs with
n = 2t vertices.

Three lines of research have emerged since the early days of studying broadcasting in the
telephone model. One line is devoted to determining the broadcast time of specific classes
of graphs judged important for their desirable properties as interconnection networks (e.g.,
hypercubes, de Bruijn graphs, Cube Connected Cycles, etc.). We refer to the surveys [14, 21]
for this matter. Another line of research takes inspiration from extremal graph theory. It aims
at constructing n-node graphs G with optimal broadcast time b(G) = ⌈log2 n⌉ and minimizing
the number of edges sufficient to guarantee this property. Let B(n) be the minimum number of
edges of n-node graphs with broadcast time ⌈log2 n⌉. It is known [17] that B(n) = Θ(nL(n))
where L(n) denotes the number of consecutive leading 1s in the binary representation of n− 1.
On the other hand, it is still not known whether B(·) is non-decreasing for 2t ≤ n < 2t+1, for
every t ∈ N. We are interested in a third, more recent line of research, namely the design of

∗The research leading to these results has received funding from the Research Council of Norway via the
project BWCA (grant no. 314528).

†Department of Informatics, University of Bergen, Norway
‡Institut de Recherche en Informatique Fondamentale, Université Paris Cité and CNRS, France. Additional

support from the ANR project DUCAT.

1

ar
X

iv
:2

30
6.

01
53

6v
1

 [
cs

.D
S]

 2
 J

un
 2

02
3

algorithms computing efficient broadcast protocols. Note that a protocol for broadcasting from
a source s in a graph G can merely be represented as a spanning tree T rooted at s, with an
ordering of all the children of each node in the tree.

Polynomial-time algorithms are known for trees [29] and some classes of tree-like graphs [4,
16, 19]. Several (polynomial-time) approximation algorithms have been designed for the broad-
cast problem. In particular, the algorithm in [24] computes, for every graph G and every
source s, a broadcast protocol from s performing in 2 b(G, s) +O(

√
n) rounds, hence this algo-

rithm has approximation ratio 2 + o(1) for graphs with broadcast time ≫
√
n, but Θ̃(

√
n) in

general. Later, a series of papers tighten the approximation ratio, from O(log2 n/ log logn) [28],
to O(log n) [1], and eventually O(log n/ log logn) [10], which is, up to our knowledge the cur-
rent best approximation ratio for the broadcast problem. Better approximation ratios can be
obtained for specific classes of graphs [2, 3, 18].

Despite all the achievements obtained on the broadcast problem, it has not yet been ap-
proached from the parameterized complexity viewpoint [8]. There might be a good reason for
that. Since at most 2t vertices can have received the message after t communication rounds,
an instance of the broadcast problem with time-bound t in an n-vertex graph is a no-instance
whenever n > 2t. It follows that the broadcast problem has a trivial kernel when parameterized
by the broadcast time. This makes the natural parameterization by the broadcast time not very
significant. Nevertheless, as we shall show in this paper, there is a parameterization below the
natural upper bound for the number of rounds that leads to interesting conclusions.

1.1 Our Results

Let Telephone Broadcast be the following problem: given a connected graph G = (V,E), a
source vertex s ∈ V , and a nonnegative integer t, decide whether there is a broadcast protocol
from s in G that ensures that all the vertices of G get the message in at most t rounds. We
first show that Telephone Broadcast can be solved in a single-exponential time by an exact
algorithm.

Theorem 1. Telephone Broadcast can be solved in 3n · nO(1) time for n-vertex graphs.

Motivated by the fact that the complexity of Telephone Broadcast remains open in
pretty simple tree-like graphs (e.g., cactus graphs, and therefore outerplanar graphs), we first
consider the cyclomatic number as a parameter, i.e., the minimum size of a feedback edge set,
that is, the size of the smallest set of edges whose deletion results to an acyclic graph. We show
that Telephone Broadcast is FPT when parameterized by this parameter.

Theorem 2. Telephone Broadcast can be solved in 2O(k log k) ·nO(1) time for n-vertex graphs
with cyclomatic number at most k.

As far as we know, no NP-hardness result is known on graphs of treewidth at most k ≥ 2.
While we did not progress in that direction, we provide an interesting result for a stronger
parameterization, namely the vertex cover number of a graph. (Note that, for all graphs, the
treewidth never exceeds the vertex cover number.) As for the cyclomatic number, we do not
only show that, for every fixed k, the broadcast time can be found in polynomial time on graphs
with vertex cover at most k, but we prove a stronger result: the problem is FPT.

Theorem 3. Telephone Broadcast can be solved in 2O(k2k) ·nO(1) time for n-vertex graphs
with a vertex cover of size at most k.

Finally, we focus on graphs with very large broadcast time, for which the algorithm in [24]
provides hope to derive very efficient broadcast protocols as this algorithm constructs a broad-
cast protocol performing in 2 b(G) + O(

√
n) rounds. While we were not able to address the

2

problem over the whole range
√
n ≪ t ≤ n − 1, we were able to provide answers for the range

n − O(1) ≤ t ≤ n − 1. More specifically, we consider the parameter k = n − t, and study the
kernelization for the problem under such parametrization.

Theorem 4. Telephone Broadcast admits a kernel with O(k) vertices in n-vertex graphs
when parameterized by k = n− t.

As a direct consequence of Theorem 4, Telephone Broadcast is FPT for the parameter-
ization by k = n− t. Specifically the problem can be solved in 2O(k) · nO(1) time.

1.2 Related Work

A classical generalization of the broadcast problem is the multicast problem, in which the
message should only reach a given subset of target vertices in the input graph. Many of the
previously mentioned approximation algorithms for the broadcast problem extend to the mul-
ticast problem, and, in particular, the algorithm in [10] is an O(log k/ log log k)-approximation
algorithm for the multicast problem with k target nodes.

Many variants of the telephone model have been considered in the literature, motivated
by different network technologies. One typical example is the line model [11], in which a call
between a vertex u and a vertex v is implemented by a path between u and v in the graph, with
the constraint that all calls performed at the same round must be performed along edge-disjoint
paths. (The intermediate nodes along the path do not receive the message, which “cut through”
them.) Interestingly, the broadcast time of every n-node graph is exactly ⌈log2 n⌉. The result
extends to networks in which the paths are constructed by an underlying routing function [6].
The vertex-disjoint variant of the line model, i.e., the line model in which the calls performed
at the same round must take place along vertex-disjoint paths, is significantly more complex.
There is an O(log n/ log log n)-approximation algorithm for the vertex-disjoint line model [24],
which naturally extend to an O(log n/ logOPT)-approximation algorithm — see also [13] where
an explicit O(log n/ logOPT)-approximation algorithm is provided. It is also worth mentioning
that the broadcast model has been also extensively studied in models aiming at capturing any
type of node- or link-latencies, e.g., the message takes λe units of time to traverse edge e, and
the algorithm in [1] also handles such constraints. Other variants take into account the size of
the message, e.g., a message of L bits takes time α+ β ·L to traverse an edge (see [22]). Under
such a model, it might be efficient to split the original message into smaller packets and pipeline
the broadcast of these packets through disjoint spanning trees [22, 30].

2 Preliminaries

Parameterized Complexity. We refer to the book of Cygan et al. [8] for a detailed intro-
duction to Parameterized Complexity and give here only crucial definitions.

Formally, a parameterized problem is language L ⊆ Σ∗ × N, where Σ∗ is the set of strings
over a finite alphabet Σ. Hence, an instance of a parameterized problem is a pair (x, k), where
x ∈ Σ∗ is a string encoding the input and k ∈ N is a parameter. A parameterized problem is
said to be fixed-parameter tractable (or FPT) if it can be solved in f(k) · |x|O(1) time for some
computable function f(·).

A kernelization algorithm (or simply a kernel) for a parameterized problem L is a polynomial
algorithm that maps each instance (x, k) of L into an instance (x′, k′) of the same problem such
that

(i) (x, k) ∈ L if and only if (x′, k′) ∈ L, that is, the instances (x, k) and (x′, k′) are equivalent,
and

3

(ii) |x′|+ k′ ≤ g(k) for a computable function g(·).

It is said that g(·) is the kernel size, and a kernel is polynomial if g(·) is polynomial. It is
well-known that every decidable parameterized problem is FPT if and only if it has a kernel.
However, there are FPT parameterized problems that do not admit polynomial kernels up to
some reasonable complexity assumptions. It is common to present a kernelization algorithm as
a series of reduction rules. A reduction rule for a parameterized problem is an algorithm that
takes an instance of the problem and computes in polynomial time another instance that is
more “simple” in a certain way. A reduction rule is safe (or sound) if the computed instance is
equivalent to the input instance.

Integer Programming. We will use integer linear programming as a subroutine. The task
of p-Variable Integer Linear Programming Feasibility problem is to decide, given an
m× p matrix A over Z and a vector b ∈ Zm, whether there is a vector x ∈ Zp such that Ax ≤ b.
It was proved by Lenstra [25] and Kannan [23] that this problem is FPT when parameterized
by p and these results were improved by Frank and Tardos [15].

Lemma 1 ([15, 23, 25]). p-Variable Integer Linear Programming Feasibility can be
solved using O(p2.5p+o(p) · L) arithmetic operations and space polynomial in L, where L is the
number of bits in the input.

Graphs. We use standard graph-theoretic notation and refer to the textbook of Diestel [9]
for non-defined notions. We consider only finite, undirected graphs. We use V (G) and E(G) to
denote the sets of vertices and edges of a graph G. We use n and m to denote the number of
vertices and edges if this does not create confusion. For a graph G and a subset X ⊆ V (G) of
vertices, we write G[X] to denote the subgraph of G induced by X. We use G −X to denote
the graph obtained by deleting the vertices of X, that is, G−X = G[V (G) \X]; we write G− v
instead of G − {v} for a single element set. We use the same convention for edges and write
G− S and G− e for the graph obtained from G by the removal of a set of edges S and a single
edge e, respectively. For a vertex v, NG(v) = {u ∈ V (G) | vu ∈ E(G)} is the open neighborhood
of v, and dG(v) = |NG(v)| is the degree of v. For a set S ⊆ V (G), NG(S) =

⋃
v∈S NG(v) \ S.

