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Abstract. Pre-trained Transformers (e.g., BERT) have been commonly
used in existing dense retrieval methods for parameter initialization, and
recent studies are exploring more effective pre-training tasks for further
improving the quality of dense vectors. Although various novel and effec-
tive tasks have been proposed, their different input formats and learning
objectives make them hard to be integrated for jointly improving the
model performance. In this work, we aim to unify a variety of pre-training
tasks into the bottlenecked masked autoencoder manner, and integrate
them into a multi-task pre-trained model, namely MASTER. Concretely,
MASTER utilizes a shared-encoder multi-decoder architecture that can
construct a representation bottleneck to compress the abundant semantic
information across tasks into dense vectors. Based on it, we integrate
three types of representative pre-training tasks: corrupted passages re-
covering, related passages recovering and PLMs outputs recovering, to
characterize the inner-passage information, inter-passage relations and
PLMs knowledge. Extensive experiments have shown that our approach
outperforms competitive dense retrieval methods. Our code and data are
publicly released in https://github.com/microsoft/SimXNS.

Keywords: Dense Retrieval · Pre-training · Multi-task Learning.

1 Introduction

Recent years have witnessed the great success of dense retrieval methods [12,46,45,43]
in industrial applications, e.g., web search [45,5] and question answering [12,25].

* This work was done during internship at MSRA.
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Fig. 1. The comparison of two representative pre-training tasks and our approach. Ours
incorporates a bottlenecked multi-decoder architecture that unifies different tasks into
the same input format and leverages specific decoders to deal with them separately.

These methods typically encode queries and passages into low-dimensional dense
vectors and utilize the vector similarity between them to measure semantic rele-
vance. In real-world applications, the dense vectors of a large number of passages
will be pre-computed. Then the approximate nearest neighbor (ANN) search
techniques [11] can be incorporated for efficient retrieval.

In existing dense retrieval methods, pre-trained language models (PLMs) [4,44]
have been widely adopted as the backbone, showing the superiority to generate
high-quality dense vectors. However, general PLMs (e.g., BERT [4]) may not be
the best for dense retrieval, as their produced native dense representations (usually
the [CLS] embedding) are not designed on purpose to compress the information
from the input text. To solve it, recent studies [5,37,20] continually pre-train
PLMs for improving the [CLS] embedding. Typically, they mainly focus on
capturing the inner-passage information (e.g., recovering masked tokens) [17,35]
or inter-passage relations (e.g., co-occurring passages) [36], and specially design
pre-training tasks. After pre-training, the enhanced [CLS] embeddings would be
fine-tuned on downstream passage retrieval tasks, achieving faster convergence
and better performance than general PLMs.

As existing work has shown the effectiveness of capturing the two types of
characteristics during pre-training by specific tasks, it is promising to combine
these tasks for enhancing the [CLS] embedding. Intuitively, by incorporating more
tasks to capture more specific useful information, the [CLS] embedding would be
further enriched during pre-training, helping it generalize better into downstream
retrieval tasks. However, due to the divergence of focused characteristics, the
available pre-training tasks in existing work may adopt different settings in
training objectives and input formats, e.g., contrastive learning with co-occurring
passages as positives and sampled negatives, and masked language model with
special masking strategies on passages. Such differences make it hard to combine
existing pre-training tasks, and an arbitrary integration of these tasks may even
cause detrimental interference in the semantics of the [CLS] embedding, leading
to performance degradation.
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To address this problem, we consider integrating multiple pre-training tasks
in a unified input format and reducing the divergence of different training
objectives. Since most of the NLP tasks can be reformulated as the text-to-text
format [27], we can also reconstruct the available pre-training tasks into such
a format. Concretely, the tasks for capturing the inner-passage information or
inter-passage relations, can be converted as predicting the inner- or inter-passage
textual information (e.g., tokens) based on the same input passage. Therefore,
we can propose a unified framework for these tasks that adopts the PLM as
the shared encoder, and multiple task-specific decoders. As shown in Figure 1,
the shared encoder produces the [CLS] embedding for the input passage, and
all the decoders mainly rely on the embedding for predicting the specific texts.
Such a way constructs an information-bottleneck architecture [17,35,36] where
the PLM encoder is forced to inject sufficient task-specific information into the
[CLS] embedding, for well accomplishing the tasks in decoders.

