
New Width Parameters for Independent Set:
One-sided-mim-width and Neighbor-depth⋆

Benjamin Bergougnoux1[0000−0002−6270−3663], Tuukka
Korhonen2[0000−0003−0861−6515], and Igor Razgon3

1 University of Warsaw, Poland
benjamin.bergougnoux@mimuw.edu.pl

2 University of Bergen, Norway
tuukka.korhonen@uib.no

3 Birkbeck University of London, United Kingdom
i.razgon@bbk.ac.uk

Abstract. We study the tractability of the maximum independent set
problem from the viewpoint of graph width parameters, with the goal of
defining a width parameter that is as general as possible and allows to
solve independent set in polynomial-time on graphs where the parameter
is bounded. We introduce two new graph width parameters: one-sided
maximum induced matching-width (o-mim-width) and neighbor-depth.
O-mim-width is a graph parameter that is more general than the known
parameters mim-width and tree-independence number, and we show that
independent set and feedback vertex set can be solved in polynomial-
time given a decomposition with bounded o-mim-width. O-mim-width is
the first width parameter that gives a common generalization of chordal
graphs and graphs of bounded clique-width in terms of tractability of
these problems.
The parameter o-mim-width, as well as the related parameters mim-
width and sim-width, have the limitation that no algorithms are known
to compute bounded-width decompositions in polynomial-time. To par-
tially resolve this limitation, we introduce the parameter neighbor-depth.
We show that given a graph of neighbor-depth k, independent set can be
solved in time nO(k) even without knowing a corresponding decomposi-
tion. We also show that neighbor-depth is bounded by a polylogarithmic
function on the number of vertices on large classes of graphs, including
graphs of bounded o-mim-width, and more generally graphs of bounded
sim-width, giving a quasipolynomial-time algorithm for independent set
on these graph classes. This resolves an open problem asked by Kang,
Kwon, Strømme, and Telle [TCS 2017].

Keywords: Graph width parameters · Mim-width · Sim-width · Inde-
pendent set

⋆ Tuukka Korhonen was supported by the Research Council of Norway via the project
BWCA (grant no. 314528).

ar
X

iv
:2

30
2.

10
64

3v
2

 [
cs

.D
S]

 3
1

Ju
l 2

02
3

2 B. Bergougnoux et al.

1 Introduction

Graph width parameters have been successful tools for dealing with the in-
tractability of NP-hard problems over the last decades. While tree-width [25] is
the most prominent width parameter due to its numerous algorithmic and struc-
tural properties, only sparse graphs can have bounded tree-width. To capture
the tractability of many NP-hard problems on well-structured dense graphs,
several graph width parameters, including clique-width [6], mim-width [26],
Boolean-width [5], tree-independence number [9,27], minor-matching hypertree
width [27], and sim-width [20] have been defined. A graph parameter can be
considered to be more general than another parameter if it is bounded whenever
the other parameter is bounded. For a particular graph problem, it is natural to
look for the most general width parameter so that the problem is tractable on
graphs where this parameter is bounded. In this paper, we focus on the maximum
independent set problem (Independent Set).

Let us recall the standard definitions on branch decompositions. Let V be
a finite set and f : 2V → Z≥0 a symmetric set function, i.e., for all X ⊆ V it
holds that f(X) = f(V \X). A branch decomposition of f is a pair (T, δ), where
T is a cubic tree and δ is a bijection mapping the elements of V to the leaves
of T . Each edge e of T naturally induces a partition (Xe, Ye) of the leaves of T
into two non-empty sets, which gives a partition (δ−1(Xe), δ

−1(Ye)) of V . We
say that the width of the edge e is f(e) = f(δ−1(Xe)) = f(δ−1(Ye)), the width
of the branch decomposition D = (T, δ)—denoted by f(D)—is the maximum
width of its edges, and the branchwidth of the function f is the minimum width
of a branch decomposition of f. When G is a graph and f : 2V (G) → Z≥0 is a
symmetric set function on V (G), we say that the f-width of G is the branchwidth
of f.

Vatshelle [26] defined the maximum induced matching-width (mim-width) of
a graph to be the mim-width where mim(A) for a set of vertices A is defined to be
the size of a maximum induced matching in the bipartite graph G[A,A] given
by edges between A and A, where A = V (G) \A. He showed that given a graph
together with a branch decomposition of mim-width k, any locally checkable
vertex subset and vertex partitioning problem (LC-VSVP), including Indepen-
dent Set, Dominating Set, and Graph Coloring with a constant number
of colors, can be solved in time nO(k). Mim-width has gained a lot of atten-
tion recently [1,3,4,17,18,19,22]. While mim-width is more general than clique-
width and bounded mim-width captures many graph classes with unbounded
clique-width (e.g. interval graphs), there are many interesting graph classes with
unbounded mim-width where Independent Set is known to be solvable in
polynomial-time. Most notably, chordal graphs, and even their subclass split
graphs, have unbounded mim-width, but it is a classical result of Gavril [15] that
Independent Set can be solved in polynomial-time on them. More generally,
all width parameters in a general class of parameters that contains mim-width
and was studied by Eiben, Ganian, Hamm, Jaffke, and Kwon [11] are unbounded
on split graphs.

New Width Parameters for Independent Set 3

With the goal of providing a generalization of mim-width that is bounded
on chordal graphs, Kang, Kwon, Strømme, and Telle [20] defined the parameter
special induced matching-width (sim-width). Sim-width of a graph G is the sim-
width where sim(A) for a set of vertices A is defined to be the maximum size
of an induced matching in G whose every edge has one endpoint in A and
another in A. The key difference of mim and sim is that mim ignores the edges
in G[A] and G[A] when determining if the matching is induced, while sim takes
them into account, and therefore the sim-width of a graph is always at most
its mim-width. Chordal graphs have sim-width at most one [20]. However, it is
not known if Independent Set can be solved in polynomial-time on graphs
of bounded sim-width, and indeed Kang, Kwon, Strømme, and Telle asked as
an open question if Independent Set is NP-complete on graphs of bounded
sim-width [20].

In this paper, we introduce a width parameter that for the Independent
Set problem, captures the best of both worlds of mim-width and sim-width. Our
parameter is inspired by a parameter introduced by Razgon [24] for classifying
the OBDD size of monotone 2-CNFs. For a set of vertices A, let E(A) denote the
edges of the induced subgraph G[A]. For a set A ⊆ V (G), we define the upper-
induced matching number umim(A) of A to be the maximum size of an induced
matching in G−E(A) whose every edge has one endpoint in A and another in A.
Then, we define the one-sided maximum induced matching-width (o-mim-width)
of a graph to be the omim-width where omim(A) = min(umim(A), umim(A)). In
particular, o-mim-width is like sim-width, but we ignore the edges on one side
of the cut when determining if a matching is induced. Clearly, the o-mim-width
of a graph is between its mim-width and sim-width. Our first result is that
the polynomial-time solvability of Independent Set on graphs of bounded
mim-width generalizes to bounded o-mim-width. Moreover, we show that the
interest of o-mim-width is not limited to Independent Set by proving that
the Feedback Vertex Set problem is also solvable in polynomial time on
graphs of bounded o-mim-width.

Theorem 1. Given an n-vertex graph together with a branch decomposition of
o-mim-width k, Independent Set and Feedback Vertex Set can be solved
in time nO(k).

We also show that o-mim-width is bounded on chordal graphs. In fact,
we show a stronger result that o-mim-width of any graph is at most its tree-
independence number (tree-α), which is a graph width parameter defined by
Dallard, Milanič, and Štorgel [9] and independently by Yolov [27], and is known
to be at most one on chordal graphs.

Theorem 2. Any graph with tree-independence number k has o-mim-width at
most k.

We do not know if there is a polynomial-time algorithm to compute a branch
decomposition of bounded o-mim-width if one exists, and the corresponding
question is notoriously open also for both mim-width and sim-width. Because

4 B. Bergougnoux et al.

of this, it is also open whether Independent Set can be solved in polynomial-
time on graphs of bounded mim-width, and more generally on graphs of bounded
o-mim-width.

In our second contribution we partially resolve the issue of not having al-
gorithms for computing branch decompositions with bounded mim-width, o-
mim-width, or sim-width. We introduce a graph parameter neighbor-depth. The
neighbor-depth nd(G) of a graph G is defined recursively as follows. An empty
graph has neighbor-depth 0, and for a disconnected graph its neighbor-depth
is the maximum neighbor-depth of its connected components. Then, for a con-
nected non-empty graph G, its neighbor-depth is the smallest integer k so that
there exists a vertex v ∈ V (G) so that nd(G\N [v]) ≤ k−1 and nd(G\{v}) ≤ k,
where N [v] = N(v) ∪ {v} denotes the closed neighborhood of v. By induction,
the neighbor-depth of all graphs is well-defined. We show that neighbor-depth
can be computed in nO(k) time and also Independent Set can be solved in
time nO(k) on graphs of neighbor-depth k.

Theorem 3. Given a graph G and an integer k, we can decide whether the
neighbor-depth is at most k and if so, solve Independent Set in time nO(k).