Two vertices u and v are (false) twins if NG(u) = NG(v). It is said that G′ = G/e is obtained by
the contraction of an edge e = uv ∈ E(G) if G′ is obtained by removing u and v and replacing
them by a single vertex adjacent to all the vertices of NG({u, v}). Recall that in Telephone
Broadcast we have a specific source vertex s. To keep such a vertex under contraction, we
assume that the new vertex obtained by the contraction of an edge incident to s becomes the
source and we use the same name s for it.

We write P = v1 · · · vk to denote a path with the vertices v1, . . . , vk and edges v1v2, . . . , vk−1vk;
v1 and vk are the end-vertices of P and the vertices v2, . . . , vk−1 are internal. We consider only
simple paths, that is, the vertices v1, . . . , vk are distinct. We say that P is an (v1, vk)-path. The
length of P is the number of edges in P , and the distance distG(u, v) between two vertices u and
v is the minimum length of a (u, v)-path. We remind that G is connected if for every two vertices
u and v, G has a (u, v)-path. We always assume that the considered graphs are connected if
it is not explicitly said to be otherwise. If G is disconnected, then the inclusion-wise maximal
induced connected subgraphs of G are (connected) components. An edge e = uv is a bridge
of a connected graph G if G − e is disconnected; note that G − e has exactly two connected
components and one of them contains u and the other v. We also remind that T is a spanning
tree of G if T is a tree subgraph of G with the same set of vertices as G.

A matching M in a graph G is a set of edges with distinct endpoints. A vertex v is saturated
in a matching M if v is incident to an edge of M .

4

A set of vertices S of a graph G is a vertex cover if each edge of G has at least one of its
endpoints in G. The vertex cover number of G is the minimum size of a vertex cover. Note
that for a vertex cover S, the set I = V (G) \ S is an independent set, that is, any two distinct
vertices of I are not adjacent. It is well-know (see [8]) that it is FPT to decide whether G has
a vertex cover of size at most k when the problem is parameterized by k. The currently best
algorithm, given by Chen, Kanj, and Xia [5], runs in 1.2738k · nO(1) time.

A set of edges S of a graph G is a feedback edge set if G− S has no cycle. The cyclomatic
number of a graph G is the minimum size of a feedback edge set. It is well-known, that for a
connected graph G, the cyclomatic number is m− n+ 1 and a feedback edge set can be found
in linear time by constructing a spanning tree (see, e.g., [7, 9]).

Broadcasting. Let G be a graph and let s ∈ V (G) be a source vertex from which a message is
broadcasted. In general, a broadcasting protocol is a mapping that for each round i ≥ 1, assigns
to each vertex v ∈ V (G) that is either a source or has received the message in rounds 1, . . . , i−1,
a neighbor u to which v sends the message in the i-th round. However, it is convenient to note
that it can be assumed that each vertex v that got the message, in the next d ≤ dG(v) rounds,
transmits the message to some neighbors in a certain order in such a way that each vertex
receives the message only once. This allows us to formally define a broadcasting protocol as a
pair (T, {C(v) | v ∈ V (T)}), where T is a spanning tree of G rooted in s and for each v ∈ V (T),
C(v) is an ordered set of children of v in T . As soon as v gets the message, v starts to send
it to the children in T in the order defined by C(v). For G and s ∈ V (G), we use b(G, s) to
denote the minimum integer t ≥ 0 such that there is a broadcasting protocol such that every
vertex of G gets the message after t rounds. We say that a broadcasting protocol ensuring that
every vertex gets a message in b(s,G) rounds is optimal. We use the following straightforward
observation.

Observation 1. Let T be a spanning tree of G and let s ∈ V (G). Then b(G, s) ≤ b(T, s).

Observation 1 can be generalized as follows.

Observation 2. Let T be a tree subgraph of G and let s ∈ V (T). Then b(G, s) ≤ b(T, s) +
|V (G) \ V (T)|.

Proof. Let P = (T, {C(v) | v ∈ V (T)}) an optimal broadcasting protocol for T . We extend it
to a protocol for G as follows. First, we construct a spanning subtree T ′ of G by extending T ,
that is, T is a subtree of T ′. For every v ∈ V (T), we construct the ordered set of the children
C ′(v) by appending to the end of C(v) the children of v in T ′ that are not in T in arbitrary
order. For every v ∈ V (T ′)\V (T), we define C ′(v) to be an arbitrary ordered set of the children
of v. We have that (T ′, {C ′(v) | v ∈ V (T)}) is a broadcasting protocol for G that takes at
most b(T, s) + |V (G) \ V (T)| rounds to transfer the message to the vertices of G, because the
vertices of T get the message in the first b(T, s) rounds and in every subsequent round, at least
one vertex of V (G) \ V (T) receives the message, unless all the vertices are already aware of the
message.

As it was proved by Proskurowski [27] and Slater, Cockayne, and Hedetniemi [29], b(G, s)
can be computed in linear time for trees by dynamic programming.

Lemma 2 ([27, 29]). For an n-vertex tree T and s ∈ V (T), b(T, s) can be computed in O(n)
time.

5

3 Exact Algorithm for the Broadcast Problem

We prove that Telephone Broadcast can be solved in a single-exponential time by an exact
algorithm, hence establishing Theorem 1. We do so using dynamic programming over subsets
(see the textbook [12] for an introduction to exact exponential algorithms).

Proof of Theorem 1. Let (G, s, t) be an instance of Telephone Broadcast. For each
i ∈ {0, . . . , t}, we enumerate all subsets of vertices X ⊆ V (G) containing s such that G[X] is
a connected graph and b(G[X], s) ≤ i. We denote these families of sets Li for i ∈ {0, . . . , t}.
Observe that (G, s, t) is a yes-instance if and only if V (G) ∈ Lt. For i = 0, it is straightforward
that Li contains the unique set {s}. We consecutively compute Li for i = 1, 2, . . . , t using the
following claim.

Claim 3.1. Let X ⊆ V (G) such that s ∈ X and G[X] is connected, and let i ≥ 1. Then
b(G[X], s) ≤ i if and only if there is Y ⊆ X such that (i) s ∈ Y , G[Y] is connected, b(G[Y], s) ≤
i − 1, and (ii) either X = Y or the bipartite graph H with the set of vertices X and the edges
E(H) = {uv ∈ E(G) | u ∈ Y, v ∈ X \ Y } has a matching saturating every vertex of X \ Y .

Proof of Claim 3.1. Suppose that for X ⊆ V (G), it holds that s ∈ X, G[X] is connected, and
b(G[X], s) ≤ i. Consider an optimal broadcasting protocol for G[X] and s. Let Y ⊆ X be the
set of vertices that receive the message in the first i− 1 rounds. We have that (i) holds for Y .
Condition (ii) is trivial if X = Y . Assume that this is not the case and X \ Y ̸= ∅. Then for
every v ∈ X \Y there is uv ∈ Y such that v receives the message of the i-th round from uv. We
obtain that M = {vuv | v ∈ X \ Y } is a matching in H saturating every vertex of X \ Y .

Assume now that there is Y ⊆ X satisfying (i) and (ii). Then there is a broadcasting
protocol for G[Y] and s such that every vertex of Y gets the message in i−1 rounds. If X = Y ,
then b(G[X], s) ≤ i− 1. Suppose that X \ Y ̸= ∅. Then H has a matching M which saturates
every vertex of X ∈ Y . We extend the protocol for Y and s by defining that each vertex u ∈ Y
which is saturated in M sends the message to the neighbor along the edge of M incident to v
in the last available round. Thus each vertex of X \ Y gets the message in i rounds.

Suppose that i ≥ 1 and the family Li−1 is already constructed. Initially, we set Li := Li−1.
Then we consider all subsets X ⊆ V (G) and proper Y ⊂ X such that s ∈ X, G[X] is connected,
and Y ∈ Li−1. For each pair (X,Y) of such sets, we check whether the bipartite graph H with
the set of vertices X and the edges E(H) = {uv ∈ E(G) | u ∈ Y, v ∈ X \ Y } has a matching
saturating every vertex of X \ Y , and if this holds, then we set Li := Li ∪ {X}.

Claim 3.1 guarantees correctness of the construction of Li from Li−1. To evaluate the
running time, note that we consider at most 3n pairs of sets (X,Y). Then for each pair, H can
be constructed in polynomial time and then the existence of a matching saturating the vertices
of X \ Y can be verified in polynomial time in the standard way (see, e.g., [7]). Thus Li can
be constructed in 3n · nO(1) time. Taking into account that we iterate for i = 1, 2, . . . , t and we
can assume without loss of generality that t ≤ n − 1, we have that the total running time is
3n · nO(1).

4 Telephone Broadcast parameterized by the cyclomatic num-
ber

In this section, we prove Theorem 2. We need some auxiliary results.
Let T be a tree and let x and y be distinct leaves, that is, vertices of degree one in T . For an

integer h ≥ 0, we use bh(T, x, y) to denote the minimum number of rounds needed to broadcast
the message from the source x to y in such a way that every vertex of T gets the message in at

6

most h rounds. We assume that bh(T, x, y) = +∞ if b(T, x) > h. We prove that bh(T, x, y) can
be computed in linear time similarly to b(T, s) (see [27, 29]). The difference is that it is more
convenient to use recursion instead of dynamic programming.

