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Abstract. Deep clustering has been dominated by flat models, which
split a dataset into a predefined number of groups. Although recent
methods achieve an extremely high similarity with the ground truth on
popular benchmarks, the information contained in the flat partition is
limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical
Clustering model based on deep neural networks, which can be applied
to typical image data. By employing a self-supervised learning approach,
CoHiClust distills the base network into a binary tree without access to any
labeled data. The hierarchical clustering structure can be used to analyze
the relationship between clusters, as well as to measure the similarity
between data points. Experiments demonstrate that CoHiClust generates
a reasonable structure of clusters, which is consistent with our intuition
and image semantics. Moreover, it obtains superior clustering accuracy
on most of the image datasets compared to the state-of-the-art flat
clustering models. Our implementation is available at https://github.
com/MichalZnalezniak/Contrastive-Hierarchical-Clustering.

Keywords: Hierarchical clustering · Contrastive learning · Deep embed-
ding clustering.

1 Introduction

Clustering, a fundamental branch of unsupervised learning, is often one of the
first steps in data analysis, which finds applications in anomaly detection [2],
personalized recommendations [45] or bioinformatics [22]. Since it does not use
any information about class labels, representation learning becomes an integral
part of deep clustering methods. Initial approaches use representations taken
from pre-trained models [13,30] or employ autoencoders in joint training of
the representation and the clustering model [14,26]. Recent models designed
to image data frequently follow the self-supervised learning principle, where
the representation is trained on pairs of similar images generated automatically
by data augmentations [23,9]. Since augmentations used for image data are
class-invariant, the latter techniques of ten obtain a very high similarity to the
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ground truth classes. However, we should be careful when comparing clustering
techniques only by inspecting their accuracy with ground truth classes because
the primary goal of clustering is to deliver information about data and not to
perform classification.

root

soccer ball: 89% orange: 99%

snow leopard: 99% maltese dog: 100%

king penguin: 99%

trailer truck: 97% sports car: 99%

container ship: 86% airship: 90% airliner: 98%

Fig. 1: A hierarchy generated by CoHiClust for ImageNet-10. As can
be seen, CoHiClust reliably reflected the ground-truth classes in leaf nodes. In
addition to information delivered by flat partition, in hierarchical models neighbor
leaves contain images sharing similar characteristic. It is evident that images
with soccer ball are similar to pictures with oranges because of their shapes.
Dogs are more similar to leopards than to penguins, which is reflected in the
constructed hierarchy. The same hold when analyzing the leafs representing cars,
trucks and ships. Looking at the first hierarchy level, we observe a distinction on
the right sub-tree representing machines and left-sub-tree dominated by animals.
Moreover, balls and oranges are separated from the animal branch.

Most of the works in the area of deep clustering focus on producing flat
partitions with a predefined number of groups. Although hierarchical clustering
has gained considerable attention in classical machine learning and has been
frequently applied in real-life problems [46,32], its role has been drastically
marginalized in the era of deep learning. In the case of hierarchical clustering,
the exact number of clusters does not have to be specified because we can
inspect the partition at various tree levels. Moreover, we can analyze the clusters’
relationships, e.g. by finding superclusters or measuring the distance between
groups in the hierarchy. These advantages make hierarchical clustering an excellent
tool for analyzing complex data. However, to take full advantage of hierarchical
clustering, it is necessary to create an appropriate image representation, which is
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possible due to the use of deep neural networks. To our knowledge, DeepECT
[26,27] is the only hierarchical clustering model trained jointly with the neural
network. However, this method has not been examined for larger datasets of
color images.

To fill this gap, we introduce CoHiClust (Contrastive Hierarchical Clustering),
which creates a cluster hierarchy and works well on typical color image databases.
CoHiClust uses a neural network to generate a high-level representation of data,
which is then distilled into the tree hierarchy by applying the projection head,
see Figure 2. The whole framework is trained jointly in an end-to-end manner
without labels using our novel contrastive loss and data augmentations generated
automatically following the self-supervised learning principle.

The constructed hierarchy uses the structure of a binary tree, where the
sequence of decisions made by the internal nodes determines the final assignment
to the clusters (leaf nodes). In consequence, similar examples are processed longer
by the same path than dissimilar ones. By inspecting the number of edges needed
to connect two clusters (leaves), we obtain a natural similarity measure between
data points. By applying a pruning strategy, which removes the least informative
leaf nodes, we can restrict the hierarchy to a given number of leaves and fine-tune
the whole hierarchy.