We show that graphs of bounded sim-width have neighbor-depth bounded
by a polylogarithmic function on the number of vertices.

Theorem 4. Any n-vertex graph of sim-width k has neighbor-depth O(k log2 n).

Theorems 3 and 4 combined show that Independent Set can be solved in
time nO(k log2 n) on graphs of sim-width k, which in particular is quasipolynomial
time for fixed k. This resolves, under the mild assumption that NP ̸⊆ QP, the
question of Kang, Kwon, Strømme, and Telle, who asked if Independent Set
is NP-complete on graphs of bounded sim-width [20, Question 2].

Neighbor-depth characterizes branching algorithms for Independent Set
in the following sense. We say that an independent set branching tree of a graph
G is a binary tree whose every node is labeled with an induced subgraph of G,
so that (1) the root is labeled with G, (2) every leaf is labeled with the empty
graph, and (3) if a non-leaf node is labeled with a graph G[X], then either (a) its
children are labeled with the graphs G[L] and G[R] where (L,R) is a partition
of X with no edges between L and R, or (b) its children are labeled with the
graphs G[X \N [v]] and G[X \ {v}] for some vertex v ∈ X. Note that such a tree
corresponds naturally to a branching approach for Independent Set, where
we branch on a single vertex and solve connected components independently of
each other. Let β(G) denote the smallest number of nodes in an independent set
branching tree of a graph G. Neighbor-depth gives both lower- and upper-bounds
for β(G).

Theorem 5. For all graphs G, it holds that 2nd(G) ≤ β(G) ≤ nO(nd(G)).

By observing that some known algorithms for Independent Set in fact
construct independent set branching trees implicitly, we obtain upper bounds
for neighbor-depth on some graph classes purely by combining the running times

New Width Parameters for Independent Set 5

Polylogarithmic neighbor-depth

Bounded
sim-width

Bounded
o-mim-width

Bounded
mim-width

Bounded
clique-width

Bounded
tree-width

Bounded tree-α

Chordal P6-free

Pk-free

C>k-free

Polynomial
time

Polynomial time
given a

decomposition

Quasipolynomial
time

Bounded tree-µ
Logarithmic

Boolean-width

Fig. 1. Hierarchy of some graph classes with polylogarithmically bounded neighbor-
depth, divided vertically on whether the best known algorithm for Independent Set
on the class is polynomial time, polynomial time given a decomposition (and quasipoly-
nomial without a decomposition), or quasipolynomial time.

of such algorithms with Theorem 5. In particular, for an integer k, we say that
a graph is C>k-free if it does not contain induced cycles of length more than
k. Gartland, Lokshtanov, Pilipczuk, Pilipczuk and Rzazewski [14] showed that
Independent Set can be solved in time nO(log3 n) on C>k-free graphs for any
fixed k, generalizing a result of Gartland and Lokshtanov on Pk-free graphs [13].
By observing that their algorithm is a branching algorithm that (implicitly)
constructs an independent set branching tree, it follows from Theorem 5 that
the neighbor-depth of C>k-free graphs is bounded by a polylogarithmic function
on the number of vertices.

Proposition 6. For every fixed integer k, C>k-free graphs with n vertices have
neighbor-depth at most O(log4 n).

Along the same lines as Proposition 6, a polylogarithmic upper bound for
neighbor-depth could be also given for graphs with bounded induced cycle pack-
ing number, using the quasipolynomial algorithm of Bonamy, Bonnet, Déprés,
Esperet, Geniet, Hilaire, Thomassé, and Wesolek [2].

In Figure 1 we show a hierarchy of graph classes discussed in this paper, and
the known algorithmic results for Independent Set on those classes. All of the
inclusions shown are proper, and all of the inclusions between these classes are
included in the figure. Some of the inclusions are proven in Sections 3.3 and 4.2,
and some of the non-inclusions in Section 5. Note that bounded Boolean-width
is equivalent to bounded clique-width [26]. The polynomial-time algorithm for

6 B. Bergougnoux et al.

Independent Set on P6-free graphs is from [16], the definition of tree-µ and
polynomial-time algorithm for Independent Set on graphs of bounded tree-µ
is from [27], and the definition of Boolean-width and a polynomial-time algo-
rithm for Independent Set on graphs of logarithmic Boolean-width is from [5].
The inclusion of logarithmic Boolean-width in polylogarithmic neighbor-depth
follows from Theorem 4 and the fact the sim-width of a graph is at most its
Boolean-width. Polynomial-time algorithm for Independent Set on graphs of
bounded clique-width follows from [7,23].

2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We let
max(∅) := −∞.

Graphs. Our graph terminology is standard and we refer to [10]. The set of
vertices of a graph G is denoted by V (G) and the set of edges by E(G). For a
vertex subset X ⊆ V (G), when the underlying graph G is clear from context, we
denote by X the set V (G)\X. An edge between two vertices x and y is denoted
by xy or yx. The set of vertices that are adjacent to x is denoted by NG(x). For
a set U ⊆ V (G), we define NG(U) :=

⋃
x∈U NG(x)\U . The closed neighborhood

of a vertex x is denoted by NG[x] = NG(x) ∪ {x} and the closed neighborhood
of a vertex set U by NG[U] = NG(U)∪U . If the underlying graph is clear, then
we may remove G from the subscript.

The subgraph of G induced by a subset X of its vertex set is denoted by
G[X]. We also use the notation G \X = G[V (G) \X]. For two disjoint subsets
of vertices X and Y of V (G), we denote by G[X,Y] the bipartite graph with
vertex set X ∪ Y and edge set {xy ∈ E(G) : x ∈ X and y ∈ Y }. Given two
disjoint set of vertices X,Y , we denote by E(X) the set of edges of G[X] and by
E(X,Y) the set of edges of G[X,Y]. For a set of edges E′ of G, we denote by
G− E′ the graph with vertex set V (G) and edge set E(G) \ E′.

An independent set is a set of vertices that induces an edgeless graph. Given
a graph G with a weight function w : V (G) → Z≥0, the problem Independent
Set asks for an independent set of maximum weight, where the weight of a set
X ⊆ V (G) is

∑
x∈X w(x). A feedback vertex set is the complement of a set of

vertices inducing a forest (i.e. acyclic graph). The problem Feedback Vertex
Set asks for a feedback vertex set of minimum weight.

A matching in a graph G is a set M ⊆ E(G) of edges having no common
endpoint and an induced matching is a matching where the subgraph of G in-
duced by the endpoints of the matching does not contain any other edges than
the edges of the matching. Given two disjoint subsets A,B of V (G), we say that
a matching M is a (A,B)-matching if every edge of M has one endpoint in A
and the other in B.

Width parameters. We refer to the introduction for the definitions of branch-
decomposition and f-width, we recall below the definitions of mim-width, sim-
width and o-mim-width.

New Width Parameters for Independent Set 7

– The maximum induced matching-width (mim-width) [26] of a graph G is the
mim-width where mim(A) is the size of a maximum induced matching of the
graph G[A,A].

– The special induced matching-width (sim-width) [20] of a graph G is the
sim-width where sim(A) is the size of maximum induced (A,A)-matching in
the graph G.

– Given a graph G and A ⊆ V (G), the upper-mim-width umim(A) of A is the
size of maximum induced (A,A)-matching in the graph G−E(A). The one-
sided-mim-width (o-mim-width) of G is the omim-width where omim(A) ..=
min(umim(A), umim(A)).

The following is a standard lemma that f-width at most k implies balanced cuts
with f-width at most k.

Lemma 7. Let G be a graph, X ⊆ V (G) a set of vertices with |X| ≥ 2, and
f : 2V (G) → Z≥0 a symmetric set function. If the f-width of G is at most k, then
there exists a bipartition (A,A) of V (G) with f(A) ≤ k, |X ∩ A| ≤ 2

3 |X|, and
|X ∩A| ≤ 2

3 |X|.

Proof. Let (T, δ) be a branch decomposition of f of width k, and let us subdivide
some edge of T and consider T be rooted on this subdivision node r. Now, for
a node x of T , denote by Vx the vertices of G that are mapped to the leafs of
T that are descendants of x. We walk from the root r as follows. We start by
setting t as the root node, and then while |Vt ∩X| ≥ 2

3 |X|, we move t to a child
c of t with |Vc ∩X| ≥ 1

3 |X| (note that such a child c exists because the tree is
binary). This walk must end up in a node t with 1

3 |X| ≤ |Vt ∩X| ≤ 2
3 |X|, giving

the desired bipartition (A,A) = (Vt, Vt).

A tree decomposition of a graph G is a pair (T, bag), where T is a tree and
bag : V (T) → 2V (G) is a function from the nodes of T to subsets of vertices of
G called bags, satisfying that (1) for every edge uv ∈ E(G) there exists a node
t ∈ V (T) so that {u, v} ⊆ bag(t), and (2) for every vertex v ∈ V (G), the set
of nodes {t ∈ V (T) : v ∈ bag(t)} induces a non-empty and connected subtree of
T . The width of a tree decomposition is the maximum size of bag(t) minus one,
and the treewidth of a graph is the minimum width of a tree decomposition of
the graph.