Lemma 3. For an n-vertex tree T with given distinct leaves x and y of T and an integer h ≥ 0,
bh(T, x, y) can be computed in O(n) time.

Proof. Let T be a tree and let x and y be leaves of T . Let also h ≥ 0 be an integer. We use
Lemma 2 to check whether b(T, x) ≤ h and set bh(T, x, y) = +∞ if b(T, x) > h, because in this
case the message cannot be transmitted to every vertex of T in h rounds. From now we assume
that b(T, x) ≤ h. Notice that this implies that bh(T, x, y) < +∞.

Let P = v1 . . . vℓ be the (x, y)-path in T , x = v1 and y = vℓ. Note that if ℓ = 2, then,
trivially, bh(T, x, y) = 1. Suppose that ℓ ≥ 3. Denote by T ′ the subtree of T containing v2 and
y such that v2 is a leaf of T ′. We construct recurrences that allow to compute bh(T, x, y) from
bh′(T ′, v2, y) for a certain h′ < h.

If dT (v2) = 2, then bh(T, x, y) = 1 + bh−1(T
′, v2, y) by definition.

Suppose that dT (v2) ≥ 3. Denote by u1, . . . , uk the neighbors of v2 distinct from v1 and v3,
and let T1, . . . , Tk be the connected components of T − v2 containing u1, . . . , uk, respectively.
Notice that k ≤ h − 2, because at least k + 2 rounds are needed to transmit the message to
u1, . . . , uk and v3. Observe also that the message is broadcasted from v2 to every ui and to
broadcast the message from each ui to other vertices of Ti, we can use an optimal protocol for
Ti with the source ui. We compute b(Ti, ui) for i ∈ {1, . . . , k} and assume that b(T1, u1) ≥
· · · ≥ b(Tk, uk). Observe that max{b(Ti, ui) + i | i ∈ {1, . . . , k}} ≤ h − 1, because at least
max{b(Ti, ui) + i | i ∈ {1, . . . , k}} + 1 rounds are necessary to transmit the message to all the
vertices of T1, . . . , Tk.

Because max{b(Ti, ui)+i | i ∈ {1, . . . , k}} ≤ h−1, there is j ∈ {1, . . . , k+1} such that either
j ≤ k and max{b(Ti, ui) + i + 1 | i ∈ {j, . . . , k}} ≤ h − 1 or j = k + 1. We find the minimum
value of j satisfying this condition. Observe that j +1 is the minimum number of a round such
that the message can be transmitted from v2 to v3 in such a way that every vertex of T1, . . . , Tk

gets the message in at most h rounds. Because we aim to minimize the transmission time to
y = vk, we set bh(T, x, y) = j + bh−j(T

′, v2, y).
Correctness of the algorithm follows from its description. To evaluate the running time, note

that to compute bh(T, x, y), we have to find P = v1 . . . vℓ and then for each i ∈ {2, . . . , ℓ}, com-
pute the neighbors ui1, . . . , u

i
ki

of vi distinct from vi−1 and vi+1 and the components T i
1, . . . , T

i
ki

of T −V (P) containing ui1, . . . , u
i
ki
. All these computations can be done in the total linear time.

Also in O(n) time, we can order T i
1, . . . , T

i
ki

by the decrease b(T i
p, up) for p ∈ {1, . . . , ki}. Then

computing bh(T, x, y) can be done in linear time following the recurrences.

We also need a subroutine computing the minimum number of rounds for broadcasting from
two sources with the additional constraint that the second source starts sending the message
with a delay. Let T be a tree and let x and y be distinct leaves of T . Let also h ≥ 0 be an
integer. We use dh(T, x, y) to denote the minimum rounds needed to broadcast the message
from x and y to every vertex of T − y in such a way that y can send the message starting from
the (h+1)-th round (that is, we assume that y gets the message from outside in the h-th round).

Lemma 4. For an n-vertex tree T with given distinct leaves x and y of T and an integer h ≥ 0,
dh(T, x, y) can be computed in O(n2) time.

Proof. Let T be a tree and let x and y be leaves of T . Let also h ≥ 0 be an integer. Consider
the (x, y)-path P = v1 . . . vℓ in T , where x = v1 and y = vℓ. Then we have that dh(T, x, y) =
b(T − y, x) if b(T − y, x) ≤ h. If b(T − y, x) > h, then

dh(T, x, y) = min
i∈{2,...,ℓ}

max{b(T i
1, x), b(T

i
2, y) + h}, (1)

7

where T i
1 is the connected component of T − vi−1vi containing x and T i

2 is the connected
component of T − vi−1vi containing y. The equality (1) follows from the observation that the
sets of vertices receiving the message from x and y, respectively, should form a partition of V (T),
where each part induces a subtree. The path P can be found in linear time. Then computing
dh(T, x, y) can be done in O(n2) time using Lemma 2.

Now we are ready to prove Theorem 2.

Proof of Theorem 2

Let (G, s, t) be an instance of Telephone Broadcast. If G is a tree, then we can compute
b(G, s) in linear time using Lemma 2. Assume that this is not the case, and let k = m−n+1 ≥ 1
be the cyclomatic number of G. We find in linear time a feedback edge set S of size k by finding
an arbitrary spanning tree F of G and setting S = E(G) \ E(F).

We iteratively construct the set U as follows. Initially, we set U := W = {s} ∪ {v ∈ V (G) |
v is an endpoint of an edge of S}. Then while G − U has a vertex v such that G has three
internally vertex-disjoint paths joining v and U , we set U := U ∪ {v}. The properties of U are
summarized in the following claims.

Claim 4.1. |U | ≤ 4k.

Proof of Claim 4.1. The claim is trivial if U = W , because |U | ≤ 2k + 1 ≤ 4k in this case.
Assume that |U | > |W |, that is, G−W has a vertex v such that G has three internally vertex-
disjoint paths joining v and W . Consider the graph G′ obtained from G by the iterative deletion
of all the vertices of degree one that are not in W . Observe that F = G′ − S is a tree whose
leaves are in W , and each vertex v ∈ V (G′) \ W can be joined by three vertex-disjoint paths
with W if and only if v is a vertex of degree at least three in F . It is folklore knowledge that
if ℓ is the number of leaves and p is the number of vertices of degree at least three in a tree,
then p ≤ ℓ− 2. This implies that U is constructed from W by adding at most |W | − 2 ≤ 2k− 1
vertices. Hence, |U | ≤ 4k.

Claim 4.2. For each connected component F of G−U , F is a tree such that each vertex x ∈ U
has at most one neighbor in F and

(i) either U has a unique vertex x that has a neighbor in F ,

(ii) or U contain exactly two vertices x and y having neighbors in F .

Proof of Claim 4.2. We have that each connected component F of G−U is a tree because G−S
is a tree and the endpoints of the edges of S are in U . By the same reasons, each vertex x ∈ U
is adjacent to at most one vertex of each F . Consider arbitrary F . If only one vertex x ∈ U
has a neighbor in F , then (i) is fulfilled. Suppose that at least two vertices of U are adjacent to
some vertices of F . Then exactly two vertices x, y ∈ U have neighbors in F , because otherwise
F would have a vertex v which could be joined with U by three vertex-disjoint paths but such
a vertex would be included in U . This implies that (ii) holds and concludes the proof.

If F is a connected component of G−U satisfying (i) of Claim 4.2, then we say that F is a
x-tree and x is its anchor. For a connected component F of G− U satisfying (ii), we say that
F is an (x, y)-tree and call x and y anchors of F . We also say that F is anchored in x (x and
y, respectively). Because G−S is a tree and |U | ≤ 4k− 1 by Claim 4.1, we immediately obtain
the next property.

Claim 4.3. For every distinct x, y ∈ U , G − U has at most one (x, y)-tree. Furthermore, the
graph H with V (H) = U such that xy ∈ E(H) if and only if G−U has an (x, y)-tree is a forest.
In particular, the total number of (x, y)-trees is at most 4k − 1.

8

To prove the theorem, we have to verify the existence of a broadcasting protocol P =
(T, {C(v) | v ∈ V (T)}) that ensures that every vertex receives the message after at most t
rounds. To do it, we guess the scheme of P restricted to U . Namely, we consider the graph
G′ obtained from G by the deletion of the vertices of x-trees for all x ∈ U and for each vertex
x ∈ U , we guess how the message is broadcasted to x and from x to the neighbors of x in G′.
Notice that T ′ = T [V (G′)] is a tree by the definition of G′. Observe also that for each x-tree F
for x ∈ U , the message is broadcasted to the vertices of F from x, because s ∈ U . In particular,
this means that the parents of the vertices of U in T are in G′. For each v ∈ U distinct from s,
we guess its parent p(v) ∈ V (G′) in T ′ and assume that p(s) = s. Then for each v ∈ V (G), we
guess the ordered subset R(v) of vertices of NG′(v) \ {p(v)} such that R(v) = C(v) ∩ NG′(v).
We guess p(v) and R(v) for v ∈ U by considering all possible choices. To guess R(v) for each
v ∈ U , we first guess the (unordered) set S(v) and then consider all possible orderings of the
elements of S(v). The selection of p(v) and S(v) is done by brute force. However, we are only
interested in choices, where the selection of the neighbors p(v) and S(v) of v for v ∈ U can be
extended to a spanning tree T ′ of G′.