The proposed bottlenecked multi-decoder architecture provides a flexible way
to integrating multiple different tasks for pre-training dense retriever. Based on
it, we can combine a diverse range of available tasks for capturing the useful
information or relations from different perspectives. Besides the commonly-
used inner-passage information and inter-passage relations, we also consider to
learn the knowledge from other public generative PLMs (e.g., GPT-2 [26]), for
capturing useful information beyond the corpus. Specifically, we devise three
types of pre-training tasks for recovering corrupted passages, related passages,
and PLMs output, respectively, including a total of five tasks in five decoders.
Inspired by the masked autoencoder method (MAE) [9], we perform aggressively
masking on the decoders (e.g., masking 50% tokens), hence the deep encoder
would be forced to generate compressed high-quality representations to recover
them. Finally, we propose MASTER, a multi-task pre-trained bottlenecked
masked autoencoder, that adopts a shared-encoder multi-decoder architecture
to integrate the five pre-training tasks in the bottlenecked MAE format. To
verify the effectiveness of our approach, we conduct extensive experiments on
several text retrieval datasets.Experimental results show that our approach can
outperform competitive baselines.

2 Related Work

Dense Retrieval. Dense retrieval approaches [12] typically map queries and
documents into low-dimensional dense vectors for evaluating their relevance,
which support the efficient approximate nearest neighbor (ANN) search engines,
e.g., FAISS [11]. For effectively training dense retrieval models, existing work
typically leverages pre-trained Transformers [4] to initialize the dual encoders and
then samples high-quality negatives for fine-tuning the encoders. Early work [12]
mainly relies on in-batch random negatives and hard negatives mined by BM25.
Afterward, a line of work [25,39] picks top-k ranked documents by a trained dense
retriever as hard negatives and improves the performance. However, a common
problem for such top-k negative sampling strategies is that they are easy to select



4 K. Zhou et al.

false negatives, which impedes better performances. To alleviate it, current studies
have explored several practical directions, e.g., knowledge distillation [25,32,16],
pre-training [5] and negative sampling [45]. Besides, recent work is also exploring
more efficient and effective ways for training dense retrievers, e.g., ambiguous
negative sampling [45] and neural corpus index [47].

Pre-training for Dense Retrieval. As general PLMs [4] are pre-trained with-
out any prior task knowledge, they are not ready to use for dense retrieval [5,7],
especially in low-data situations. To solve this issue, several studies [5,36] are
proposed to make the output sentence embedding more informative and discrim-
inative. A type of work relies on the explicit relations between text pairs and
designs the pre-training tasks based on the contrastive learning objective [7,29],
e.g., inverse cloze task and contrastive span prediction. Another line of work aim
to compress the semantic information into the [CLS] embedding. They leverage
the masked autoencoder architecture that incorporates a deep encoder and a
shallow decoder, forcing the [CLS] embedding of the input text from the encoders
to recover itself [17,36,38] or related texts [35].

3 Preliminary

Task Definition. Given a query q, the dense retrieval task aims to retrieve the
most relevant top-k passages {pi}ki=1 from a large candidate pool P. To achieve
it, the dual-encoder architecture is widely used. It consists of a query encoder Eq

and a passage encoder Ep, mapping the query q and passage p into k-dimensional
dense vectors hq and hp, respectively. Then, the semantic relevance score of q
and p will be computed using dot product as

s(q, p) = hq · hp. (1)

Existing work mostly adopts pre-trained Transformers (e.g., BERT [4]) as
the two encoders, using the representations of the [CLS] token as the dense
vectors. In this work, we aim to propose a more effective multi-task pre-training
framework specially for the dense retrieval task, which learns to compress more
useful information into the [CLS] representations. Formally, given a pre-training
corpus and a Transformer encoder, we focus on devising several tasks to pre-train
the parameters of it. Then, the pre-trained Transformer will be used as the
backbone of the query encoder Eq and passage encoder Ep, and can be fine-tuned
on downstream dense retrieval tasks.

Fine-tuning Dense Retrievers. In the fine-tuning stage, the learning objective
is to pull the representations of a query q and its relevant passages P+ together
(as positives), while pushing apart irrelevant ones P− = P \ P+ (as negatives).
Therefore, high-quality negatives are critical to the effectiveness of dense retrievers.
Existing work commonly leverages the BM25 negatives [12] or the top-k ranked
negatives mined by a well-trained dense retriever [25,39], denoted as D̃−. Then,
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Fig. 2. The overview of MASTER. We adopt a bottlenecked multi-decoder architecture,
and design three types of pre-training tasks, totally five decoders for specific tasks.

the optimization objective can be formulated as:

θ∗ = argmin
θ

∑
q

∑
d+∈D+

∑
d−∈D̃−

l(s(q, d+), s(q, d−)), (2)

where l(·) is the loss function. Besides, as the top-k hard negatives may contain
false negatives, recent studies [25,30,19] have adopted knowledge distillation
strategies to solve it. They rely on pre-learned cross-encoder rerankers to produce
soft labels on D̃−, and minimize the KL divergence between the dual encoders’
outputs and the soft labels.