For a set of vertices X ⊆ V (G), we denote by α(X) the maximum size of an
independent set in X. The independence number of a tree decomposition (T, bag)
is the maximum of α(bag(t)) over t ∈ V (T) and it is denoted by α(T, bag). The
tree-independence number of a graph (tree-α) is the minimum independence
number of a tree decomposition of the graph [9,27].

For a set of vertices X ⊆ V (G), we denote by µ(X) the maximum size of an
induced matching in G so that for each edge of the matching, at least one of the
endpoints of the edge is in X. For a tree decomposition (T, bag), we denote by
µ(T, bag) the maximum of µ(bag(t)) over t ∈ V (T). Yolov [27] defined the minor-
matching hypertree width (tree-µ) of a graph to be the minimum µ(T, bag) of a
tree decomposition (T, bag) of G.

8 B. Bergougnoux et al.

3 O-mim-width

In this section, we prove Theorems 1 and 2. We start with some intermediary
results. The following reveals an important property of cuts of bounded upper-
mim-width. Razgon proved a similar statement in [?]. To simplify the statements
of this section, we fix an n-vertex graph G with a weight function w : V (G) →
Z≥0.

Lemma 8. Let A ⊆ V (G). For every X ⊆ A that is the union of t independent
sets, there exists X ′ ⊆ X of size at most t · umim(A) such that N(X) \ A =
N(X ′) \ A. In particular, we have |{N(X) \ A : X ∈ IS(A)}| ≤ numim(A) where
IS(A) is the set of independent sets of G[A].

Proof. It is sufficient to prove the lemma for t = 1, since if X is the union of t
independent sets X1, . . . , Xt, then the case t = 1 implies that, for each i ∈ [1, t],
there exits X ′

i ⊆ Xi such that N(Xi) \ A = N(X ′
i) \ A and |X ′

i| ≤ umim(A). It
follows that X ′ = X ′

1∪· · ·∪X ′
t ⊆ X, N(X)\A = N(X ′)\A and |X ′| ≤ t·umim(A).

Let X be an independent set of G[A]. If for every vertex x ∈ X, there exists
a vertex yx ∈ A such that N(yx) ∩X = {x}, then {xyx : x ∈ X} is an induced
(A,A)-matching in G − E(A). We deduce that either |X| ≤ umim(A) or there
exists a vertex x ∈ X such that N(X) \ A = N(X \ {x}) \ A. Thus, we can
recursively remove vertices from X to find a set X ′ ⊆ X of size at most umim(A)
and such that N(X) \ A = N(X ′) \ A. In particular, the latter implies that
{N(X) \ A : X ∈ IS(A)} = {N(X) \ A : X ∈ IS(A) ∧ |X| ≤ umim(A)}. We
conclude that |{N(X) \A : X ∈ IS(A)}| ≤ numim(A).

To solve Independent Set and Feedback Vertex Set, we use the general
toolkit developed in [1] with a simplified notation adapted to our two problems.
This general toolkit is based on the following notion of representativity between
sets of partial solutions. In the following, the collection S represents the set of
solutions, in our setting S consists of either all the independent sets or all the
set of vertices inducing a forest.

Definition 9. Given S ⊆ 2V (G), for every A ⊆ 2V (G) and Y ⊆ V (G), we
define bestS(A, Y) ..= max{w(X) : X ∈ A ∧ X ∪ Y ∈ S}. Given A ⊆ V (G)
and A,B ⊆ 2A, we say that B (S, A)-represents A if for every Y ⊆ A, we have
bestS(A, Y) = bestS(B, Y).

Observe that if there is no X ∈ B such that X ∪ Y ∈ S, then bestS(B, Y) =
max(∅) = −∞. It is easy to see that the relation “(S, A)-represents” is an equiv-
alence relation.

The following is simplification of Theorem 4.5 from [1]. It proves that a
routine for computing small representative sets can be used to design a dynamic
programming algorithm.

Theorem 10 ([1]). Let S ⊆ 2V (G). Assume that there exists a constant c and
an algorithm that, given A ⊆ V (G) and A ⊆ 2A, computes in time |A|nO(omim(A))

New Width Parameters for Independent Set 9

a subset B of A such that |B| ≤ nc·omim(A) and B (S, A)-represents A. Then, there
exists an algorithm, that given a layout L of G, computes in time nO(omim(L)) a
set of size at most nc·omim(A) that contains an element in S of maximum weight.

In the rest of this section, we prove that routines for computing small rep-
resentative sets exist for Independent Set and Feedback Vertex Set. To
simplify the following statements, we fix a subset A ⊆ V (G).

3.1 Independent Set

The following lemma provides a routine to compute small representative sets for
Independent Set. We denote by I the set of all independent sets of G.

Lemma 11. Let k = omim(A). Given a collection A ⊆ 2A, we can compute in
time |A|nO(k) a subset B of A such that B (I, A)-represents A and |B| ≤ nk.

Proof. Let A ⊆ 2A. We compute B from the empty set as follows:

– If umim(A) = k, then, for every Y ∈ {N(X) \ A : X is an independent in
A}, we add to B an independent set X ∈ A of maximum weight such that
Y = N(X) \A.

– If umim(A) > k, then, for each subset Y ⊆ A with |Y | ≤ k, we add to B a set
X ∈ A of maximum weight such that X ∪ Y is an independent set (if such
X exists).

Correctness. First, we prove that |B| ≤ nk. This is straightforward when umim(A) >
k. When umim(A) = k, Lemma 8 implies that |{N(X)\A : X is an independent
in A}| ≤ nk and thus, we have |B| ≤ nk.

Next, we prove that B (I, A)-represents A, i.e. for every Y ⊆ A, we have
bestI(A, Y) = bestI(B, Y). Let Y ⊆ A. As B is subset of A, we have bestI(B, Y) ≤
bestI(A, Y). In particular, if there is no X ∈ A such that X∪Y is an independent
set, then we have bestI(A, Y) = bestI(B, Y) = −∞.

Suppose from now that bestI(A, Y) ̸= −∞ and let X ∈ A such that X∪Y is
an independent set and w(X) = bestI(A, Y). We distinguish the following cases:

– If umim(A) = k, then, by construction, there exists an independent set W ∈ B
such that N(X) \ A = N(W) \ A and w(X) ≤ w(W). As X ∪ Y is an
independent set, we deduce that N(X) ∩ Y = N(W) ∩ Y = ∅ and thus
W ∪ Y is an independent set.

– If umim(A) > k, then umim(A) = k as omim(A) = min(umim(A), umim(A)) =
k. By Lemma 8, there exists an independent set Y ′ ⊆ Y of size at most k
such that N(Y) \ A = N(Y ′) \ A. As Y ′ ⊆ Y , we know that X ∪ Y ′ is an
independent set. Thus, by construction there exists a set W ∈ B such that
W∪Y ′ is an independent set and w(X) ≤ w(W). Since N(Y)\A = N(Y ′)\A,
we deduce that W ∪ Y is an independent set.

In both cases, there exists W ∈ B such that W ∪ Y is an independent set and
w(X) ≤ w(W) ≤ bestI(B, Y). Since bestI(B, Y) ≤ bestI(A, Y) = w(X), it
follows that w(X) = bestI(A, Y) = bestI(B, Y). As this holds for every Y ⊆ A,
we conclude that B (I, A)-represents A.

10 B. Bergougnoux et al.

Running time. Computing omim(A) = k and checking whether umim(A) = k can
be done by looking at every set of k+1 edges and check whether one of these sets
is an induced (A,A)-matching in G−E(A) and in G−E(A). This can be done in
time O(

(
n2

k+1

)
n2) = nO(k) time. When umim(A) > k, it is clear that computing

B can be done in time |A|nO(k). This is also possible when umim(A) = k as
Lemma 8 implies that |{N(X) \A : X is an independent set in A}| ≤ nk.

We obtain the following by using Theorem 10 with the routine from Lemma 11.

Theorem 12. Given an n-vertex graph with a branch decomposition of o-mim-
width k, we can solve Independent Set in time nO(k).

3.2 Feedback Vertex Set

As usual, instead of looking for a minimum feedback vertex set, we look for an
induced forest (the complement of a feedback vertex set) of maximum weight.
We denote by F the collection of all the sets X ⊆ V (G) that induces a forest.

We start by proving that the edges of an induced forest crossing a cut of o-
mim-width k can be covered by at most 4k vertices. In fact, we prove a stronger
result by using sim-width which is always smaller than o-mim-width. To prove
this property, we need the following notion of important vertices.

Definition 13. Let F be an induced forest of G. We call x ∈ V (F) ∩ A (1) an
A-internal vertex when x has at least two neighbors in V (F)∩A, (2) A-pendant
when x has only one neighbor y in V (F) ∩ A and x is the only vertex from
V (F)∩A adjacent to y and (3) A-important when x is A-internal or A-pendant.

Observe that by definition, every edge of an induced forest F between A
and A is incident to an A-important vertex or an A-important vertex of F .
The following lemma provides an upper-bound on the number of A-important
vertices of an induced forest.

Lemma 14. For every induced forest F of G, the number of A-important ver-
tices of F is at most 2sim(A).