Let T ′ be an arbitrary spanning tree of G′ rooted in s. Let T ′′ be the tree obtained from
T ′ by the iterative deletion of leaves not included in U . Observe that T ′′ is a tree such that
U ⊆ V (T ′′) and each leaf of T ′′ is a vertex of U . By Claim 4.2, each edge of T ′′ is either an edge
of G[U] or is an edge of an (x, y)-path Q for distinct x, y ∈ U such that the internal vertices of
Q are the vertices of the (x, y)-tree F ; in the second case, each edge of Q is in T ′′. Notice also
that s ∈ V (T ′′) and for each v ∈ U distinct from s, the parent of v in T is the parent of v in T ′′

with respect to the source vertex s. Hence, our first step in constructing p(v) and S(v), is to
consider all possible choices of T ′′. Observe that G[U] has at most

(
4k
2

)
edges by Claim 4.1 and

the total number of (x, y)-trees is at most 4k− 1 by Claim 4.3. Because T ′′ is a tree, it contains
|U | − 1 edges of G[U] and (x, y)-paths Q in total. We obtain that we have kO(k) possibilities to
choose T ′′. From now, we assume that T ′′ is fixed.

The choice of T ′′ defines p(v) for v ∈ U \ {s}. For each v ∈ U , we initiate the construction
of S(v) by including in the set the neighbors of v in T ′′ distinct from p(v). We proceed with
guessing of S(v) by considering (x, y)-trees F for x, y ∈ U such that the (x, y)-path with the
internal vertices in F is not included in T ′′. Clearly, the vertices of every F of such a type
should receive the message either via x, or via y, or via both x and y. Let F be an (x, y)-tree
of this type. Denote by x′ and y′ the neighbors of x and y, respectively. We have that either
x′ ∈ S(x) and y′ /∈ S(y), or x /∈ S(x) and y ∈ S(Y), or x′ ∈ S(x), y′ ∈ S(y) and x′ ̸= y′. Thus,
we have three choices for F . By Claim 4.3, the total number of choices is 2O(k). We go over
all the choices and include the vertices to the sets S(v) for v ∈ U with respect to them. By
Claim 4.2, this concludes the construction of the sets S(v). From now, we assume that S(v) for
v ∈ U are fixed.

We construct the ordered sets R(v) by considering all possible orderings of the elements of
S(v). The number of these orderings is Πv∈U (|S(v)|!). Recall that the sets S(v) are sets of
neighbors of v in a spanning tree of G′. This and Claims 4.2 and 4.3 imply that

∑
v∈U |S(v)| ≤

2(|U |− 1)+2(4k− 1) ≤ 16k. Therefore, the total number of orderings is Πv∈U (|S(v)|!) = kO(k).
This completes the construction of R(v). Now we can assume that p(v) for each v ∈ U \ {s}
and R(v) for each v ∈ U are given.

The final part of our algorithm is checking whether the guessed scheme for a broadcasting
protocol can be extended to the protocol itself. This is done in two stages.

In the first stage, we compute for each v ∈ U , the minimum number r(v) of a round in
which v can receive the message and the ordered set C(v). Initially, we set r(s) = 0 and set
X := {s}. Then we iteratively either compute C(v) for v ∈ X or extend X by including a new
vertex v ∈ U \X and computing r(v). We proceed until we get X = U and compute C(v) for
every v ∈ U . We also stop and discard the current choice of the scheme if we conclude that the

9

choice cannot be extended to a broadcasting protocol terminating in at most t steps.
Suppose that there is v ∈ X such that C(v) is not constructed yet. Notice that r(v) is

already computed. To construct C(v), we observe that for each v-tree F anchored in v, the
vertices of F should receive the message via v. Hence, to construct C(v), we extend R(v) by
inserting the neighbors of v in the v-trees. If there is no v-tree anchored in v, then we simply
set C(v) = R(v). Assume that this is not the case and let F1, . . . , Fk be the v-trees anchored
in v. Denote by u1, . . . , uk the neighbors of v in T1, . . . , Tk, respectively. Because the message
is broadcasted from u to each ui, we can assume that to broadcast the message from ui to the
other vertices of Ti, an optimal protocol requiring b(Ti, ui) rounds is used. We compute the
values b(Ti, ui) for all i ∈ {1, . . . , k} and assume that b(T1, u1) ≥ · · · ≥ b(Tk, uk).

If r(v) + |R(v)| + k > t, we discard the current choice of the scheme, because we cannot
transmit the message to the neighbors of v in t rounds. Notice also that r(v)+max{b(Ti, ui)+i |
i ∈ {1, . . . , k}} rounds are needed to transmit the message to the vertices of all v-trees. Hence,
if r(v) + max{b(Ti, ui) + i | i ∈ {1, . . . , k}} > t, we discard the considered scheme. From now
on, we assume that r(v) + |R(v)|+ k ≤ t and r(v) + max{b(Ti, ui) + i | i{1 ∈, . . . , k}} ≤ t.

The main idea for constructing C(v) is to ensure that the message is sent to the vertices
of R(v) as early as possible. To achieve this, we put u1, . . . , uk in C(v) in such a way, that
the message is sent to each ui as late as possible. Since |C(v)| = |R(v)| + k, we represent
C(v) as an |R(v)| + k-element array whose elements are indexed 1, 2, . . . , |R(v)| + k. Because
b(T1, u1) ≥ · · · ≥ b(Tk, uk), we can assume that the ordering of the vertices u1, . . . , uk in C(v)
is (u1, . . . , uk). Therefore, we insert ui in C(v) consecutively for i = k, k − 1, . . . , 1.

Suppose that i ∈ {1, . . . , k} and ui+1, . . . , uk are in C(v). Denote by hi+1 the index of ui+1

assuming that hk+1 = |R(v)| + k + 1. We find maximum positive integer h < hi+1 such that
r(v) + h+ b(Ti, ui) ≤ t and set the index hi = h for ui. In words, we find the maximum index
that is prior to the index of ui+1 such that if we transmit the message from v to ui in the h-th
round after v got aware of the message, then the vertices of Ti still may get the message in t
rounds. After placing u1, . . . , uk into the array, we place the vertices of R(v) in the remaining
|R(v)| places following the order in R(v). This completes the construction of C(v).

Suppose that U \X ̸= ∅ and for each v ∈ X, C(v) is given. We assume that for each v ∈ X,
the elements of C(v) are indexed 1, . . . , |C(v)| according to the order. By the constriction of
the schemes, there is y ∈ U \X such that y receives the message from some vertex x ∈ X either
directly or via some (x, y)-tree F anchored in x and y. We find such a vertex y, compute r(y),
and include y in X.

If there is y ∈ U \X such that p(y) = x ∈ X, then we set r(y) = r(x) + h, where h is the
index of y in C(v) and set X := X ∪{y}. Since r(x) is the minimum number of a round when x
gets the message, r(y) is the minimum number of a round in which y gets the message. Suppose
that such a vertex y does not exist. Then by the construction of the considered scheme, there
are x ∈ X and y ∈ U \X such that the tree T ′′ which was used to construct the scheme contains
an (x, y)-path whose internal vertices are in the (x, y)-tree F anchored in x and y. This means
that the neighbor x′ of x in F is included in C(v). Let h be the index of x′ in C(v). We also
have that y′ = p(y) is the unique neighbor of y in F . In other words, we have to transmit
the message from x to y according to the scheme. To compute r(y), we have to transmit the
message as fast as possible. For this, we use Lemma 3. Notice that the vertices of F should
receive the message in at most t′ = t − r(x) − h + 1 rounds because x receives the message in
the round r(v) and h−1 vertices of C(v) get the message before x′. Let F ′ be the tree obtained
from F by adding the vertices x, y and the edges xx′, yy′. We compute bt′(F

′, x, y) using the
algorithm from Lemma 3. If bt′(F

′, x, y) = +∞, we discard the considered scheme because y
cannot receive the message in t rounds. Otherwise, we set r(y) = r(x) + (h − 1) + bt′(F

′, x, y)
and set X := X ∪ {y}.

This completes the first stage where we compute r(v) and C(v) for v ∈ U . Observe that

10

if we completed this stage without discarding the considered choice of the scheme, we already
have a partially constructed broadcasting protocol that ensures that (i) the vertices of v-trees
for v ∈ U get the message in at most t rounds, (ii) the vertices of (x, y)-trees that are assigned
by the scheme to transmit the message from x to y receive the message in at most t rounds, and
(iii) for each v ∈ U , r(v) is the minimum number of a round when v can receive the message
according to the scheme. By Claim 4.2, it remains to check whether the vertices of (x, y)-trees
F that are not assigned by the scheme to transmit the message from x to y or vice versa can
receive the message in at most t rounds. We do it using Lemmas 2 and 4.

Suppose that F is a (x, y)-tree anchored in x, y ∈ U such that p(x), p(y) /∈ V (F), that is, F
is not assigned by the scheme to transmit the message from x to y or vice versa. Let x′ and y′ be
the neighbors in F of x and y, respectively. By the construction of the schemes, we have three
cases: (i) x′ ∈ C(x) and y′ /∈ C(y), (ii) x′ /∈ C(x), y′ ∈ C(y), and (iii) x′ ∈ C(x), y′ ∈ C(y), and
x′ ̸= y′.

In case (i), the vertices of F should receive the message via x. Clearly, we can use an optimal
protocol for F with the source x′ to transmit the message from x′. Let h be the index of x′

in C(x). We use Lemma 2, to verify whether t − r(x) − h ≥ b(F, x). If the inequality holds,
we conclude that the message can be transmitted to the vertices of F in at most t rounds.
Otherwise, we conclude that this is impossible and discard the scheme. Case (ii) is symmetric
and the arguments are the same.

Suppose that x′ ∈ C(x), y′ ∈ C(y), and x′ ̸= y′. Then the vertices of F are receiving the
message from both x and y. Denote by i and j the indexes of x′ and y′ in C(x) and C(y),
respectively. By symmetry, we assume without loss of generality that r(x) + i ≤ r(y) + j and
let h = (r(y) + j)− (r(x) + i). Notice that the vertices of F start to get the message after the
round r(v) + i− 1. Denote by F ′ the tree obtained from F by adding the vertices x, y and the
edges xx′, yy′. We use Lemma 4 and compute dh(F

′, x, y). If dh(F
′, x, y) ≤ t − r(v) − i + 1,

then we obtain that the message can be transmitted to the vertices of F in at most t rounds.
Otherwise, we cannot do it and discard the scheme.