The proposed model has been examined on various image datasets and com-
pared with hierarchical and flat clustering baselines. By analyzing the constructed
hierarchies, we show that CoHiClust generates a structure of clusters that is
consistent with our intuition and image semantics, see Figures 1 and 3 for illus-
tration and discussion. Our analysis is supported by a quantitative study, which
shows that CoHiClust outperforms the current clustering models on 5 out of 7
image datasets, see Tables 1 and 6.

Our main contributions are summarized as follows:
– We introduce a hierarchical clustering model CoHiClust, which converts

the base neural network into a binary tree. The model is trained effectively
without supervision using our novel hierarchical contrastive loss applied to
self-generated data augmentations.

– We conducted an extensive experimental study, which confirms that CoHi-
Clust is very competitive with current state-of-the-art flat clustering models.
Moreover, we show that it builds hierarchies based on well-defined and
intuitive patterns retrieved from the data.

– Since CoHiClust is the first deep hierarchical clustering model applied to
color image datasets, we provide a benchmark, which can be used to compare
hierarchical clustering methods.

2 Related Work

In this section, we briefly introduce some recent developments on three related
topics: contrastive learning, deep clustering, and hierarchical methods.

Contrastive Learning The basic idea of contrastive learning is to learn a feature
space in which similar pairs stay close to each other, while dissimilar ones are
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far apart [8]. In recent works, it was observed that in selected domains, such as
computer vision, positive (similar) pairs can be generated automatically using
adversarial perturbations [28] or data augmentation [16], giving rise to a new field
called self-supervised learning [7]. Fine-tuning a simple classifier on self-supervised
representation allows for obtaining the accuracy comparable to a fully supervised
setting. SimCLR [16] applies NT-Xent loss to maximize the agreement between
differently augmented views of the same sample. Barlow Twins [41] learns to
make the cross-correlation matrix between two distorted versions of the same
samples close to the identity. BYOL [12] claims to achieve new state-of-the-art
results without using negative samples. Other works use memory banks to reduce
the cost of computing the embeddings of negative samples in every batch [37,16].

Deep clustering A primary focus in deep embedded clustering has merely been
on flat clustering objectives with the actual number of clusters known a priori.
DEC [38] is one of the first works, which combines the auto-encoder loss with a
clustering objective to jointly learn the representation and perform clustering.
This idea was further explored with some improvements in IDEC [14], JULE
[39] and DCEC [15]. IMSAT [17] and IIC [19] use perturbations to generate
pairs of similar examples and apply information-theoretic objectives for training.
PICA [18] maximizes the global partition confidence of the clustering solution
to find the most semantically plausible data separation. Following progress in
self-supervised learning, CC [23] and DCSC [44] perform contrastive learning by
generating pairs of positive and negative instances through data augmentations.

Hierarchical methods Hierarchical clustering algorithms are a well-established area
within classical data mining [29], but have rarely been studied in deep learning.
DeepECT [26,27] is the only method that jointly learns deep representation using
autoencoder architecture and performs hierarchical clustering in a top-down
manner. Unfortunately, no comparative study has been conducted on large image
data. The experimental study of objective-based hierarchical clustering methods
performed on the embedding vectors of pre-trained deep learning models is
presented in [30]. In the case of classification, there is a growing interest in deep
hierarchical methods, which in our opinion should also be reflected in the area of
unsupervised learning. SDT [10] is one of the first models that distills the base
neural networks into a soft decision tree. More advanced methods automatically
generate deep networks with a tree structure in a multistep or end-to-end manner
[33,1,35].

3 CoHiClust model

The proposed CoHiClust builds a hierarchy of clusters based on the output of
the base neural network. There are three key components of CoHiClust:
– The base neural network that generates the representation used by the tree.
– The tree model, which assigns data points to clusters by a sequence of

decisions.
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– The regularized contrastive loss, which allows for training the whole frame-
work.

We discuss the above components in detail in the following parts.

3.1 Tree hierarchy

We use a soft binary decision tree to create a hierarchical structure, where leaves
play the role of clusters (similar to [10]). In contrast to hard decision trees, every
internal node defines the probability of taking a left/right branch. The final
assignment of the input examples to clusters involves partial decisions made by
the internal nodes. Aggregating these decisions induces the posterior probability
over leaves.

Let us consider a complete binary tree with T levels, where the root is located
at the level 0 and the leaves are represented at the level T . This gives us 2t

nodes at the level t denoted by tuples (t, i), for i = 0, 1, . . . , 2t − 1, see Figure 2.
The path from root to node (t, i) is given by the sequence of binary decisions
y = (y1, . . . , yt) ∈ {0, 1}t made by the internal nodes, where ys = 0 (ys = 1)
means that we take the left (right) branch that is at the node at the level s.
Observe that we can retrieve the index j of the node at the level s from y by
taking j = bs(y) =

∑s
m=1 ym2s−m. In other words, the first s bits of y are a

binary representation of the number j.
We consider the path induced by the sequence of decisions y = (y1, . . . , yt) ∈

{0, 1}t, which goes from the root to the node (t, i), where i = bt(y). We want
to calculate the probability P i

t (x) that the input example x ∈ RD reaches node
(t, i). If pbs(y)s (x) is the probability of going from the parent node (s− 1, bs−1(y))
to its descendant (s, bs(y)), then

P i
t (x) = p

b1(y)
1 (x) · pb2(y)2 (x) · . . . pbt(y)t (x).