Proof. Let X be the set of A-important vertices of an induced forest F of G. We
construct a bipartition (X0, X1) of X and we associate each vertex x ∈ X with a
vertex yx ∈ V (F)∩A such that the sets {xyx : x ∈ X0} and {xyx : x ∈ X1} are
induced (A,A)-matchings of G. This is sufficient to prove that |X| ≤ 2sim(A).

We construct (X0, X1) by doing the following on each connected component
C of F . We fix a vertex vC ∈ V (C) ∩ X that we add to X0, then we do a
breadth-first traversal of C from vC . When we visit a vertex x ∈ X ∩ V (C), we
consider the path Px between x and vC in C. If x is A-pendant, we consider yx
to be its unique neighbor in V (F) ∩A. Otherwise x is A-internal and it admits
at least two neighbors in V (F)∩A, thus at least one of them—that we consider
as yx—does not lie in Px.

We define the parent of x as follows: If (1) x is A-pendant, (2) yx lies in
Px and (3) yx is adjacent to a vertex yw in Px associated with an A-pendant

New Width Parameters for Independent Set 11

vertex w, we define the parent of x as w. Otherwise, we define the parent of x
as the A-important vertex that is the closest to x in Px. We add x to the set
among (X0, X1) which does not contain its parent, this is well-defined because
the parent of x is always closer to vC than x and thus x is visited after its parent.

Assume towards a contradiction that {xyx : x ∈ X0} is not an induced
(A,A)-matching of G (the proof is symmetrical for {xyx : x ∈ X1}). Thus, there
exist two distinct A-important vertices x1, x2 ∈ X0 such that {x1yx1

, x2yx2
} is

not an induced matching. This implies that the vertices x1, x2, yx1
, yx2

induce
a connected graph and they belong to the same connected component C of F .
Since C is a tree, we deduce that there exists i ∈ {1, 2} such that x3−i or yxi lies
in the path Pxi between xi and vC . Without loss of generality, assume that x1

or yx2
lies in Px2

. We prove that either x1 is the parent of x2 or x2 is the parent
of x1, in both cases, this yields a contradiction since both x1 and x2 belong to
X0.

– Suppose first that x1 lies in Px2 . Since x1, x2, yx1 , yx2 induce a connected
graph, we deduce that x1 must be the parent of x2, yielding a contradiction.

– Assume now that yx2 lies in Px2 and x1 does not lie in Px2 . The choice of yx2

implies that x2 is A-pendant: yx2
is the unique neighbor of x2 in V (F) ∩ A

and yx2
is the unique neighbor of yx2

in V (F) ∩ A. In particular, it implies
that x1 is not adjacent to yx2

and x2 is not adjacent to yx1
. As {x1yx1

, x2yx2
}

is not an induced matching, either x1 is adjacent to x2 or yx1
is adjacent to

yx2 . If x1 is adjacent to x2, then x2 is the neighbor of x1 in Px1 and x2 must
be the parent of x1, this yields a contradiction.
Suppose that yx1 and yx2 are adjacent. As x1 does not lie in Px2 , yx1 must
lie in Px1

. Thus, x1 is also a A-pendant vertex. It follows that either yx1

belongs in Px2
or yx2

belongs to Px1
. Without loss of generality, assume that

yx1
belongs in Px2

. By definition of the parent of x2, we deduce that x1 is
the parent of x2 because the last three vertices of Px2

are yx1
, yx2

and x2,
yielding a contradiction.

Hence, {xyx : x ∈ X0} and by symmetry {xyx : x ∈ X1} are induced (A,A)-
matchings of G. We conclude that |X| ≤ 2sim(A).

Our routine for computing small representative sets for Feedback Vertex
Set is based on the following set of triples.

Definition 15. We define T as the set of all triples (X,Y,W) such that:

– X is a subset of A, Y is a subset of A and
– If umim(A) = k, then W is a subset of A, otherwise W is a subset of A.
– The sizes of X,Y and W are at most 2omim(A).

The last item guarantees that T contains at most n6omim(A) triples.
To compute small representative sets, we define a notion of compatibility

between the triples in T and the subsets of A and A and we define an equivalence
relation ∼t between the subsets of A compatible with a triple t such that:

12 B. Bergougnoux et al.

– For every induced forest F , there exists a triple in T compatible with V (F)∩
A and V (F) ∩A.

– For every X,W ⊆ A and Y ⊆ A compatible with t ∈ T , if X ∼t W , then
X ∪ Y induces a forest iff W ∪ Y induces a forest.

Given A ⊆ V (G) and A ⊆ 2A, we compute a small representative set B of A
from the empty set by adding, for each triple t of T and equivalence class C
of ∼t, a set X ∈ A ∩ C of maximum weight. The above-mentioned properties
guarantee that B (F , A)-represents A.

Based on Lemmas 8 and 14, our notion of compatibility guarantee that, for
every X ⊆ A and Y ⊆ A compatible with t = (X,Y,W), the set X∪Y is a vertex
cover of G[X,Y], i.e. every edge between X and Y has at least one endpoint in
X ∪ Y. Moreover, two subsets of A are equivalent for ∼t if they connect the
vertices of X∪Y in the same way. The number of equivalence classes of ∼t is at
most (4k)4k with k = omim(A) since |X ∪ Y| ≤ 4k. As |T | ≤ n6k, the size of the
computed representative set B is at most n6k(4k)4k.

We start by defining our notion of compatibility.

Definition 16. We say that a set X ⊆ A is compatible with (X,Y,W) ∈ T if:

1. X ⊆ X and the graph G[X ∪ Y] is a forest.
2. If W ⊆ A, then N(X \X)∩A = N(W)∩A, otherwise, N(W)∩ (X \X) = ∅.

Moreover, we say that a set Y ⊆ A is compatible with (X,Y,W) ∈ T if:

A. Y ⊆ Y and the graph G[X ∪ Y] is a forest.
B. If W ⊆ A, then N(Y \Y) ∩A = N(W) ∩A, otherwise N(W) ∩ (Y \Y) = ∅.

The following lemma proves the most important property of our notion of
compatibility.

Lemma 17. Let X ⊆ A and Y ⊆ A. If G[X ∪ Y] induces a forest, then there
exists a triple in T compatible with X and Y .

Proof. Assume that F = G[X∪Y] is a forest. We construct a triple (X,Y,W) ∈ T
as follows. We set X as the set of all A-important vertices of F and Y as the set
of all A-important vertices of F . By Lemma 14, the sizes of X and Y are at most
2k. We define W as follows:

– If umim(A) = k, we consider W as a subset of X \ X of size at most 2k such
that N(W) \A = N(X \ X) \A.

– Otherwise, umim(A) = k and we consider W as a subset of Y \ Y of size at
most 2k such that N(W) ∩A = N(Y \ Y) \A.

The existence of W is guaranteed by Lemma 8 and the fact that X \X and Y \Y
can be partitioned into two independent sets since both sets induce forests.

Since the sizes of X,Y and W are at most 2k, we have (X,Y,W) ∈ T . Since
X ⊆ X, Y ⊆ Y and X ∪ Y induced a forest, we deduce that Property 1 and A
are satisfied. It remains to prove Properties 2 and B. Since these properties are

New Width Parameters for Independent Set 13

symmetric, we assume without loss of generality that umim(A) = k. Thus, we
have N(W) ∩ A = N(X \ X) ∩ A and Property 2 is satisfied. By definition,
every edge between X and Y has at least one endpoint which is A-important
or A-important in F . It follows that N(X \ X) ∩ (Y \ Y) = ∅. We deduce that
N(W) ∩ (Y \ Y) = ∅ and thus Property B is satisfied. Hence, X and Y are
compatible with (X,Y,W) ∈ T .

We associate every triple of T with the equivalence relation defined below.

Definition 18. For every X,W ⊆ V (G) compatible with a triple t = (X,Y,W),
we say that X and W are t-equivalent if for every u, v ∈ X ∪ Y, u and v are
connected in G[X ∪ Y] iff u and v are connected in G[W ∪ Y].

The following lemma proves that two t-equivalent partial solutions give a
forest with the same subsets of A compatible with t.

Lemma 19. Let t = (X,Y,W) ∈ T and X,W ⊆ A compatible with t. If X and
W are t-equivalent, then, for every Y ⊆ A compatible with t, we have G[X ∪ Y]
is a forest if and only if G[W ∪ Y] is a forest.

Proof. Let Y ⊆ A compatible with t. Assume that X and W are t-equivalent
and G[X ∪ Y] contains a cycle C. According to Property 1, the graph G[X ∪Y]
is a forest, hence C contains at least one vertex y in Y \ Y. Properties 2 and B
guarantee that there is no edge between X \ X and Y \ Y. Consequently, every
edge between X and Y has an endpoint in X ∪ Y. We deduce that C is the
concatenation of ℓ ≥ 1 edge-disjoint paths P1, . . . , Pℓ such that for each i ∈ [ℓ]
we have:

– Pi is a non-empty path with endpoints in X ∪ Y and internal vertex not in
X ∪ Y and Pi is a path of G[X ∪ Y] or G[X ∪ Y].