This completes the description of the second stage of the verification of whether the consid-
ered scheme can be extended to a broadcasting protocol terminating in at most t rounds.

If we find a scheme that allows us to conclude that the message can be broadcasted in at
most t rounds, we conclude that (G, s, t) is a yes-instance. Otherwise, if every scheme gets
discarded, we return that (G, s, t) is a no-instance of Telephone Broadcast. This concludes
the description of the algorithm. x To argue that the algorithm is correct, note that if there
is a scheme for which we report that (G, s, t) is a yes-instance, then the description of the
verification procedure of the extendability of the scheme implies the existence of a broadcasting
protocol terminating in at most t rounds. For the opposite direction, assume that (G, s, t) is a
yes-instance of Telephone Broadcast. Then there is a broadcasting protocol P terminating
in at most t rounds. For v ∈ V (G), denote by rP (v) the number of the round on which v gets
the message. Among all P = (T, {C ′(x) | x ∈ V (T)}) terminating in t rounds, we select P to
be protocol such that

∑
v∈U rP (v) is minimum. We construct G′ as described in the algorithm

and consider T ′ = T [V (G′)]. Then we construct T ′′ from T ′ by the iterative deletion of leaves
that are not included in U . Then we define the scheme by setting p(v) to be parent of each
v ∈ U in T ′′ with respect to the root s (p(s) = s) and defining R(v) = C ′(v)∩NT ′′(v) for v ∈ U .
Observe that the obtained scheme is one of the schemes constructed by the algorithm. Then
the description of the algorithm implies that the verification step of the algorithm returns the
yes-answer for the scheme. In particular, we get that for every v ∈ U , r(v) = rP (v) and the
indices of the elements of R(v) in the set C(v) obtained by the algorithm are the same as in
C ′(v).

To evaluate the running time, observe that the feedback edge set S and the set of vertices U
are constructed in polynomial time. Given U , we can list all x-trees and (x, y)-trees for x, y ∈ U

11

in polynomial time. Then the schemes can be constructed in kO(k) time. For each scheme, the
verification step requires polynomial time as we use the polynomial algorithms from Lemmas 2,
3, and 4. We conclude that the total running time is 2O(k log k) ·nO(1). This completes the proof.

5 Telephone Broadcast parameterized by the vertex cover num-
ber

In this section, we prove Theorem 3. Recall that we aim to show that Telephone Broadcast
is FPT on graphs with the vertex cover number at most k when the problem is parameterized
by k. We start with some auxiliary claims about the broadcasting on a graph with a given
vertex cover S.

Lemma 5. Let G be a graph with at least one edge and s ∈ V (G). Let also S be a vertex
cover of G. Then there is an optimal broadcasting protocol for G with the source s such that the
vertices of S receive the message in at most 2|S| − 1 rounds.

Proof. Let (T, {C(v) | v ∈ V (T)}) be an optimal broadcasting protocol for G with the source s.
Observe that we can assume without loss of generality that the protocol is greedy, meaning that
for each round i, if it holds that v is a vertex that is aware of the message after i rounds, it would
always send the message in the next round to some neighbor unless all the neighbors either got
the message in the first i rounds or will receive the message in the (i+1)-th round from vertices
that are distinct from v. In words, a vertex does not stay idle if it can communicate the message
to a new recipient. Furthermore, we can assume that for each v ∈ V (T), the children of v of
degree one, i.e., leaves of T , are at the end of the ordered set C(v). Otherwise, we can rearrange
each C(v) to achieve this property and the obtained protocol would be optimal. Also, we can
include the leaf children of each v in C(v) in arbitrarily order because any rearrangement of these
vertices does not change the number of rounds. Hence, we assume that (T, {C(v) | v ∈ V (T)})
is a greedy optimal broadcasting protocol such that for each v ∈ V (T), (i) the children of v of
degree one are at the end of the ordered set C(v) and (ii) the children of degree one that are in
S are before the children of degree one in I = V (G) \ S. We claim that every vertex of S gets
the message in the first 2|S| − 1 round.

For the sake of contradiction, assume that this is not the case. Then there is a nonnegative
integer h ≤ 2|S| − 2 such that neither in round h nor in round h+1, there is a vertex of S that
receives the message. Let S′ ⊆ S be the set of vertices of S that got the message after h − 1
rounds and let S′′ = S \ S′. Let also I ′ ⊆ I be the set of vertices of I that got the message
after h − 1 rounds and denote by I ′′ ⊆ I the set of vertices of I that get the message in the
h-th round. Because no vertex of S gets the message in the h-th round, we have that I ′′ ̸= ∅.
Observe that no vertex of I ′ ∪ I ′′ is adjacent to a vertex of S′′ as otherwise at least one vertex
of S′ would get the message in the (h+1)-th round. In particular, this means that the vertices
of I ′′ are leaves of T . Because G is connected and T is a spanning tree, we have that there is
a vertex v ∈ S′ which is adjacent to a vertex u ∈ S′′ in T . Since the protocol is greedy, v sent
the message to a vertex of I ′′ in the h-th round. However, this contradicts that the protocol
satisfies (i) and (ii) for v. If u is not a leaf of T , then v should send the message to u instead of
a vertex of I ′′ by (i), and if u is a leaf, then u is a leaf in S and v should send the message to u
in the h-th round by (ii). The obtained contradiction proves the lemma.

We also use the bound for the number of vertices of I = V (G) \ S getting the message in
the first p rounds.

Lemma 6. Let G be a graph with at least one edge and s ∈ V (G). Let also S be a vertex cover
of G and p ≥ 1 be an integer. Then for any broadcasting protocol for G with the source s, at
most p|S| vertices of I = V (G) \ S receive the message in the first p rounds.

12

Proof. Note that each vertex v ̸= s in I can receive the message only from its neighbor in S. If
s ∈ S, then each vertex of S can send the message to at most p neighbors in p round. Therefore,
at most p|S| can get the message in p rounds. If s ∈ I, then each vertex of S can send the
message to at most p − 1 neighbors. Hence, at most (p − 1)|S| + 1 ≤ p|S| vertices of I can
receive the message in p rounds.

Now we are ready to prove Theorem 3.

Proof of Theorem 3

Let (G, s, t) be an instance of Telephone Broadcast and let k ≥ 0 be an integer. Telephone
Broadcast is trivial for k = 0 as G has the empty vertex cover if and only if G has a single
vertex (recall that G is connected by our assumption). Also, the problem is trivial if G has no
edges. Hence, we assume that G has at least two vertices and k ≥ 1.

We use the algorithm of Chen, Kanj, and Xia [5] to find in 1.2738k ·nO(1) time a vertex cover
S of G of size at most k. If the algorithm fails to find such a set, then we stop and return the
answer that G has no vertex cover of size at most k. From now on, we assume that S is given
and I = V (G)\S. If |I| ≤ 2k2, then |V (G)| ≤ 2k2+k and we solve the problem in 2O(k2) ·kO(1)

time using Theorem 1. So we can assume that |I| > 2k2.
We compute the partition of {L1, . . . , Lp} of I into classes of false twins, that is, two vertices

u and v are in the same set Li if and only if they have exactly the same neighbors in S. Since
|S| ≤ k, we have that p ≤ 2k. Observe also that the partition can be constructed in linear time
(see [31]). As it is common for the parameterization by the vertex cover number, we exploit
the property that two vertices u, v ∈ Li for some i ∈ {1, . . . , p} that are distinct from s are
indistinguishable. In particular, given a broadcasting protocol (T, {C(v) | v ∈ V (T)}), we can
exchange u and v, that is, replace the former u by v and former v by u in T and the ordered
sets, and this would keep the number of rounds the same.

By Lemma 6, at most 2k2 vertices of I can receive the message in the first 2k rounds. Hence,
if t ≤ 2k2 < |I|, we conclude that (G, s, t) is a no-instance. From now on we can assume that
t > 2k2.

By Lemma 5, there is an optimal broadcasting protocol such that all the vertices of S receive
the message in the first 2k − 1 rounds. Combining this with Lemma 6, we obtain that there
is an optimal broadcasting protocol such that the set of vertices X that receive the message in
the first 2k rounds satisfies the properties (i) S ⊆ X and (ii) for Y = S ∩ I, |Y | ≤ 2k2.

We guess Y using the fact that the vertices of the same set Li are indistinguishable. We
consider all possibilities to choose p nonnegative integers ℓ1, . . . , ℓp such that (a) ℓi ≤ |Li| for
each i ∈ {1, . . . , p}, (b) if s ∈ Li for some i ∈ {1, . . . , p}, then ℓi ≥ 1, and (c) ℓ1+ · · ·+ ℓp ≤ 2k2.

Notice that because p ≤ 2k, there are 2O(k3) possibilities to choose ℓ1, . . . , ℓp. Given ℓ1, . . . , ℓp,
for each i ∈ {1, . . . , p}, we can select ℓi vertices from Li in such a way that if s ∈ Li, then
s is selected, and the other vertices are taken arbitrariy, and then denote the set of selected
vertices by Yi. We have that if there is an optimal broadcasting protocol such that the set of
vertices X that receive the message in the first 2k rounds satisfying (i) and (ii), then there is
an optimal broadcasting protocol such that the set of vertices X that receive the message in
the first 2k rounds is S ∪ (Y1 ∪ · · · ∪ Yp). We verify whether the choice of X is feasible, that is,
the vertices of X can get messages in 2k rounds, using Theorem 1. For this we check whether
G[X] is connected and if this holds, then run the algorithm from the theorem for G[X], s, and
t = 2k. We discard the choice of X if G[X] is disconnected or if the algorithm reports that the
considered instance is a no-instance. Observe that the running time of the algorithm is 2O(k2)

in this case.
Notice that if the vertices of Yi are getting the message in the first 2k rounds for some

i ∈ {1, . . . , p}, then the remaining |Li| − ℓi vertices should receive the message from their

13

neighbors in S in the following t− 2k rounds. Notice that because each vertex of S is aware of
the message after 2k rounds in a hypothetical solution, any vertex of S can send the message to
any neighbor in I and the vertices of S do not send the message to S. This allows us to encode
a broadcasting protocol for the final steps as a system of linear inequalities over Z.