Observe that Pt(x) = [P 0
t (x), P

1
t (x), . . . , P

2t−1
t (x)] defines a proper probability

distribution, i.e.
∑2t−1

j=0 P j
t (x) = 1. As a consequence, the probability distribution

on the clusters (leaves) is equal to PT (x), see Figure 2.

3.2 Tree generation

To generate our tree model, we need to parameterize the probabilities pit(x) of
taking the left/right branch in every internal node. To this end, we employ a
neural network g : RD → RN with an additional projection head π : RN → RK ,
where K = 2T − 1 and T is the height of the tree. The number K of output
neurons equals the number of internal tree nodes.

The neural network g is responsible for extracting high-level information from
the data. It can be instantiated by a typical architecture, such as ResNet, and is
used to generate embeddings z = g(x) of the input data.

The projection head π operates on the embeddings z and parameterizes the
decisions made by the internal tree nodes. In our case, π is a single layer network
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Fig. 2: Illustration of CoHiClust. The output neurons of the projection head
π (appended to the base network g) model decisions made by the internal tree
nodes. The final assignment of the input example to the cluster (leaf node) is
performed by aggregating edge probabilities located on the path from the root
to this leaf.

with the output dimension equal to the number of internal nodes. To model
binary decisions of internal nodes, we apply the sigmoid function σ. Consequently,
the projection head is given by π(z) = [σ(wT

1 z + b1), . . . , σ(w
T
Kz + bK)], where

wn ∈ RN and bn ∈ R are trainable parameters of π. By interpreting the output
neurons of π as the internal nodes of the decision tree, we obtain the probabilities
of the left edges in the nodes:

p2it+1(x) = σ(wT
n z + bn) , for n = 2t + i.

Note that p2i−1
t+1 (x) = 1− p2it+1(x) always corresponds to the probability of the

right edge.

3.3 Contrastive hierarchical loss

To train CoHiClust, we introduce the hierarchical contrastive loss function
designed for trees. Our idea is based on maximizing the likelihood that similar
data points will follow the same path. The more similar data points, the longer
they should be routed through the same nodes. Since we work in an unsupervised
setting, we use a self-supervised approach and generate similar images using data
augmentations.

Let us consider two data points x1, x2 and their posterior probabilities
Pt(x1), Pt(x2) at the level t. The probability that x1 and x2 reach the same node
at this level is given by the scalar product Pt(x1) ·Pt(x2) =

∑2t−1
i=0 P i

t (x1)P
i
t (x2).

This term is maximal if both probabilities are identical one-hot vectors. In a
training phase, we do not want to force hard splits in the nodes (binary probabil-
ities), because in this way the model quickly finds a local minimum by assigning
data points to fixed leaves with high confidence. Instead of sticking to hard
assignments in a few training epochs, we want to let the model explore possible
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solutions. To this end, we take the square root before applying the scalar product,
which corresponds to the Bhattacharyya coefficient [4]:

st(x1, x2) =
√

Pt(x1) · Pt(x2) =

2t−1∑
i=0

√
P i
t (x1)P i

t (x2). (1)

Observe that st(x1, x2) = 1, if only Pt(x1) = Pt(x2) (probabilities do not have
to binarize), which leads to the exploration of possible paths. By aggregating
the similarity scores over all tree levels, we arrive at our final similarity function
s(x1, x2) =

∑T−1
t=0 st(x1, x2).

In a training phase, we take a minibatch {xj}Nj=1 of N examples and generate
its augmented view {x̃j}Nj=1. Every pair (xj , x̃j) is considered positive, which
means that we will maximize their similarity score. As a consequence, we en-
courage the model to assign them to the same leaf node. To avoid degenerate
solutions, where all points end up in the same leaf, we treat all other pairs as
negative and minimize their similarity scores. Finally, the proposed hierarchical
contrastive loss is given by:

CoHiLoss =
1

N(N − 1)

N∑
j=1

∑
i ̸=j

s(xj , x̃i)−
1

N

N∑
j=1

s(xj , x̃j).

By minimizing the above loss, we maximize the likelihood that similar data points
follow the same path (second term) and minimize the likelihood that dissimilar
ones are grouped together.