Without loss of generality, suppose that P1 is the path going through y. Every
path Pi (including P1) that lies in G[X ∪ Y] is a path of G[W ∪ Y] because
X ⊆ W . Moreover, as X and W are t-equivalent, every path Pi lying in G[X∪Y]
can be replaced by a path in G[W ∪ Y]. By applying these replacements on the
concatenation of the paths P2, . . . , Pℓ we obtain a walk P of G[W ∪ Y] between
the endpoints of P1 such that P1 and P are edge-disjoint. Hence, G[W ∪ Y]
contains a cycle. We conclude that G[X ∪ Y] is a forest if and only if G[W ∪ Y]
is a forest.

The following lemma shows how to compute small (F , A)-representative sets.

Lemma 20. Let omim(A) = k. Given a collection A ⊆ 2A, we can compute
in time |A|nO(k) a subset B of A such that B (F , A)-represents A and |B| ≤
n6k(4k)4k.

Proof. Let A ⊆ 2A. We compute B from the empty set as follows: for each triple
t ∈ T and t-equivalence class C over A, we add to B a set X ∈ C of maximum
weight.

14 B. Bergougnoux et al.

Correctness. Since every triple of T consist of 3 sets of vertices whose sizes are
at most 2k, we have |T | ≤ n6k. For each triple (X,Y,W) ∈ T , the number of
t-equivalence classes is the number of partitions of X∪Y which is at most (4k)4k.
We deduce that |B| ≤ n6k(4k)4k.

To prove that B (F , A)-represents A, we need to prove that for every Y ⊆ A,
we have bestF (A, Y) = bestF (B, Y). Let Y ⊆ A. Assume that bestF (A, Y) ̸= ∅
(otherwise bestF (A, Y) = bestF (B, Y) = −∞ because B ⊆ A). Let X ∈ A
such that G[X ∪ Y] is a forest and w(X) = bestF (A, Y). Lemma 17 implies
the existence of a triple t ∈ T compatible with X and Y . By construction, B
contains a set W compatible with t such that w(X) ≤ w(W) and X and W are
t equivalent. From Lemma 19, we deduce that G[W ∪Y] is a forest. We conclude
that w(X) = bestF (A, Y) = bestF (B, Y) = w(W).

Running time. We can enumerate T in time nO(k). Moreover, for each triple
t ∈ T , checking whether two partial solutions are t-equivalent can be done in
time O(n2). As |B| ≤ n6k(4k)4k, we deduce that B can be computed in time
|A|nO(k) with standard algorithmic techniques.

The next theorem follows from Theorem 10 and lemma 20.

Theorem 21. Given an n-vertex graph with a branch decomposition of o-mim-
width w, we can solve Feedback Vertex Set in time nO(w).

Note that Theorem 1 is the combination of theorems 12 and 21.

3.3 Relation between o-mim-width and tree-independence number

We show that the o-mim-width of a graph is upper bounded by its tree-independence
number. We start with the standard notion of nice tree decompositions.

A rooted tree decomposition is a tree decomposition where one node r ∈ V (T)
is designated as the root. A nice tree decomposition is a rooted tree decompo-
sition, where the bag of the root node and every leaf node is empty, and every
other node is either (1) an introduce-node that has one child node and whose
bag is the bag of the child node plus one vertex, (2) a forget-node that has one
child node and whose bag is the bag of the child node minus one vertex, or (3) a
join-node that has two children and whose bag is equal to the bags of both of
its children. The following classic lemma shows that any tree decomposition can
be turned into a nice tree decomposition.

Lemma 22 (See e.g. [8]). Let (T, bag) be a tree decomposition of a graph
G. There exists a nice tree decomposition (T ′, bag′) of G so that every bag of
(T ′, bag′) is a subset of some bag of (T, bag).

We say that a branch decomposition is on a set V (G) if it is a branch de-
composition of some function f : 2V (G) → Z≥0. Next we give a general lemma
for turning tree decompositions of G into branch decompositions on V (G).

New Width Parameters for Independent Set 15

Lemma 23. Let (T, bag) be a tree decomposition of a graph G. There exists a
branch decomposition (T ′, δ) on the set V (G) so that for every bipartition (A,A)
of V (G) given by an edge of (T ′, δ), there exists a bag of (T, bag) that contains
either N(A) or N(A).

Proof. First, we can without loss of generality use Lemma 22 to assume that
(T, bag) is a nice tree decomposition. Now, observe that because of the condition
(2) of tree decompositions, there is a bijection between forget-nodes and the
vertices V (G), i.e., for every v ∈ V (G) there exists exactly one forget-node
fv ∈ V (T) with a child cv so that bag(fv) = bag(cv) \ {v}. Now, we construct a
tree T ′′ from T by inserting a leaf node lv adjacent to each fv and then construct
δ′ by mapping v to lv. The pair (T ′′, δ′) is not yet a branch decomposition because
it contains leaves to which no vertices are mapped and internal degree-2 vertices.

Before turning (T ′′, δ′) into a branch decomposition, let us first prove that
if (A,A) is a bipartition of V (G) corresponding to an edge of T ′′, then there
exists a bag of (T, bag) that contains either N(A) or N(A). First, if the edge
is between fv and lv for some vertex v ∈ V (G), then the bipartition is of form
(A,A) = ({v}, V (G) \ {v}), and therefore N(A) ⊆ {v} is contained in a bag of
(T, bag). Otherwise, the edge corresponds to an edge of T between some node
t and its parent p, and we can orient (A,A) so that A contains the vertices
v ∈ V (G) so that fv is in the subtree rooted at t. In this case, we show that
N(A) ⊆ bag(t). Let uv ∈ E(G) so that u ∈ A and v ∈ A. Now, the vertex
u occurs only in the bags of a subtree rooted at some child of t. However, v
occurs also somewhere else (because v ∈ A), so to satisfy the conditions of tree
decompositions, v must occur in bag(t).

Then, we can turn (T ′′, δ′) into a branch decomposition (T ′, δ) by iteratively
deleting leafs to which no vertices are mapped and suppressing degree-2 vertices.
This does not affect the set of bipartitions of V (G) corresponding to the edges
of the decomposition.

Then we restate Theorem 2 and prove it using Lemma 23.

Theorem 2. Any graph with tree-independence number k has o-mim-width at
most k.

Proof. Let G be a graph with tree-independence number k and (T, bag) a tree
decomposition of G with independence number α(T, bag) = k. By applying
Lemma 23 we turn (T, bag) into a branch decomposition on V (G) so that for
every partition (A,A) of V (G) given by the decomposition, either N(A) or N(A)
has independence number at most k. Now, if N(A) has independence number
at most k, then umim(A) ≤ k, and if N(A) has independence number at most k,
then umim(A) ≤ k, so we have that omim(A) ≤ k, and therefore the o-mim-width
of the branch decomposition is at most k.

We also prove the following.

Theorem 24. Any graph with minor-matching hypertreewidth k has sim-width
at most k.

16 B. Bergougnoux et al.

Proof. Let G be a graph with minor-matching hypertreewidth k and (T, bag) a
tree decomposition of G with µ(T, bag) = k. By applying Lemma 23 we turn
(T, bag) into a branch decomposition on V (G) so that for every partition (A,A)
of V (G) given by the decomposition, either N(A) or N(A) is contained in a bag
of T , and therefore either µ(N(A)) ≤ k or µ(N(A)) ≤ k. Note that however,
if there would be an induced matching of size k + 1 between A and A, then
both µ(N(A)) > k and µ(N(A)) > k. Therefore, the branch decomposition has
sim-width at most k.

4 Neighbor-depth

We start this section with the definition of the graph parameter neighbor-depth.

Definition 25. The neighbor-depth (nd) of a graph G is defined recursively as
follows:

1. nd(G) = 0 if and only if V (G) = ∅,
2. if G is not connected, then nd(G) is the maximum value of nd(G[C]) where

C ⊆ V (G) is a connected component of G,
3. if V (G) is non-empty and G is connected, then nd(G) ≤ k if and only if there

exists a vertex v ∈ V (G) such that nd(G\N [v]) ≤ k−1 and nd(G\{v}) ≤ k.

In the case (3) of Definition 25, we call the vertex v the pivot-vertex witness-
ing nd(G) ≤ k.

4.1 Algorithms using neighbor-depth

We start by showing that neighbor-depth is monotone under induced subgraphs.

Lemma 26. Let G be a graph and X ⊆ V (G). It holds that nd(G[X]) ≤ nd(G).

Proof. We use induction on |V (G)|. The lemma clearly holds when X = ∅, so
the base case of |V (G)| = 0 holds and we can assume that |X| ≥ 1. We can
assume that G[X] is connected by taking the connected component X ′ ⊆ X of
G[X] with nd(G[X ′]) = nd(G[X]).

First, if G is not connected, let C ⊆ V (G) be the connected component
of G such that X ⊆ C. As |C| < |V (G)|, we have nd(G[X]) ≤ nd(G[C]) by
the induction assumption. Since C is a connected component of G, we have by
definition nd(G[C]) ≤ nd(G), and therefore nd(G[X]) ≤ nd(G).