For every v ∈ S and every i ∈ {1, . . . , p}, we introduce an integer-valued variable xvi meaning
that exactly xvi neighbors of v in Li \ Yi receive the message from v. We have the following
straightforward constraints:

xvi ≥ 0 for all v ∈ S and i ∈ {1, . . . , p} (2)

and

xvi = 0 for all v ∈ S and i ∈ {1, . . . , p} s.t. v is not adjacent to the vertices of Li. (3)

To encode that all vertices receive the message, we impose the following constraint:∑
v∈S

xvi = |Li| − ℓi for every i ∈ {1, . . . , p}. (4)

Finally, we encode the property that the number of rounds should be bounded by t− 2k:

p∑
i=1

xvi ≤ t− 2k for every v ∈ S. (5)

Observe that the number of variables in the system (2)–(5) is at most k + p ≤ k + 2k.

Therefore, we can solve it in 2O(k2k) · nO(1) time by Lemma 1. If the algorithm from Lemma 1
reports that the system (2)–(5) has a solution, we conclude that (G, s, t) is a yes-instance and
stop. If the system has no solution for all choices of ℓ1, . . . , ℓ and corresponding feasible sets X,
we report that (G, s, t) is a no-instance.

To show correctness, we follow the description of the algorithm. We can assume that (G, s, t)
is an instance of Telephone Broadcast with k ≥ 1, t > 2k2, |V (G)| ≥ 2, and |I| > 2k2 for
I = V (G) \ S, because otherwise correctness follows directly from the description.

Suppose that (G, s, t) is a yes-instance. By Lemmas 5 and 6, G and s have an optimal
broadcasting protocol such that the set of vertices X that receive the message in the first
2k rounds satisfies the properties (i) S ⊆ X and (ii) for Y = S ∩ I, |Y | ≤ 2k2. For each
i ∈ {1, . . . , p}, let ℓi = Li ∩ Y . We have that ℓ1, . . . , ℓp are nonnegative integers such that (a)
ℓi ≤ |Li| for each i ∈ {1, . . . , p}, (b) if s ∈ Li for some i ∈ {1, . . . , p}, then ℓi ≥ 1, and (c)
ℓ1 + · · ·+ ℓp ≤ 2k2. Therefore, we consider the choice of ℓ1, . . . , ℓp in one of the branches of our
algorithm. Because the vertices of each Li are indistinguishable, we obtain that for our choice
of Y1, . . . , Yp, there is an optimal broadcasting protocol P such that the set of vertices X that
receive the message in the first 2k rounds is exactly X ′ = S ∪ (Y1 ∪ · · · ∪ Yp). In particular,
this means that X ′ is feasible. Hence, the choice of ℓ1, . . . , ℓp and X ′ is not discarded by the
algorithm. For each v ∈ S and i ∈ {1, . . . , p}, let x∗vi be the number of vertices of Li that
receive the message from v in the rounds from 2k + 1 to t with respect to the protocol P . We
obtain that these values of x∗vi satisfy (2)–(5). Therefore, the system (2)–(5) is feasible and our
algorithm returns a correct yes-answer.

For the opposite direction, assume that there is a choice of nonnegative integers ℓ1, . . . , ℓp
satisfying (a)–(c) such that for the corresponding choice of Y1, . . . , Yp, X = S ∪ (Y1, . . . , Yp) is
feasible, such that the system (2)–(5) has a solution. Suppose that the values x∗vi for v ∈ S
and i ∈ {1, . . . , p} give a solution of the system. We have that there is a broadcasting protocol
P that ensures that the vertices of X receive the message in the first 2k rounds. We extend
the protocol by defining that exactly x∗vi vertices of Li receive the message from each v ∈ S.

14

Because of (2)–(5), we obtain that all the vertices get the message in t rounds. Thus, (G, s, t)
is a yes-instance. This completes the proof of correctness.

To evaluate the running time, notice that we consider 2O(k3) choices of ℓ1, . . . , ℓp. For each

choice, we either discard it in 2O(k2) time or solve the system (2)–(5) in 2O(k2k) · nO(1). This

implies that the total running time is 2O(k2k) · nO(1). This completes the proof of Theorem 3.

6 Kernelization for the parameterization by k = n− t

In this section, we prove Theorem 4. Recall that we parameterize Telephone Broadcast by
k = n − t. Hence, it is convenient for us to denote the considered instances as triples (G, s, k)
throughout the section instead of (G, s, n− k).

Let (G, s, k) be an instance of Telephone Broadcast. We exhaustively apply the fol-
lowing reduction rules in the order in which they are stated. The first rule is straightforward
because b(G, s) ≤ n− 1 and (G, s, k) is a yes-instance if k ≤ 1. Also if k > n, then (G, s, k) is a
no-instance.

Reduction Rule 6.1. If k ≤ 1, then return a trivial yes-instance, e.g., the instance with
G = ({s}, ∅) and k = 0, and stop. If k > n, then return a trivial no-instance, e.g., the instance
with G = ({s, v}, {sv}) and k = 1, and stop.

Observe that after applying Reduction Rule 6.1, n ≥ 2, because if n = 1, then either k ≤ 1
of k > n and we would stop. Notice that if dG(s) = 1, then the source s sends the message to
its unique neighbor in the first round. This allows us to delete s and define a new source using
the following rule whose safeness is straightforward.

Reduction Rule 6.2. If dG(s) = 1, then let v be the neighbor of s, set G := G− s and define
s := v.

Now we can assume that dG(s) ≥ 2. By the next rule, we delete certain pendent vertices.

Reduction Rule 6.3. If there is a vertex v ∈ V (G) such that for the set of vertices of degree
one W ⊆ NG(v), it holds that |W | ≥ |V (G) \ W |, then select an arbitrary w ∈ W and set
G := G− w.

Claim 6.1. Reduction Rule 6.3 is safe.

Proof of Claim 6.1. Let v ∈ V (G) and assume the set of vertices W of degree one in the
neighborhood of v satisfies the condition |W | ≥ |V (G) \W |. Let also w ∈ W and G′ = G− w.
Notice that because dG(s) ≥ 2, w ̸= s. Since dG(w) = 1, w receives the message from v and
w does not send the message anywhere. This implies that b(G, s) − 1 ≤ b(G′, s) ≤ b(G, s). To
show the claim, it is sufficient to prove that b(G′, s) = b(G, s)− 1.

Consider an optimal broadcasting protocol (T, {C(x) | x ∈ V (T)}) for G. Because the
vertices of W are adjacent to v and have degree one, the vertices of W are children of v in T .
Since each vertex x ∈ W has no children in T , we can assume without loss of generality that the
vertices of W are the last vertices in C(v) and, furthermore, w is the last vertex in this ordered
set. Then the vertices of V (G)\W get the message in at most |V (G)|−|W |−1 rounds. Because
|V (G)\W | ≤ |W |, we obtain that w gets the message in the last round. Moreover, w is a unique
vertex that gets the message in the last round. This implies that (T ′, {C ′(x) | x ∈ V (T ′)}),
where T ′ = T −w, C ′(x) = C(x) for x ∈ V (T ′) \ {v} and C ′(v) = C(v) \ {w}, is a broadcasting
protocol for G′ that ensures that every vertex gets the message in b(G, s) − 1 rounds. Thus
b(G′, s) = b(G, s)− 1.

15

To state the following rule, we introduce an auxiliary notation. For a vertex v of a graph
H, we define ρH(v) = max{distH(v, u) | u ∈ V (H)}.

Reduction Rule 6.4. If G has a bridge e = uv such that G−e has two connected components
G1 and G2, where s, u ∈ V (G1), v ∈ V (G2), dG(u) = 2, and |V (G1)| < distG1(s, u) + ρG2(v),
then set G := G/e.

Claim 6.2. Reduction Rule 6.4 is safe.

Proof of Claim 6.2. Let e = uv be a bridge of G such that G−e has two connected components
G1 and G2, where s, u ∈ V (G1), v ∈ V (G2), and |V (G1)| < distG1(s, u) + ρG2(v). Let also
G′ = G/e. Because to reach the vertices of G2, u should send the message to v, we have that
b(G, s)− 1 ≤ b(G′, s) ≤ b(G, s). To prove the claim, we show that b(G′, s) = b(G, s)− 1.

Let (T, {C(x) | x ∈ V (T)}) be an optimum broadcasting protocol for G. Because e is a
bridge, v is a child of u in T . Also for every x ∈ V (G2), C(x) contains only vertices of G2.
Because u is a unique vertex in V (G1) which sends the message outside V (G1) and does it only
once, we have that every vertex of V (G1) receives the message in at most V (G1) rounds. On
the other side, we can observe that V (G2) has a vertex that gets the message only in at least
distG1(s, u) + ρG2(v) rounds. Therefore, the vertices that receive the message in the last round
are in G2. We define the protocol (T ′, {C ′(x) | x ∈ V (T ′)}) for G′ as follows. We set T ′ = T/e,
and for every x ∈ V (T) \ {u, v}, we define C ′(x) = C(x). Let w be the vertex obtained from u
and v by the contraction of e. To construct C ′(w), note that C(u) = {v}, because dG(u) = 2.
We define C ′(w) = C(v). Observe that by the protocol for G′, each vertex x ∈ V (G2) gets the
message in one round earlier than in the protocol for G. We conclude that each vertex of G
receives the message in at most b(G, s)− 1 rounds. This means that b(G′, s) = b(G, s)− 1.