4 Approach

In this section, we present MASTER, an approach to pre-training an effective
dense retriever. We first introduce the bottlenecked model architecture (consisting
of a PLM encoder and multiple shallow decoders), then describe our adopted
three types of pre-training tasks unified as the bottlenecked masked autoencoding
manner. Figure 2 shows the overview of our approach.

4.1 Bottlenecked Multi-Decoder Architecture

To pre-train the dense retriever for compressing useful information into the dense
vectors, we design a bottlenecked multi-decoder architecture. In the architecture,
we incorporate a deep Transformer encoder to compress the input text into a
dense vector, and five shallow decoders corresponding to different pre-training
tasks to capture diverse semantics and relations.

Concretely, the deep Transformer encoder shares the same architecture as
BERT [4], and can be initialized with its pre-trained parameters. Given a passage p
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from the pre-training corpus, we leverage the deep encoder to encode it, and select
the output representation of the [CLS] token as its dense vector hp. Following
existing work [5,18], we employ a masked language model task to pre-train the
encoder. Formally, a certain percentage α% of tokens from p will be masked to
obtain p′, and the encoder needs to predict them as:

LMLM =
∑

ti∈Mp′

− log p(ti|p′;ΘE) (3)

where Mp′ denotes the masked tokens in p′, ΘE denotes the parameters of
the encoder. The multiple shallow decoders are all the 2-layer bi-directional
Transformer, and share the embedding matrix and language modeling head with
the deep encoder. For each decoder, its input is an aggressive masked text x′

(masking rate β ≥ 50%) that requires to be recovered. Besides, the dense vector
hp′ from the encoder will be inserted into the decoder to replace the original
[CLS] token embedding. In this way, the learning objective of each decoder is:

LD =
∑

ti∈Mx′

− log p(ti|x′,hp′ ;ΘE , ΘD) (4)

where Mx′ denotes the masked tokens in x′, ΘD denotes the parameters of the
decoder. Such a way builds the information bottleneck where multiple decoders
rely on hp′ to recover the input, forcing it to reserve more useful information.

4.2 Multi-Task Pre-training

Based on the architecture, we devise multiple pre-training tasks, to help dense
vectors capture more useful information. Concretely, we adopt three types of
tasks to capture the semantic information within passages, relations with other
passages, and knowledge from other PLMs, namely corrupted passages recovering,
related passages recovering and PLMs outputs recovering, respectively.

Corrupted Passages Recovering. Given a passage p from the pre-training
corpus, the corrupted passages recovering tasks (CPR) first mask its contained
tokens to compose the inputs of the encoder p′ and decoder p̂′ according to the
mask rates α% and β% respectively. Then, the output dense vector hp′ from the
encoder will be leveraged to help the shallow decoder to recover p̂′ into p. Such
a way is helpful to compress important semantic information from the passage
into the dense vector. To achieve it, we design two pre-training tasks by utilizing
special masking mechanisms for the decoder, namely masked keywords prediction
(MKP) and complementary mask prediction (CMP).

For MKP, we aim to mask more keywords in the decoder, as they may reflect
important semantic information of the passage. Specifically, we rely on the TF-
IDF weights [28] to obtain a masked probability distribution about words in the
passage, where keywords with low frequencies would receive larger probabilities
to be masked. In this way, the input masked passage p̂′MKP of the decoder
will lose most keywords, which will force the dense vector hp′ to well reserve
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their information for recovering. For CMP, given the passage p, we leverage a
complementary mask mechanism in the decoder that masks the unmasked tokens
from the input of the encoder p′. As a result, the incomplete inputs of the encoder
and decoder will be complementary, and the dense vector hp′ should accurately
remember all the unmasked input information from p′ for recovering p̂′CMP.