Second, if G is connected let v be the pivot-vertex witnessing the neighbor-
depth of G. If v /∈ X, then X ⊆ V (G) \ {v} and the lemma holds by induction.
Otherwise, if v ∈ X, then X \N [v] ⊆ V (G) \N [v] and X \ {v} ⊆ V (G) \ {v}, so
the lemma holds by choosing v as the pivot-vertex of G[X] and induction.

Then, we show that the neighbor-depth of a graph G can be computed in
nO(nd(G)) time.

New Width Parameters for Independent Set 17

Lemma 27. Given an n-vertex graph G and integer k, it can be decided whether
nd(G) ≤ k in O(n2k+3) time. In the case when nd(G) ≤ k and G is non-
empty and connected, the algorithm also outputs the pivot-vertex witnessing the
neighbor-depth.

Proof. The lemma trivially holds for k = 0. When k > 0, we prove the lemma
by induction, using the algorithm for checking nd(G) ≤ k − 1 as a subroutine.
If G is not connected, we solve each connected component independently. If G
is connected, we use the algorithm for checking nd(G) ≤ k − 1 to test for each
v ∈ V (G) whether nd(G \ N [v]) ≤ k − 1. If no such v is found, we have by
definition nd(G) > k, and therefore return false. If such v is found, we have that
nd(G) ≤ k if and only if nd(G \ {v}) ≤ k, where the if direction is by definition
and only if direction is by Lemma 26. Therefore we remove v from the graph,
and continue the process in each connected component of G \ {v}. We make at
most n2 calls to the subroutine for checking nd(G) ≤ k − 1, so by induction the
total size of the recursion tree is at most n2k, and therefore as each recursive step
can be implemented in O(n3) time, the total time complexity is O(n2k+3)

Lemma 28. Independent set can be solved in time nO(k) on n-vertex graphs
with neighbor-depth at most k.

Proof. We describe a recursive algorithm that given a graph G returns an optimal
independent set in G. Clearly, if G is empty we can return the empty set, and if
G is not connected we can return the union of an optimal independent set in each
connected component. When G is connected and non-empty, we use Lemma 27
to compute a pivot-vertex v witnessing nd(G) ≤ k. Then, we compute an optimal
independent set Iv of G \N [v] and an optimal independent set I¬v of G \ {v}.
If w(Iv) + w(v) ≥ w(I¬v), we output Iv ∪ {v} and otherwise, we output I¬v.

The correctness of this algorithm follows from the fact that for every v ∈
V (G), an optimal independent set is either (1) the union of {v} and an optimal
independent set of G \N [v] or (2) an optimal independent set of G \ {v}.

As nd(G \ N [v]) ≤ k − 1 for every pivot-vertex v witnessing nd(G) ≤ k, we
deduce that we generate at most n2 recursive calls on graphs of neighbor-depth
k − 1. Hence, the total size of the recursion tree is at most n2k. By Lemma 27,
computing a pivot-vertex can be done in time n2k+3. Hence, each recursive step
can be implemented in nO(k) time. We conclude that the running time of this
algorithm is nO(k).

4.2 Neighbor-depth of graphs of bounded sim-width

In this subsection we show that graphs of bounded sim-width have poly-logarithmic
neighbor-depth, i.e., Theorem 4. The idea of the proof will be that given a cut
of bounded sim-width, we can delete a constant fraction of the edges going over
the cut by deleting the closed neighborhood of a single vertex. This allows to
first fix a balanced cut according to an optimal decomposition for sim-width,
and then delete the edges going over the cut in logarithmic depth.

18 B. Bergougnoux et al.

We say that a vertex v ∈ V (G) neighbor-controls an edge e ∈ E(G) if e
is incident to a vertex in N [v]. In other words, v neighbor-controls e if e /∈
E(G \N [v]).

Lemma 29. Let G be a graph and A ⊆ V (G) so that sim(A) ≤ k. There exists
a vertex v ∈ V (G) that neighbor-controls at least |E(A,A)|/2k edges in E(A,A).

Proof. Suppose the contradiction, i.e., that all vertices of G neighbor-control less
than |E(A,A)|/2k edges in E(A,A). Let M ⊆ E(A,A) be a maximum induced
(A,A)-matching, having size at most |M | ≤ sim(A) ≤ k, and let V (M) denote
the set of vertices incident to M . Now, an edge in E(A,A) cannot be added
to M if and only if one of its endpoints is in N [V (M)]. In particular, an edge
in E(A,A) cannot be added to M if and only if there is a vertex in V (M)
that neighbor-controls it. However, by our assumption, the vertices in V (M)
neighbor-control strictly less than

|V (M)| · |E(A,A)|/2k = |E(A,A)|

edges of E(A,A), so there exists an edge in E(A,A) that is not neighbor-
controlled by V (M), and therefore we contradict the maximality of M .

Now, the idea will be to argue that because sim-width is at most k, there
exists a balanced cut (A,A) with sim(A) ≤ k, and then select the vertex v given
by Lemma 29 as the pivot-vertex. Here, we need to be careful to persistently
target the same cut until the graph is disconnected along it.

Theorem 4. Any n-vertex graph of sim-width k has neighbor-depth O(k log2 n).

Proof. For integers n ≥ 2 and k, t ≥ 0, we denote by nd(n, k, t) the maximum
neighbor-depth of a graph that

1. has at most n vertices,
2. has sim-width at most k, and
3. has a cut (A,A) with sim(A) ≤ k, |E(A,A)| ≤ t, |A| ≤ 2n/3, and |A| ≤ 2n/3.

We observe that if a graph G satisfies all of the conditions 1-3, then any
induced subgraph of G also satisfies the conditions. In particular, note that n
can be larger than |V (G)|, and in the condition 3, the cut should be balanced
with respect to n but not necessarily with respect to |V (G)|.

We will prove by induction that

nd(n, k, t) ≤ 1 + 4k(log3/2(n) · log(n2 + 1) + log(t+ 1)). (1)

This will then prove the statement, because by Lemma 7 any graph with n
vertices and sim-width k satisfies the conditions with t = n2.

First, when n ≤ 2 this holds because any graph with at most two vertices has
neighbor-depth at most one. We then assume that n ≥ 3 and that Equation (1)
holds for smaller values of n and first consider the case t = 0.

New Width Parameters for Independent Set 19

Let G be a graph that satisfies the conditions 1-3 with t = 0. Because t = 0,
each connected component of G has at most 2n/3 vertices, and therefore satisfies
the conditions with n′ = 2n/3, k′ = k, and t′ = (2n/3)2. Therefore, by induction
each component of G has neighbor-depth at most nd(2n/3, k, (2n/3)2). Because
the neighbor-depth of G is the maximum neighbor-depth over its components,
we get that

nd(G) ≤nd(2n/3, k, (2n/3)2)
≤1 + 4k(log3/2(2n/3) · log((2n/3)2 + 1) + log((2n/3)2 + 1))

≤1 + 4k((log3/2(n)− 1) · log((2n/3)2 + 1) + log((2n/3)2 + 1))

≤1 + 4k(log3/2(n) · log((2n/3)2 + 1))

≤1 + 4k(log3/2(n) · log(n2 + 1)),

which proves that Equation (1) holds when t = 0.
We then consider the case when t ≥ 1. Assume that Equation (1) does not

hold and let G be a counterexample that is minimal under induced subgraphs.
Note that this implies that G is connected, and every proper induced subgraph
G′ of G has neighbor-depth at most 1 + 4k(log3/2(n) · log(n2 + 1) + log(t+ 1)).
We can also assume that t = |E(A,A)|.

Now, by Lemma 29 there exists a vertex v ∈ V (G) that neighbor-controls
at least t/2k edges in E(A,A). We will select v as the pivot-vertex. By the
minimality of G, we have that nd(G \ {v}) ≤ 1 + 4k(log3/2(n) · log(n2 + 1) +

log(t+1)), so it suffices to prove that nd(G \N [v]) ≤ 1+ 4k(log3/2(n) · log(n2 +

1) + log(t+ 1))− 1. Because v neighbor-controls at least t/2k edges in E(A,A),
the graph G\N [v] satisfies the conditions with n′ = n, k′ = k, and t′ = t− t/2k.
We denote

α =
t′ + 1

t+ 1
= 1− t/2k

t+ 1
≤ 1− t/2k

2t
≤ 1− 1

4k
.

Now we have that

nd(G) ≤nd(n, k, t− t/2k) + 1

≤2 + 4k(log3/2(n) · log(n2 + 1) + log(α · (t+ 1)))

≤2 + 4k(log3/2(n) · log(n2 + 1) + log(α) + log(t+ 1))

≤2 + 4k log(α) + 4k(log3/2(n) · log(n2 + 1) + log(t+ 1))

≤2− 4k · 1

4k
+ 4k(log3/2(n) · log(n2 + 1) + log(t+ 1))

≤1 + 4k(log3/2(n) · log(n2 + 1) + log(t+ 1)),

which proves that Equation (1) holds when t ≥ 1, and therefore completes the
proof.