From now, we can assume that Reduction Rules 6.1–6.4 are not applicable. We run the
standard breadth-first search (BFS) algorithm on G from s (see, e.g., [7] for the description).
The algorithm produces a spanning tree B of G of shortest paths and the partition of V (G) into
BFS-levels L0, . . . , Lr, where Li is the set of vertices at distance i from s for every i ∈ {1, . . . , r}.

We apply the following rule whose safeness immediately follows from Observation 1 and
Lemma 2.

Reduction Rule 6.5. Compute b(B, s) and if b(B, s) ≤ n−k, then return a trivial yes-instance
and stop.

Then we apply the final rule.

Reduction Rule 6.6. If there is v ∈ Li for some i ∈ {0, . . . , r − 1} such that for X =
NG(v) ∩ Li+1 and for the (s, v)-path P in B, it holds that (i) |X| ≥ 2k + 1 and (ii) the total
number of vertices in nontrivial, i.e., having at least two vertices, connected components of
G−V (P) containing vertices of X is at least 4k−2, then return a trivial yes-instance and stop.

Claim 6.3. Reduction Rule 6.6 is safe.

Proof of Claim 6.3. Let v ∈ Li for some i ∈ {0, . . . , r − 1} and let P be the (s, v)-path in B.
Denote by G1, . . . , Gℓ the nontrivial connected components of G−V (P) such that each of them
contains at least one vertex of X = NG(v)∩Li+1. We assume that |V (G1)| ≥ · · · ≥ |V (Gℓ)| ≥ 2.
Suppose that |V (G1)|+ · · ·+ |V (Gℓ)| ≥ 4k − 2. To show that the rule is safe, we have to prove
that b(G, s) ≤ n− k. By Observation 2, it suffices to show that there is a tree subgraph T of G
containing s with b(T, s) ≤ |V (T)| − k. We consider two cases.

Assume first that V (G1) ≥ k + 1. Let u ∈ V (G1) ∩ X. We find a tree subgraph F in
G1 with exactly k + 1 vertices such that u ∈ V (F). Then to construct the tree T , we take
P and F and make v adjacent to u. Because |X| ≥ 2k + 1, there are k distinct vertices

16

u1, . . . , uk ∈ X \ V (F). We include them in T by making them adjacent to v. We define the
broadcasting protocol (T, {C(x) | x ∈ V (T)}) as follows. For each x ∈ V (P) \ {v}, x has
a unique child composing C(x). We define C(v) = (v, u1, . . . , uk) and for each x ∈ V (F),
C(x) is an arbitrary ordering of the children of x in F . Because V (F) = k + 1, we have that
b(T, s) ≤ |V (P)|+ |V (F)| − 1 ≤ |V (T)| − k.

Suppose now that k ≥ |V (G1)| ≥ · · · ≥ |V (Gℓ)|. Let Ti be a spanning tree of Gi and let
ui ∈ V (Ti) for each i ∈ {1, . . . , ℓ}. We construct T from P and T1, . . . , Tℓ by making v adjacent
to u1, . . . , uℓ. We define the broadcasting protocol (T, {C(x) | x ∈ V (T)}) as follows. For each
x ∈ V (P) \ {v}, x has a unique child composing C(x). We define C(v) = (u1, . . . , uℓ) and for
each i ∈ {1, . . . , ℓ} and x ∈ V (Ti), C(x) is an arbitrary ordering of the children of x in Ti.
Observe that

b(T, s) ≤ |V (P)| − 1 + max{|V (Ti)|+ i− 1 | i ∈ {1, . . . , ℓ}}.

Since |V (Ti)| ≤ k for i ∈ {1, . . . , k}, b(T, s) ≤ |V (P)| + k + ℓ − 2. If ℓ ≥ 2k, then |V (G1)| +
· · · + |V (Gℓ)| ≥ 2ℓ and |V (T)| = |V (P)| + |V (G1)| + · · · + |V (Gℓ)| ≥ |V (P)| + ℓ + 2k. Hence,
|V (T)| − b(T, s) ≥ k. If ℓ ≤ 2k, then b(T, s) ≤ |V (P)| + 3k − 2 and |V (T)| − b(T, s) ≥
(4k − 2)− (3k − 2) ≥ k. This completes the proof.

The crucial property of the instance obtained by applying Reduction Rules 6.1–6.6 is given
in the following lemma.

Lemma 7. Suppose that Reduction Rules 6.1–6.6 are not applicable to (G, s, k). Then |V (G)| ≤
18k − 12.

Proof. Recall that B is a BFS-tree rooted in s and b(B, s) > n−k because of Reduction Rule 6.5.
Recall also that L0, . . . , Lr are the BFS-levels. For a vertex v ∈ V (B), we use Bv to denote the
subtree of B induced by the descendants of v in B including v itself. If |V (G)| ≤ k+1, then the
claim holds. Assume that |V (G)| ≥ k+1. Because |V (B)| = |V (G)| ≥ k+1, there is v ∈ V (B)
such that |V (Bv)| ≥ k+1 but |V (Bu)| ≤ k for every child u of v in B. Let P be the (s, v)-path in
B. We define Y = V (G)\(V (P)∪V (Bv)). Clearly, |V (G)| = |V (B)| = |Y |+|V (P)|+|V (Bv)|−1.
To prove the lemma, we show upper bounds for |Y |, |V (P)|, and |V (Bv)|. First, we show a
bound for the size of Y .

Claim 6.4. |Y | ≤ k − 1.

Proof of Claim 6.4. For the sake of contradiction, assume that |Y | ≥ k. Let P = v1 · · · vp, where
s = v1 and v = vp. We consider the following broadcasting protocol (B, {C(x) | x ∈ V (B)})
for B. For every i ∈ {1, . . . , p − 1}, we construct C(vi) by making vi+1 the first element
of the ordered set and then append the other children of vi in B in arbitrary order. For
x ∈ V (B) \ {v1, . . . , vp−1}, C(x) is an arbitrary ordering of the children of x. Notice that the
vertices of P are getting the message in the first |V (P)| − 1 rounds. Then because |Y | ≥ k
and each vertex y ∈ Y is reachable in B − V (Bv) from V (P) \ {v} by a (vi, y)-path for some
i ∈ {1, . . . , p}, at least k vertices of Y should receive the message in the first |V (P)| + k − 1
rounds. Similarly, because |V (Bv)| ≥ k + 1, at least k vertices of Bv − v should receive the
message in the first |V (P)| + k − 1 rounds. Hence, at least |V (P)| + 2k vertices of B get the
message in the first |V (P)|+k− 1 rounds. This implies that the total number of rounds for the
protocol (B, {C(x) | x ∈ V (B)}) is at most |V (B)| − k. This contradicts the assumption that
Reduction Rule 6.5 is not applicable and proves the claim.

Next, we use Claim 6.4 to upper bound the number of vertices of P .

Claim 6.5. |V (P)| ≤ 4k − 2.

17

Proof of Claim 6.5. The proof is by contradiction. Assume that |V (P)| ≥ 4k − 1. Note that
v ∈ Lp for p ≥ 4k−2 and r ≥ p+1 ≥ 4k−1. By Claim 6.4, |Y | ≤ k−1. Notice that dG(s) ≥ 2,
because Reduction Rule 6.2 is not applicable. By the pigeonhole principle, there is q ≤ 3k − 3
such that |Lq−1| = Lq| = |Lq+1| = 1, that is, Lq−1 = {vq−1}, Lq = {vq}, and Lq+1 = {vq+1}.
This implies that dG(vq) = 2 and vqvq+1 is a bridge of G. Consider the connected components G1

and G2 of G−vqvq+1 and assume that s, vq ∈ V (G1) and vq+1 ∈ V (G2). We have that |V (G1)| ≤
q + 1 + |Y | ≤ 4k − 3. It also holds that distG1(s, vq) = q and ρG2(vq+1) = r − q − 1. Hence,
distG1(s, vq) + ρG2(vq+1) = r − 1 ≥ 4k − 2. Thus, |V (G1)| ≤ 4k − 3 < distG1(s, vq) + ρG2(vq+1)
but this implies that Reduction Rule 6.4 would be applicable for the bridge vqvq−1. This gives
a contradiction that proves the claim.

Finally, we upper bound the size of Bv.

Claim 6.6. |V (Bv)| ≤ 13k − 9.

Proof. Assume that v ∈ Lp for some p ∈ {1, . . . , r} and denote by Z ⊆ X = NG(v) ∩ Lp+1 the
set of vertices having of degree one. We consider two cases depending on the size of X.

Suppose that |X| ≥ 2k + 1. Because of Reduction Rule 6.6, the total number of vertices
in nontrivial, i.e., having at least two vertices, connected components of G − V (P) containing
vertices ofX is at most 4k−3. Hence, Bv−Z has at most 4k−2 vertices. Because |Y | ≤ k−1 and
|V (P)| ≤ 4k−2 by Claims 6.4 and 6.5, respectively, B−Z has at most (k−1)+(4k−2)+(4k−
2)−1 = 9k−6 vertices, that is, |V (G)\Z| ≤ 9k−6. Because Reduction Rule 6.3 is not applicable,
we have that |Z| ≤ |V (G)\Z|−1 ≤ 9k−7. We obtain that |V (Bv)| = |V (Bv)\Z|+|Z| ≤ 13k−9.

Assume now that |X| ≤ 2k. Suppose that T1, . . . , Tℓ are the subtrees of Bv rooted in the
children u1, . . . , uℓ of v, respectively, such that |V (Ti)| ≥ 2 for each i ∈ {1, . . . , ℓ}. Notice that
ℓ ≤ |X| ≤ 2k and |V (Ti)| ≤ k because of the choice of v. We claim that |V (T1)|+ · · ·+ |V (Tℓ)| ≤
4k − 2.