3.4 Regularization

The final cluster assignments are induced by aggregating several binary decisions
made by the internal tree nodes. In practice, the base neural network may not
train all nodes and, in consequence, use only a few leaves for clustering. While
selecting the number of clusters in flat clustering is desirable, here we would like
to create a hierarchy, which is not restricted to a given number of leaves. To
enable end-to-end training of the base neural network with an arbitrary number
of leaves, we consider two regularization strategies.

The first regularization (dubbed R1) explicitly encourages the model to
use both left and right sub-trees equally [10]. We realize this postulate by
minimizing the cross-entropy between the desired distribution [0.5, 0.5] and the
actual distribution to choose the left or right path in a given node.

The second regularization (dubbed R2) does not directly influence the routing
in the tree, but focuses on improving the output representation of the base
network g. For this purpose, we use a projection head ϕ : RN → RM , which
transforms the embeddings z = g(x) of the input data, and apply the NT-Xent
loss [7] to z̃ = ϕ(z). With the NT-Xent loss, we maximize the cosine similarity
for all positive pairs and minimize the cosine similarity for all negative pairs. For
simple datasets, such as MNIST or F-MNIST, ϕ is an identity function, while for
more complex color images, it is a two-layer network.
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Table 1: Comparison with flat clustering methods on datasets of color images.
Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means [25] 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020
SC [43] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013
AC [11] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021
NMF [5] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016
AE [3] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073
DAE [34] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078
DCGAN [31] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078
DeCNN [42] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073
VAE [20] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079
JULE [39] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028
DEC [38] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079
DAC [6] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111
DCCM [36] 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182
PICA [18] 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201
CC [24] 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274
CoHiClust 0.779 0.839 0.731 0.467 0.437 0.299 0.584 0.613 0.474 0.907 0.953 0.899 0.411 0.355 0.232

Taking together the contrastive loss CoHiLoss with two regularization func-
tions R1 (for entropy) and R2 (for NT-Xent), we arrive at our final loss:

Loss =CoHiLoss + β1R1 + β2R2, (2)

where β1, β2 are the hyperparameters that define the importance of the reg-
ularization terms R1 and R2, respectively. To generate a complete hierarchy
(complete tree with assumed height), we set β1 proportional to the depth of the
tree β1 = 2−T [10] and β2 = 1 [24].

3.5 Training

CoHiClust can be trained end-to-end by minimizing (2). We verified that training
is even more effective when we introduce a pre-training phase of the base neural
network. To this end, we perform self-supervised representation learning of the
base network g using R2 regularization (it corresponds to the SimCLR model
[7]). In Section 4.2, we show that pre-training allows us to reduce the number of
training epochs and leads to a better overall performance of CoHiClust.

The proposed model builds a complete tree with 2T leaves. Although such
a structure is useful for analyzing the hierarchy of clusters, in some cases we
are interested in creating a tree with the requested number of groups. For this
purpose, we apply a pruning step that reduces the least significant leaf nodes.
Namely, we reduce leaves with the lowest expected fraction of data points:
P i
T = 1

|X|
∑

x∈X P i
T (x). Pruning is realized after a few first training epochs of

CoHiClust (after the pre-training phase). We remove one leave per epoch. Next,
CoHiClust is trained with the final number of leaves.

4 Experiments

First, we evaluate our method on several datasets of color images of various
resolutions and with a diverse number of classes. In addition to reporting similarity
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scores with ground-truth partitions, we analyze the constructed hierarchies, which
in our opinion is equally important in practical use-cases. Next, we perform an
ablation study and investigate the properties of CoHiClust. Finally, we compare
CoHiClust with existing hierarchical methods. Details of the experimental settings
and additional results are included in the Appendix.

4.1 Clustering color images

Benchmark We perform the evaluation on typical bemchmark datasets: CIFAR-
10, CIFAR-100, STL-10, ImageNet-Dogs, and ImageNet-10, see the Appendix for
their summary. We process each data set at its original resolution. Since none
of the previous hierarchical methods have been examined on these datasets, we
use the benchmark that includes the flat clustering methods reported in [24].
According to previous works in contrastive clustering, CoHiClust uses ResNet
architectures as a backbone network. To measure the similarity of the constructed
partition with the ground truth, we apply three widely-used clustering metrics:
normalized mutual information (NMI), clustering accuracy (ACC), and adjusted
rand index (ARI). In the Appendix, we also show the DP (dendrogram purity)
of the hierarchies generated by CoHiClust.