4.3 Neighbor-depth and independent set branching trees

We define an independent set branching tree on a graph G to be a rooted binary
tree where

20 B. Bergougnoux et al.

1. each node is labeled with an induced subgraph of G,
2. the root is labeled with G,
3. each leaf is labeled with the empty graph,
4. if a non-leaf node is labeled with the induced subgraph G[X], then either

(a) the node is a branching node, in which case there exists a vertex v ∈ X
and the node has two children, with left child labeled with G[X \N [v]]
and the right child labeled with G[X \ {v}], or

(b) the node is a decomposition node, in which case there exists a partition
(C1, C2) of V (G) into two non-empty parts with no edges between and
the node has two children labeled with G[C1] and G[C2].

The size of an independent set branching tree is the number of nodes of it.
Let β(G) denote the smallest size of an independent set branching tree on G.
We show that the neighbor-depth of G both upper and lower bounds β(G), in
particular that 2nd(G) ≤ β(G) ≤ nO(nd(G)). We start with the upper bound.

Lemma 30. There is an algorithm that given an n-vertex graph G, computes
an independent set branching tree on G of size nO(nd(G)) in time nO(nd(G)).

Proof. Follows from observing that the algorithm of the proof of Lemma 28
constructs an independent set branching tree of size nO(k).

We then prove the lower bound.

Lemma 31. Any independent set branching tree on a graph G has at least 2nd(G)

nodes.

Proof. We prove the lemma by induction on the size of G. The base case of
the empty graph holds, because the empty graph has neighbor-depth zero and
branching tree of size one. Then, consider a branching tree of size β(G) of a
graph G. First, if the root node is a decomposition node with partition (C1, C2),
then one of G[C1] and G[C2] has neighbor-depth equal to nd(G), and the lower
bound follows by induction. Then, if the root node is a branching node with
branching vertex v, we have that nd(G \N [v]) ≥ nd(G) − 1, and therefore also
that nd(G \ {v}) ≥ nd(G) − 1, and therefore by induction both the subtree
rooted at the left child and the subtree rooted at the right child have sizes at
least 2nd(G)−1, and therefore the branching tree of G has size at least 2nd(G).

5 Separations between graph classes

First, we show that P6-free graphs can have unbounded sim-width. The same
construction also excludes induced cycles of length 5 or more and induced com-
plements of cycles of length 5 or more, i.e., is weakly chordal. This answers a
question of Kang, Kwon, Strømme, and Telle about the sim-width of weakly
chordal graphs [20, Question 3].

New Width Parameters for Independent Set 21

Proposition 32. For each n, there is a graph with O(n2) vertices and sim-width
at least Ω(n) that does not contain induced paths of length 6, induced cycles of
length 5 or more, or induced complements of cycles of length 5 or more.

Proof. First, we take a complete bipartite graph with a bipartition (V1, V2), with
both V1 and V2 containing n vertices. Then, for each pair x, y with x ∈ V1 and
y ∈ V2, we create a new degree-2 vertex xy that is adjacent to x and y. We claim
that this constructions satisfies the statement.

First, to prove that sim-width is at least Ω(n), let k denote the sim-width
of the construction and let us apply Lemma 7 to find a cut (A,A) that cuts the
set X = V1 ∪V2 in a balanced manner, i.e., |X ∩A| ≤ 4n/3 and |X ∩A| ≤ 4n/3,
and has sim(A) ≤ k. Let us permute (A,A) so that A is the side that contains
the most degree-2 vertices, i.e., A contains at least n2/2 degree-2 vertices. Note
that at most (2/3)2n2 = (4/9)n2 degree-2 vertices have both of their neighbors
in A ∩X, so at least n2/2− (4/9)n2 = n2/18 of the degree-2 vertices in A have
at least one neighbor in A ∩ X. Therefore, for some i ∈ {1, 2}, at least n2/36
of the degree-2 vertices in A have a neighbor in A ∩ Vi. Every vertex in Vi has
n degree-2 neighbors, so there are at least n/36 different vertices in A ∩ Vi that
are adjacent to a degree-2 vertex in A. This gives an induced (A,A)-matching
of size at least n/36, and therefore the sim-width is at least n/36.

The constructed graph does not contain a P6 because only its endpoints
could be among the degree-2 vertices and a complete bipartite graph does not
contain a P4. Also, the constructed graph does not contain an induced cycle with
more than four vertices because none of the degree-2 vertices can belong to such
induced cycle, and a complete bipartite graph does not contain induced cycles
longer than four. For complements of induced cycles, first recall that C5 = C5,
so by previous sentence it does not contain complements of C5. For t ≥ 6, all
vertices of Ct have degree more than two, so induced Ct could only use vertices
of the complete bipartite graph, but it does not contain Ct.

It remains open whether P5-free graphs have bounded sim-width.
We then show that the minor-matching hypertreewidth of a graph class with

bounded clique-width can be unbounded.

Proposition 33. For each n, there is a graph with O(n) vertices, clique-width
O(1), and minor-matching hypertreewidth at least n.

Proof. We take a complete bipartite graph Kn,n, and add a degree-1 pendant
vertex adjacent to each vertex. The construction has bounded clique-width by
e.g. first constructing two matchings, one with labels 1 and 2 on different sides
and one with labels 1 and 3 on different sides, and then taking a disjoint union
of them and joining on labels 2 and 3. The construction has minor-matching
hypertreewidth at least n, because there must be a bag that contains one side of
the Kn,n completely, but this gives an induced matching with at least n edges
intersecting the bag.

22 B. Bergougnoux et al.

We then show that the o-mim-width of a graph class with bounded minor-
matching hypertreewidth can be unbounded, notice that by Theorem 24, such
class have bounded sim-width.

Proposition 34. For each n, there is a graph with O(n5) vertices, minor-
matching hypertreewidth O(1), and o-mim-width at least Ω(n).

Proof. Let n ≥ 1 be an integer. First, we let G′ be the n4-vertex graph that is a
disjoint union of n2 cliques each of size n2. Then, we construct a graph G as a
path-like construction with n levels, so that each even level induces a copy of G′,
each odd level induces a copy of the complement of G′, and consecutive levels
are connected by matchings that match the corresponding vertices together.

We first show that G has tree-µ at most 7. Let Vi denote the vertices of the
i:th level, and let i be odd. In particular, G[Vi] is a copy of the complement of G′.
First, we observe that the maximum induced matching in the graph G[Vi] is of
size one. Then, because the matching between two consecutive levels Vi and Vi+1

maps vertices of G[Vi] to corresponding vertices of its complement G[Vi+1], the
maximum induced (Vi, Vi+1)-matching is of size one. It follows that µ(Vi) ≤ 3,
and therefore µ(Vi ∪ Vi+2) ≤ 6.

We construct a tree decomposition of G as follows. We start by creating a
path decomposition where each bag contains the union of two consecutive odd
levels, i.e., the vertices Vi ∪ Vi+2, for odd i. The rest of the graph, i.e., the
even levels, consists of connected components that are cliques of size n2 whose
neighborhoods are contained inside two consecutive odd levels. For each such
clique W , we insert to the decomposition (making it now a tree decomposition
instead of path decomposition) a new bag containing the clique and the odd
levels adjacent to the clique, i.e., B = W ∪ Vi ∪ Vi+2 for some odd i, and make
it adjacent to the bag containing Vi ∪ Vi+2. Because W is a clique, this bag has
µ(B) ≤ µ(W) + µ(Vi) + µ(Vi+2) ≤ 1 + 3 + 3 ≤ 7, and therefore the constructed
tree decomposition of G has tree-µ at most 7.

We show that the o-mim-width of G is at least n/6. Let k be the o-mim-width
of G. By Lemma 7, there exists a bipartition (A,A) of V (G) so that omim(A) ≤ k,
|A| ≥ n5/3, and |A| ≥ n5/3. Because each odd level induces a connected induced
subgraph and the odd levels are not adjacent to each other, we get that if all
odd levels would intersect both A and A, there would be an induced (A,A)-
matching of size n, and therefore the o-mim-width of G would be at least n. In
the other case, there is an odd level that is entirely contained in either A or A.
By symmetry, suppose that there is an odd level entirely contained in A. Now,
because |A| ≥ n5/3, there must be some other level (even or odd) of which at
least one third is contained in A. By walking between these two levels, we find
two consecutive levels so that at least a 1/(3n) fraction of the matching between
them crosses the cut (A,A). In particular, (after permuting (A,A) if necessary)
we find some i so that there is a (Vi ∩ A, Vi+1 ∩ A)-matching of size at least
n3/6. Let M ⊆ V (G′) be the vertices of G′ corresponding to this matching. We
observe by the pigeonhole principle that G′[M] contains both a clique of size at
least n/6 and an independent set of size at least n/6. In particular, the endpoints

New Width Parameters for Independent Set 23

of the matching must contain an independent set of size at least n/6 in both Vi

and Vi+1, which implies that umim(A) ≥ n/6 and umim(A) ≥ n/6, implying that
omim(A) ≥ n/6, implying that the o-mim-width of G is at least n/6.

We then give two results showing that even very limited graph classes have
superconstant neighbor-depth.

Proposition 35. The n-vertex path has neighbor-depth at least Ω(log n).