The proof is by contradiction. Let |V (T1)| + · · · + |V (Tq)| ≥ 4k − 1. Consider the tree T
constructed from P and T1, . . . , Tℓ by making v adjacent to u1, . . . , uℓ. We show that b(T, s) ≤
|V (T)|−k. For this, we define the broadcasting protocol (T, {C(x) | x ∈ V (T)}) as follows. For
each x ∈ V (P) \ {v}, x has a unique child composing C(x). We define C(v) = (u1, . . . , uℓ) and
for each i ∈ {1, . . . , ℓ} and x ∈ V (Ti), C(x) is an arbitrary ordering of the children of x in Ti.
We have that

b(T, s) ≤ |V (P)| − 1 + max{|V (Ti)|+ i− 1 | i ∈ {1, . . . , ℓ}}.

Since |V (Ti)| ≤ k for i ∈ {1, . . . , k} and ℓ ≤ 2k, b(T, s) ≤ |V (P)|+ k + ℓ− 2 ≤ |V (P)|+ 3k − 1.
Because |V (T)| = |V (P)|+ |V (T1)|+ · · ·+ |V (Tq)| ≥ |V (P)|+ 4k − 1, we obtain that b(T, s) ≥
|V (T)| − k. However, T is a subgraph of the tree B and s ∈ V (T). Then by Observation 2,
b(B, s) ≤ b(T, s) + |V (B) \ V (T)| ≤ |V (B)| − k = n− k contradicting that Reduction Rule 6.5
is not applicable. This proves that |V (T1)| + · · · + |V (Tℓ)| ≤ 4k − 2. Because |V (Bv)| =
|X| − ℓ+ |V (T1)|+ · · ·+ |V (Tℓ)|+ 1, we obtain that |V (Bv)| ≤ |X|+ |V (T1)|+ · · ·+ |V (Tℓ)| ≤
2k + 4k − 2 ≤ 6k − 2. This completes the proof of the claim.

Summarizing the upper bounds from Claims 6.4–6.6, we derive that

|V (G)| = |Y |+ |V (P)|+ |V (Bv)| − 1 ≤ (k − 1) + (4k − 2) + (13k − 9) = 18k − 12.

This concludes the proof.

By Lemma 7, if we do not stop during the exhaustive applications of Reduction Rules 6.1–6.6,
then for the obtained instance (G, s, k), |V (G)| ≤ 18k−12. Hence, to complete the kernelization
algorithm, we return (G, s, k).

18

It is straightforward to see that Reduction Rules 6.1–6.6 can be applied in polynomial time.
In particular, BFS and finding bridges can be done in linear time by classical graph algorithms
(see, e.g., the textbook [7]). Thus, the total running time of the kernelization algorithm is
polynomial. This completes the proof of Theorem 4.

7 Conclusion

In our paper, we initiated the study of Telephone Broadcast from the parameterized com-
plexity viewpoint. In this section, we discuss further directions of research.

We observed that Telephone Broadcast is trivially FPT when parameterized by t and
Theorem 1 implies that the problem can be solved in 32

t · nO(1) time. Is it possible to get a
better running time for the parameterization by t?

In Theorem 4, we obtained a polynomial kernel for the parameterization by k = n−t, that is,
for the parameterization below the trivial upper bound for b(G, s). This naturally leads to the
question about parameterization below some other bounds for this parameter. We note that the
parameterization of Telephone Broadcast above the natural lower bound b(G, s) ≥ log n
leads to a para-NP-complete problem. To see this, observe that for graphs with n = 2t vertices,
b(G, s) ≤ t if and only if G has a binomial spanning tree rooted in s, and it is NP-complete to
decide whether G contains such a spanning tree [26].

In Theorems 2 and 3, we considered structural parameterizations of Telephone Broad-
cast by the cyclomatic and vertex cover numbers, respectively. It is interesting to consider
other structural parameterizations. In particular, is Telephone Broadcast FPT when pa-
rameterized by the feedback vertex number and treewidth (we refer to [8] for the definitions)?
For the parameterization by treewidth, the complexity status of Telephone Broadcast is
open even for the case when the treewidth of the input graphs is at most two, that is, for
series-parallel graphs.

References

[1] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, Message multicasting in heteroge-
neous networks, SIAM J. Comput., 30 (2000), pp. 347–358. 2, 3

[2] P. Bhabak and H. A. Harutyunyan, Constant approximation for broadcasting in k-
cycle graph, in 1st International Conference Algorithms and Discrete Applied Mathematics
(CALDAM), vol. 8959 of Lecture Notes in Computer Science, Springer, 2015, pp. 21–32. 2

[3] , Approximation algorithm for the broadcast time in k-path graph, J. Interconnect.
Networks, 19 (2019), pp. 1950006:1–1950006:22. 2

[4] M. Cevnik and J. Zerovnik, Broadcasting on cactus graphs, J. Comb. Optim., 33 (2017),
pp. 292–316. 2

[5] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theor.
Comput. Sci., 411 (2010), pp. 3736–3756. 5, 13

[6] J. Cohen, P. Fraigniaud, J. König, and A. Raspaud, Optimized broadcasting and
multicasting protocols in cut-through routed networks, IEEE Trans. Parallel Distributed
Syst., 9 (1998), pp. 788–802. 3

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 3rd Edition, MIT Press, 2009. 5, 6, 16, 19

19

[8] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015. 2, 3, 5, 19

[9] R. Diestel, Graph Theory, 4th Edition, vol. 173 of Graduate texts in mathematics,
Springer, 2012. 4, 5

[10] M. Elkin and G. Kortsarz, Sublogarithmic approximation for telephone multicast, J.
Comput. Syst. Sci., 72 (2006), pp. 648–659. 2, 3

[11] A. M. Farley, Minimum-time line broadcast networks, Networks, 10 (1980), pp. 59–70. 3

[12] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Texts in Theoretical Com-
puter Science. An EATCS Series, Springer, 2010. 6

[13] P. Fraigniaud, Approximation algorithms for minimum-time broadcast under the vertex-
disjoint paths mode, in 9th European Symposium on Algorithms (ESA), vol. 2161 of LNCS,
Springer, 2001, pp. 440–451. 3

[14] P. Fraigniaud and E. Lazard, Methods and problems of communication in usual net-
works, Discret. Appl. Math., 53 (1994), pp. 79–133. 1

[15] A. Frank and É. Tardos, An application of simultaneous diophantine approximation in
combinatorial optimization, Comb., 7 (1987), pp. 49–65. 4

[16] M. S. Gholami, H. A. Harutyunyan, and E. Maraachlian, Optimal broadcasting in
fully connected trees, J. Interconnect. Networks, 23 (2023), pp. 2150037:1–2150037:20. 2

[17] M. Grigni and D. Peleg, Tight bounds on minimum broadcast networks, SIAM J. Dis-
cret. Math., 4 (1991), pp. 207–222. 1

[18] H. A. Harutyunyan and N. Hovhannisyan, Broadcasting in split graphs, in Algorithms
and Complexity - 13th International Conference, CIAC 2023, Larnaca, Cyprus, June 13-16,
2023, Proceedings, M. Mavronicolas, ed., vol. 13898 of Lecture Notes in Computer Science,
Springer, 2023, pp. 278–292. 2

[19] H. A. Harutyunyan and E. Maraachlian, On broadcasting in unicyclic graphs, J.
Comb. Optim., 16 (2008), pp. 307–322. 2

[20] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, A survey of gossiping and
broadcasting in communication networks, Networks, 18 (1988), pp. 319–349. 1

[21] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger, Dissemination
of Information in Communication Networks - Broadcasting, Gossiping, Leader Election,
and Fault-Tolerance, Texts in Theoretical Computer Science. An EATCS Series, Springer,
2005. 1

[22] S. L. Johnsson and C. Ho, Optimum broadcasting and personalized communication in
hypercubes, IEEE Trans. Computers, 38 (1989), pp. 1249–1268. 3

[23] R. Kannan, Minkowski’s convex body theorem and integer programming, Math. Oper. Res.,
12 (1987), pp. 415–440. 4

[24] G. Kortsarz and D. Peleg, Approximation algorithms for minimum-time broadcast,
SIAM J. Discret. Math., 8 (1995), pp. 401–427. 2, 3

[25] H. W. Lenstra Jr., Integer programming with a fixed number of variables, Math. Oper.
Res., 8 (1983), pp. 538–548. 4

20

[26] C. H. Papadimitriou and M. Yannakakis, The complexity of restricted spanning tree
problems, J. ACM, 29 (1982), pp. 285–309. 1, 19

[27] A. Proskurowski, Minimum broadcast trees, IEEE Trans. Computers, 30 (1981), pp. 363–
366. 5, 7

[28] R. Ravi, Rapid rumor ramification: Approximating the minimum broadcast time, in 35th
IEEE Symposium on Foundations of Computer Science (FOCS), 1994, pp. 202–213. 2

[29] P. J. Slater, E. J. Cockayne, and S. T. Hedetniemi, Information dissemination in
trees, SIAM J. Comput., 10 (1981), pp. 692–701. 1, 2, 5, 7

[30] Q. F. Stout and B. Wagar, Intensive hypercube communication. prearranged commu-
nication in link-bound machines, J. Parallel Distributed Comput., 10 (1990), pp. 167–181.
3

[31] M. Tedder, D. G. Corneil, M. Habib, and C. Paul, Simpler linear-time modular de-
composition via recursive factorizing permutations, in Automata, Languages and Program-
ming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008,
Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, vol. 5125 of
Lecture Notes in Computer Science, Springer, 2008, pp. 634–645. 13

21