The results presented in Table 1 show that CoHiClust outperforms the
comparative methods in 3 out of 5 datasets. It gives extremely good results
on CIFAR-10 and ImageNet-10, but is notably worse than CC on STL-10. We
suspect that lower performance on STL-10 can be caused by inadequate choice of
the backbone architecture to process images at resolution 96× 96. Nevertheless,
one should keep in mind that CoHiClust is the only hierarchical method in this
comparison, and constructing a clustering hierarchy, which resembles ground
truth classes, is more challenging than directly generating a flat partition.

Analyzing clustering hierarchies To better analyze the results returned by CoHi-
Clust, we plot the constructed hierarchies. Figures 1 and 3 present and discuss
the results obtained for ImageNet-10 and CIFAR-10, respectively (we refer the
reader to the Appendix for more examples). In both cases, CoHiClust was able
to accurately model ground-truth classes as leaf nodes. In addition to the in-
formation contained in a flat partition, CoHiClust allows us to find relations
between clusters. In particular, we observe that similar classes are localized on
neighboring nodes.

The hierarchy also allows us to define the distance d(a, b) between two ex-
amples a, b using the number of edges that connect them. We use the average
of this score to calculate the similarity between the ground truth classes A and
B as d(A,B) = 1

Z

∑
a∈A

∑
b∈B d(a, b), where Z is the number of all pairs. The

distance is small if examples from classes A and B are located in nearby leaf
nodes (on average).

Analysis of the distance matrix in Figure 4 confirms that objects representing
the same class have the strongest relationship in the hierarchy (the diagonal
entries contain the smallest values in the matrix). We also see high similarities
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root

Horse: 97% Deer: 78%

Bird: 73%
Horse: 18%

Frog: 91%

Dog: 58%
Cat: 36%

Cat: 58%
Dog: 33%

Truck: 96% Car: 95% Ship: 97% Plane: 90%

Fig. 3: A tree hierarchy generated by CoHiClust for CIFAR-10. There is
an evident distinction into animals (left branch) and machines (right branch).
Moreover, all neighbor leaves represent visually similar classes (horses and deers,
dogs and cats, trucks and cars, ships and planes). Images with frogs seem to be
visually similar to cats and dogs, which leads to their placement in the neighbor
leaves (however cats and dogs are connected by a stronger relationship). Interest-
ingly, a small portion of images with horses’ heads are grouped together with
birds because of their similar shapes. Although there is a slight mismatch between
dogs and cats classes, the left leaf contains pets with bright fur photographed in
front, while the right leaf includes animals with dark fur presented from the side,
which coincides with our intuition.

between classes representing dogs and cats (1.8 jumps), cars and trucks (2 jumps),
etc. In general, the distance matrix supports our previous findings quantitatively.

4.2 Analysis of the CoHiClust model

We analyze selected properties of CoHiClust including the choice of the backbone
network, the influence of regularization functions, the initial depth of the tree,
and the training curves. Additionally, we demonstrate that training typical
hierarchical methods on top of self-supervised learning models is sub-optimal.
All experiments were carried out on the CIFAR-10 dataset.

Reliance on backbone network In Table 2, we show how the selection of the
architecture of the base network g influences the clustering results. As can be seen,
CoHiClust gradually improves its performance with the depth of the architecture,
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Fig. 4: Distance matrices retrieved from the constructed hierarchies for ground
truth classes of CIFAR-10 dataset, see text in the paper for the interpretation.

suggesting that CoHiClust adapts well to deeper networks. In contrast, CC seems
to be resistant to the selection of architecture and obtains optimal results on a
medium-sized network.

Table 2: The importance of architecture choice.
Method CoHiClust CC [24]

Backbone NMI ACC ARI NMI ACC ARI

ResNet18 0.711 0.768 0.642 0.650 0.736 0.569
ResNet34 0.730 0.788 0.667 0.705 0.790 0.637
ResNet50 0.767 0.840 0.720 0.663 0.747 0.585

Analysis of loss function Next, we explain the influence of particular components
of the CoHiClust loss function. Additionally, we verify the role of pre-training
phase. As shown in Table 3, regularization functions have a significant impact on
the results of CoHiClust boosting the NMI score by 0.2. It is also evident that
pre-trainig is an essential ingredient of CoHiClust, which allows selecting a better
starting point for building a clustering tree.

Selecting depth of the tree We investigate the choice of the initial depth of the
clustering hierarchy. In Table 4, we observe a slight increase in performance
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Table 3: Ablation study of CoHiClust loss function performed on CIFAR-10.
NMI ACC ARI

CoHiLoss 0.567 0.569 0.457
CoHiLoss + R1 0.629 0.726 0.549
CoHiLoss + R1 + R2 0.767 0.84 0.72
CoHiClust w/o pre-training 0.59 0.657 0.50

by changing depth from 4 to 5. However, adding one more level does not lead
to further improvement. In our opinion, using deeper trees allows for better
exploration and leads to more fine-grained clusters. On the other hand, increasing
the number of nodes makes optimization harder, which might explain the lower
results for depth 6.