Proof. We prove by induction that for all k ≥ 1, the 3k-vertex path P3k has
neighbor-depth at least k. First, observe that this holds for k = 1. Then, for
k ≥ 2, note that for any choice of v ∈ V (P3k), the graph P3k \N [v] contains the
graph P3k−1 as an induced subgraph, and therefore by Lemma 26 and induction
has neighbor-depth at least k− 1. Therefore, P3k has neighbor-depth at least k,
which again by Lemma 26 implies that any n-vertex path has neighbor-depth at
least Ω(log n).

We then show that cographs can have neighbor-depth Ω(log n), showing to-
gether with Proposition 35 that no graph classes in Figure 1 have constant
neighbor-depth. Note that cographs have neighbor-depth at most O(log n), be-
cause any connected cograph contains a vertex of degree at least n/2.

Proposition 36. There are n-vertex cographs with neighbor-depth Ω(log n).

Proof. We will define graphs Gi and G′
i recursively for i ≥ 1. Let G1 be a graph

with one vertex. For each i, the graph G′
i is the disjoint union of two copies of

Gi. For i ≥ 2, the graph Gi is formed by joining two copies of G′
i−1 by adding

a complete bipartite graph between them. The graph Gi is a cograph for all i.
The graph Gi is connected, and for any choice of v ∈ V (Gi), the graph Gi \N [v]
contains the graph Gi−1 as an induced subgraph. Therefore, by induction Gi has
neighbor-depth at least i. The number of vertices of Gi is 4i−1.

6 Conclusion

We conclude with some open problems. First, as already discussed, it is still open
if independent set can be solved in polynomial-time on graphs of bounded mim-
width, because it is not known how to construct a decomposition of bounded
mim-width if one exists. It would be very interesting to resolve this problem
by either giving an algorithm for computing decompositions of bounded mim-
width, or by defining an alternative width parameter that is more general than
mim-width and allows to solve Independent Set in polynomial-time when the
parameter is bounded.

The class of graphs of polylogarithmic neighbor-depth generalizes several
classes where Independent Set can be solved in (quasi)polynomial time. An-
other interesting class where Independent Set can be solved in polynomial-
time and which, to our knowledge, could have polylogarithmic neighbor-depth is
the class of graphs with polynomial number of minimal separators [12]. It would

24 B. Bergougnoux et al.

be interesting to show that this class has polylogarithmic neighbor-depth. More
generally, Korhonen [21] studied a specific model of dynamic programming al-
gorithms for Independent Set, in particular, tropical circuits for independent
set. It appears plausible that all graphs with polynomial size tropical circuits for
independent set could have polylogarithmic neighbor-depth.

References

1. Bergougnoux, B., Dreier, J., Jaffke, L.: A logic-based algorithmic meta-theorem
for mim-width. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). pp. 3282–3304. SIAM (2023). https://doi.org/
10.1137/1.9781611977554.ch125

2. Bonamy, M., Bonnet, E., Déprés, H., Esperet, L., Geniet, C., Hilaire, C., Thomassé,
S., Wesolek, A.: Sparse graphs with bounded induced cycle packing number have
logarithmic treewidth. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023. pp. 3006–3028. SIAM (2023). https://doi.org/10.1137/1.
9781611977554.ch116

3. Brettell, N., Horsfield, J., Munaro, A., Paesani, G., Paulusma, D.: Bounding the
mim-width of hereditary graph classes. J. Graph Theory 99(1), 117–151 (2022).
https://doi.org/10.1002/jgt.22730

4. Brettell, N., Horsfield, J., Munaro, A., Paulusma, D.: List k-colouring Pt-free
graphs: A mim-width perspective. Inf. Process. Lett. 173, 106168 (2022). https:
//doi.org/10.1016/j.ipl.2021.106168

5. Bui-Xuan, B., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Comput.
Sci. 412(39), 5187–5204 (2011). https://doi.org/10.1016/j.tcs.2011.05.022

6. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993). https://doi.org/10.1016/
0022-0000(93)90004-G

7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000). https://doi.org/10.1007/s002249910009

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015). https:
//doi.org/10.1007/978-3-319-21275-3

9. Dallard, C., Milanič, M., Štorgel, K.: Treewidth versus clique number. II. Tree-
independence number. CoRR abs/2111.04543 (2022). https://doi.org/10.
48550/arXiv.2111.04543

10. Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173.
Springer (2012)

11. Eiben, E., Ganian, R., Hamm, T., Jaffke, L., Kwon, O.: A unifying framework
for characterizing and computing width measures. In: Braverman, M. (ed.) 13th
Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31
- February 3, 2022, Berkeley, CA, USA. LIPIcs, vol. 215, pp. 63:1–63:23. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/
LIPIcs.ITCS.2022.63

12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations
and CMSO. SIAM J. Comput. 44(1), 54–87 (2015). https://doi.org/10.1137/
140964801

https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1002/jgt.22730
https://doi.org/10.1002/jgt.22730
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.1137/140964801
https://doi.org/10.1137/140964801
https://doi.org/10.1137/140964801
https://doi.org/10.1137/140964801

New Width Parameters for Independent Set 25

13. Gartland, P., Lokshtanov, D.: Independent set on Pk-free graphs in quasi-
polynomial time. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020. pp.
613–624. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00063

14. Gartland, P., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Rzazewski, P.: Finding
large induced sparse subgraphs in C>t-free graphs in quasipolynomial time. In:
Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. pp. 330–341.
ACM (2021). https://doi.org/10.1145/3406325.3451034

15. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972). https://doi.org/10.1137/0201013

16. Grzesik, A., Klimosová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-
rithm for maximum weight independent set on P6-free graphs. ACM Trans. Algo-
rithms 18(1), 4:1–4:57 (2022). https://doi.org/10.1145/3414473

17. Jaffke, L., Kwon, O., Strømme, T.J.F., Telle, J.A.: Mim-width III. Graph powers
and generalized distance domination problems. Theor. Comput. Sci. 796, 216–236
(2019). https://doi.org/10.1016/j.tcs.2019.09.012

18. Jaffke, L., Kwon, O., Telle, J.A.: Mim-width I. Induced path problems. Discret.
Appl. Math. 278, 153–168 (2020). https://doi.org/10.1016/j.dam.2019.06.026

19. Jaffke, L., Kwon, O., Telle, J.A.: Mim-width II. The feedback vertex
set problem. Algorithmica 82(1), 118–145 (2020). https://doi.org/10.1007/
s00453-019-00607-3

20. Kang, D.Y., Kwon, O., Strømme, T.J.F., Telle, J.A.: A width parameter useful
for chordal and co-comparability graphs. Theor. Comput. Sci. 704, 1–17 (2017).
https://doi.org/10.1016/j.tcs.2017.09.006

21. Korhonen, T.: Lower bounds on dynamic programming for maximum weight in-
dependent set. In: 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Confer-
ence). pp. 87:1–87:14 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.87

22. Munaro, A., Yang, S.: On algorithmic applications of sim-width and mim-width
of (H1, H2)-free graphs. CoRR abs/2205.15160 (2022). https://doi.org/10.
48550/arXiv.2205.15160

23. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B 96(4), 514–528 (2006). https://doi.org/10.1016/j.jctb.2005.
10.006

24. Razgon, I.: Classification of OBDD size for monotone 2-CNFs. In: Golovach,
P.A., Zehavi, M. (eds.) 16th International Symposium on Parameterized and Ex-
act Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal. LIPIcs,
vol. 214, pp. 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.IPEC.2021.25

25. Robertson, N., Seymour, P.D.: Graph minors. III. planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)
90013-3

26. Vatshelle, M.: New Width Parameters of Graphs. Ph.D. thesis, University of
Bergen, Norway (2012), https://hdl.handle.net/1956/6166

27. Yolov, N.: Minor-matching hypertree width. In: Czumaj, A. (ed.) Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. pp. 219–233. SIAM (2018).
https://doi.org/10.1137/1.9781611975031.16

https://doi.org/10.1109/FOCS46700.2020.00063
https://doi.org/10.1109/FOCS46700.2020.00063
https://doi.org/10.1145/3406325.3451034
https://doi.org/10.1145/3406325.3451034
https://doi.org/10.1137/0201013
https://doi.org/10.1137/0201013
https://doi.org/10.1145/3414473
https://doi.org/10.1145/3414473
https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1016/j.tcs.2017.09.006
https://doi.org/10.1016/j.tcs.2017.09.006
https://doi.org/10.4230/LIPIcs.ICALP.2021.87
https://doi.org/10.4230/LIPIcs.ICALP.2021.87
https://doi.org/10.48550/arXiv.2205.15160
https://doi.org/10.48550/arXiv.2205.15160
https://doi.org/10.48550/arXiv.2205.15160
https://doi.org/10.48550/arXiv.2205.15160
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.4230/LIPIcs.IPEC.2021.25
https://doi.org/10.4230/LIPIcs.IPEC.2021.25
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://hdl.handle.net/1956/6166
https://doi.org/10.1137/1.9781611975031.16
https://doi.org/10.1137/1.9781611975031.16

	New Width Parameters for Independent Set: One-sided-mim-width and Neighbor-depth