Table 4: Influence of tree depth on the clustering results.
Depth NMI ACC ARI

4 0.767 0.840 0.720
5 0.779 0.839 0.731
6 0.689 0.713 0.581

Learning curves To illustrate the training phases of CoHiClust, we show the
learning curves in Figure 5. Up to epoch 1000, we only trained the backbone model.
Since in the pre-training phase, the clustering tree returns random decisions, we
get a very low NMI value. After that, we start optimizing the CoHiLoss, and the
NMI rapidly grows. In epoch 1050, we have a pruning phase, which results in
further improvement of the NMI score. As can be seen, the model stabilizes its
performance just after the pruning stage, which suggests that we can stop the
training in epoch 1100. In conclusion, CoHiClust requires less than 100 epochs
to obtain an optimal clustering score given a pre-trained model.

Comparison with agglomerative clustering We show that our top layer responsible
for constructing a decision tree is an important component of CoHiClust and
cannot be replaced by alternative hierarchical clustering methods. For this
purpose, we first train a backbone network with a typical self-supervised SimCLR
technique. Next, we apply agglomerative clustering to the resulting representation.
As can be seen in Table 5, agglomerative clustering gets very low results, which
means that joint optimization of the backbone network and clustering tree
using the proposed CoHiLoss is a significantly better choice. In consequence,
the representation taken from a typical self-supervised learning model does not
provide a representation, which can be clustered accurately using simple methods.



Contrastive Hierarchical Clustering 13

Fig. 5: Learning curves on the validation set of CIFAR-10. Pre-training is per-
formed until epoch 1000 and pruning is applied in epoch 1050. The model
stabilizes its performance quickly after pruning.

Table 5: Comparison with agglomerative clustering trained on the representation
generated by the self-supervised learning model.

NMI ACC ARI

Agglomerative clustering 0.265 0.363 0.147
CoHiClust 0.767 0.84 0.72

4.3 Comparison with hierarchical clustering methods

To our knowledge, DeepECT [26] is the only hierarchical clustering method based
on deep neural networks. Following their experimental setup, we report the results
on two popular image datasets, MNIST and F-MNIST, and consider classical
hierarchical algorithms evaluated on the latent representation created by the
autoencoder and IDEC [14]. In addition to the previous clustering metrics, we
also use dendrogram purity (DP) [21,40], which directly compares the constructed
hierarchy with the ground-truth partition. It attains its maximum value of 1 if
and only if all data points from the same class are assigned to some pure sub-tree.

The results summarized in Table 6 demonstrate that CoHiClust outperforms
all baselines on both MNIST and F-MNIST datasets in terms of all metrics.
Interestingly, DeepECT benefits from data augmentation in the case of MNIST,
while on F-MNIST it deteriorates its performance. All methods except CoHiClust
and DeepECT failed completely to create a hierarchy recovering true classes (see
the DP measure), which confirms that there is a lack of powerful hierarchical clus-
tering methods based on neural networks. The disproportion between the results
obtained on MNIST and F-MNIST demonstrates that recovering true classes
of clothes is a significantly more challenging task than recognizing handwritten
digits.
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Table 6: Comparison with hierarchical models in terms of DP, NMI and ACC
(higher is better).

Method MNIST F-MNIST

DP NMI ACC DP NMI ACC

DeepECT 0.82 0.83 0.85 0.47 0.60 0.52
DeepECT + Aug 0.94 0.93 0.95 0.44 0.59 0.50
IDEC (agglomerative complete*) 0.40 0.86 0.85 0.35 0.58 0.53
AE + k-means (bisecting*) 0.53 0.70 0.77 0.38 0.52 0.48
CoHiClust 0.97 0.97 0.99 0.52 0.62 0.65

* To report DP for flat clustering models, we use (optimally selected) typical hierarchical
algorithms to build a hierarchy on the obtained data representation.

5 Conclusion

We proposed a contrastive hierarchical clustering model CoHiClust, which suits
well to clustering of large-scale image databases. The hierarchical structure
constructed by CoHiClust provides significantly more information about the data
than typical flat clustering models. In particular, we can inspect the similarity
between selected groups by measuring their distance in the hierarchy tree and,
in consequence, find super-clusters. Experimental analysis performed on typical
clustering benchmarks confirms that the produced partitions are highly similar
to ground-truth classes. At the same time, CoHiClust allows us to discover
important patterns that have not been encoded in the class labels.
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tions. Sankhyā: the indian journal of statistics pp. 401–406 (1946)

5. Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonnegative matrix
factorization 9, 1010—-1015 (2009)

6. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering.
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(Oct 2017)

7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations. In: III, H.D., Singh, A. (eds.) Proceedings of
the 37th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 119, pp. 1597–1607. PMLR (13–18 Jul 2020), https:
//proceedings.mlr.press/v119/chen20j.html

8. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05). vol. 1, pp. 539–546.
IEEE (2005)

9. Dang, Z., Deng, C., Yang, X., Wei, K., Huang, H.: Nearest neighbor matching for
deep clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 13693–13702 (2021)

10. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784 (2017)

11. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual
nearest neighbourhood. Pattern Recognition 10, 105–112 (1978)

12. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E.,
Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap
your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems 33, 21271–21284 (2020)

13. Guérin, J., Gibaru, O., Thiery, S., Nyiri, E.: Cnn features are also great at unsu-
pervised classification. arXiv preprint arXiv:1707.01700 (2017)

14. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local
structure preservation. In: Ijcai. pp. 1753–1759 (2017)

15. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders.
In: International conference on neural information processing. pp. 373–382. Springer
(2017)

16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 9726–9735 (2020). https://doi.org/10.
1109/CVPR42600.2020.00975

17. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete rep-
resentations via information maximizing self-augmented training. In: International
conference on machine learning. pp. 1558–1567. PMLR (2017)

18. Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition confidence
maximisation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8849–8858 (2020)

19. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised
image classification and segmentation. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 9865–9874 (2019)

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975


16 Authors Suppressed Due to Excessive Length

20. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

21. Kobren, A., Monath, N., Krishnamurthy, A., McCallum, A.: A hierarchical algorithm
for extreme clustering. In: Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. pp. 255–264 (2017)

22. Lakhani, J., Chowdhary, A., Harwani, D.: Clustering techniques for biological
sequence analysis: A review. Journal of Applied Information Scienc 3(1), 14–32
(2015)

23. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp.
8547–8555 (2021)

24. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering.
Proceedings of the AAAI Conference on Artificial Intelligence 35(10), 8547–8555
(May 2021), https://ojs.aaai.org/index.php/AAAI/article/view/17037

25. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations 1, 281––297 (1967)

26. Mautz, D., Plant, C., Böhm, C.: Deep embedded cluster tree. In: 2019 IEEE
International Conference on Data Mining (ICDM). pp. 1258–1263. IEEE (2019)

27. Mautz, D., Plant, C., Böhm, C.: Deepect: The deep embedded cluster tree. Data
Science and Engineering 5(4), 419–432 (2020)

28. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regu-
larization method for supervised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence 41(8), 1979–1993 (2018)

29. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview.
Wiley Interdiscip Rev Data Min Knowl Discov 2(1), 86–97 (2012)

30. Naumov, S., Yaroslavtsev, G., Avdiukhin, D.: Objective-based hierarchical clustering
of deep embedding vectors. In: AAAI. pp. 9055–9063 (2021)

31. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (11
2015)

32. Śmieja, M., Warszycki, D., Tabor, J., Bojarski, A.J.: Asymmetric clustering index
in a case study of 5-ht1a receptor ligands. PloS one 9(7), e102069 (2014)

33. Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., Nori, A.: Adaptive
neural trees. In: International Conference on Machine Learning. pp. 6166–6175.
PMLR (2019)

34. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research 11(110), 3371–3408
(2010)

35. Wan, A., Dunlap, L., Ho, D., Yin, J., Lee, S., Jin, H., Petryk, S., Bargal, S.A.,
Gonzalez, J.E.: Nbdt: neural-backed decision trees. arXiv preprint arXiv:2004.00221
(2020)

36. Wu, J., Long, K., Wang, F., Qian, C., Li, C., Lin, Z., Zha, H.: Deep comprehen-
sive correlation mining for image clustering. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (October 2019)

37. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-
parametric instance discrimination. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 3733–3742 (2018)

38. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: International conference on machine learning. pp. 478–487. PMLR
(2016)

https://ojs.aaai.org/index.php/AAAI/article/view/17037


Contrastive Hierarchical Clustering 17

39. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations
and image clusters. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 5147–5156 (2016)

40. Yang, R., Qu, D., Qian, Y., Dai, Y., Zhu, S.: An online log template extraction
method based on hierarchical clustering. EURASIP Journal on Wireless Communi-
cations and Networking 2019(1), 1–12 (2019)

41. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised
learning via redundancy reduction. In: International Conference on Machine Learn-
ing. pp. 12310–12320. PMLR (2021)

42. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. pp. 2528–2535 (2010)

43. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural
Information Processing Systems. vol. 17. MIT Press (2004)

44. Zhang, F., Li, L., Hua, Q., Dong, C.R., Lim, B.H.: Improved deep clustering
model based on semantic consistency for image clustering. Knowledge-Based
Systems 253, 109507 (2022). https://doi.org/https://doi.org/10.1016/j.
knosys.2022.109507, https://www.sciencedirect.com/science/article/pii/
S0950705122007560

45. Zhang, Y., Ahmed, A., Josifovski, V., Smola, A.: Taxonomy discovery for personal-
ized recommendation. In: Proceedings of the 7th ACM international conference on
Web search and data mining. pp. 243–252 (2014)

46. Zou, Q., Lin, G., Jiang, X., Liu, X., Zeng, X.: Sequence clustering in bioinformatics:
an empirical study. Briefings in bioinformatics 21(1), 1–10 (2020)

A Experimental setup

Gray-scale images: MNIST and F-MNIST We instantiate the backbone network
g using ResNet18. Projection head π used for parameterizing decisions made
by internal tree nodes is a single-layer network. The projection head ϕ used
for applying regularization R2 is an identity function (NT-Xent loss is applied
on the output of backbone network). We run CoHiClust with 16 leaves (4 tree
levels). CoHiClust is trained for 200 epochs of pre-training and 100 epochs of
tree construction (pruning is performed in epochs 10-15) using a minibatch size
of 256.

Color images For CIFAR-10, CIFAR-100 and ImageNet-10, we use ResNet50 as
a backbone network. The remaining datasets of color images employed ResNet-34
network. Projection heads π and ϕ are separate two-layer networks. For CIFAR-
10 and CIFAR-100, we run CoHiClust with 32 leaves, while for the remaining
datasets we use 16 leaves. CoHiClust is trained for 1000 epochs of pre-training
and 500 epochs of tree construction using a minibatch size of 512 for CIFAR-10,
CIFAR-100 and STL-10. In case of ImageNet-10 and ImageNet-Dogs we used
minibatch with size of 128. Pruning starts after 50 epochs of tree construction
and we remove one leaf per epoch.

Summary of datasets Table 7 summarizes datasets used for evaluation.
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Table 7: A summary of datasets.
Dataset Split Samples Classes Resolution

CIFAR-10 Train+Test 60 000 10 32× 32
CIFAR-100 Train+Test 60 000 20 32× 32
STL-10 Train+Test 13 000 10 96× 96
ImageNet-10 Train 13 000 10 224× 224
ImageNet-Dogs Train 19 500 15 224× 224

Augmentations For all datasets, we applied four types of augmentations: random
cropping, horizontal flip, color jittering, and grayscaling.

B Dendrogram purity for datasets of color images

In Table 8, we present dendrogram purity obtained by CoHiClust for datasets
of color images. This benchmark can be used to compare other hierarchical
clustering models.

Table 8: Dendrogram purity on color images.
DP

CIFAR-10 0.715
CIFAR-100 0.231

STL-10 0.530
ImageNet-10 0.895

ImageNet-Dogs 0.190

C Additional results

We present hierarchies and distance matrices constructed for the remaining
datasets in the following figures.
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Fig. 6: Tree hierarchy constructed for MNIST. Observe that neighboring
leaves contain images of visually similar classes, e.g. 8 and 0; 4 and 9; 1 and 7.
Such a property holds also for nodes in the upper levels of the tree – the left
sub-tree contain digits with circular shapes, while the digits located in the right
sub-tree consist of lines.
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Fig. 7: Tree hierarchy generated by CoHiClust for F-MNIST (images
in the nodes denote mean images in each sub-tree). The right sub-tree contains
clothes while the other items (shoes and bags) are placed in the left branch.
Looking at the lowest hierarchy level, we have clothes with long sleeves grouped
in the neighboring leaves. The same holds for clothes with designs. Observe that
CoHiClust assigned white-colored t-shirts and dresses to the same cluster, while
trousers are in the separate one. Small shoes such as sneakers or sandals are
considered similar (neighboring leaves) and distinct from ankle shoes. Concluding,
CoHiClust is able to retrieve meaningful information about image semantics,
which is complementary to the ground truth classification.
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root

airplane: 76%
bird: 16%

car: 96% truck: 90%

ship: 93%

deer: 80% deer: 25%
dog: 23%
cat: 20%

cat: 66%
dog: 23%

monkey: 70%

horse: 65%
dog: 15%

bird: 42%
monkey: 23%
dog: 21%

Fig. 8: Tree hierarchy generated by CoHiClust for STL-10
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(a) MNIST (b) F-MNIST

(c) STL-10 (d) ImageNet-10

(e) ImageNet-Dogs (f) CIFAR-100

Fig. 9: Distance matrices retrieved from the constructed hierarchies for ground
truth classes.
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