Finally, the pre-training objective of the CPR tasks is given by combining
the above two tasks as:

LCPR =
∑

ti∈MMKP

− log p(ti|p̂′MKP,hp′ ;ΘE , Θ
MKP
D )

+
∑

ti∈MCMP

− log p(ti|p̂′CMP,hp′ ;ΘE , Θ
CMP
D ),

where MMKP and MCMP denote the masked tokens in p̂′MKP and p̂′CMP, respec-
tively, and ΘMKP

D and ΘCMP
D are the parameters of the two specific decoders.

Related Passages Recovering. The related passages recovering task (RPR)
aims to model the semantic relationships between related passages. In this
work, we focus on the commonly-used and easily-obtained co-occurrence relation
from the pre-training corpus. Based on this motivation, we collect the passage
pairs {⟨pi, pi+1⟩} that are neighbouring spans in a document, and devise the
neighbouring passage recovering task (NPR).

In NPR, given a neighbouring passage pair ⟨pi, pi+1⟩, we rely on the mask
rates α% and β% to mask their tokens for composing the inputs of the encoder
p′i and decoder p′i+1, respectively. Next, the output dense vector of p′i from the
deep encoder is utilized to help the decoder recover p′i+1. Such a way encourages
the dense vector to retain the information related to the neighbouring passage,
capturing the intrinsic token-level correlations across the two passages. Besides,
we also rely on the TF-IDF weights of words to mask more keywords in the
decoder as MKP, which further increases the difficulty of this task and forces the
dense vector to focus more on the key information. The learning objective of the
RPR task can be defined as:

LRPR =
∑

ti∈MNPR

− log p(ti|p′i+1,hp′
i
;ΘE , Θ

NPR
D ),

where MNPR and ΘNPR
D denote the masked tokens in p′i+1 and the parameters

of the decoder specially for the NPR task, respectively. Note that existing
work [15,21] has also considered the neighbouring relations and mostly adopts the
contrastive learning objective to capture it. In fact, contrastive learning mainly
aims to characterize the passage-level semantics and would be affected by the
quality of sampled negative passages. As a comparison, the NPR task can capture
more fine-grained token-level characteristics, and such a generative way only
focuses on modeling the relations between neighbouring passages, avoiding the
influence from other passages.

PLMs Outputs Recovering. The above tasks are able to capture the se-
mantic information and relations within the unsupervised pre-training corpus.
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We further consider to learn the knowledge from other PLMs, to capture more
rich information beyond the corpus. Based on this idea, we design the PLMs
outputs recovering tasks (POR) that aim to recover the outputs of two generative
PLMs, consisting of the doc2query outputs recovering (DOR) and GPT-2 outputs
recovering (GOR) tasks.

Given a passage p, we leverage a public well-trained doc2query model [23] to
generate k relevant queries {qi}ki=1 and concatenate them into a long sentence
s(q), as the generated queries have shown effectiveness in previous dense retrieval
methods [24]. Besides, we also use p as the prompt to guide the popular autore-
gressive GPT-2 model [26] to generate a long sentence s(g), as GPT-2 has shown
surprising performance in generating informative long text. Then, we aggressively
mask the tokens in s(q) and s(g) according to the mask rate β%, to obtain the
inputs s′(q) and s′(g) of two task-specific decoders. Similar to above tasks, the two
decoders also rely on the dense vector hp′ to recover the generated texts, and the
pre-training objective of the POR tasks is the combination of the two tasks as:

LPOR =
∑

ti∈MDOR

− log p(ti|s′(q),hp′ ;ΘE , Θ
DOR
D )

+
∑

ti∈MGOR

− log p(ti|s′(g),hp′ ;ΘE , Θ
GOR
D ),

where MDOR and MGOR denote the masked tokens in s′(q) and s′(g), respectively,

and ΘDOR
D and ΘGOR

D are the parameters of the two specific decoders, respectively.
In this way, the dense vector is enhanced to capture richer knowledge from other
PLMs, and learn more information not included in the corpus. Such a way is
similar to the knowledge distillation process that transfers the learned knowledge
from PLMs into the dense vector by forcing it to predict the PLMs’ outputs.

4.3 Learning

During pre-training, we optimize the parameters in the deep encoder and the
multiple shallow decoders using the above pre-training tasks, denoted as:

Ltotal = LMLM + LCPR + LRPR + LPOR (5)

During fine-tuning, we utilize the pre-trained deep encoder as the backbone of
the query and passage encoders. Following the pipeline in previous dense retrieval
methods [7,35,36], we first train the Retriever1 using the in-batch negatives and
BM25 hard negatives. Then, we utilize Retriever1 to mine hard negatives from
a large-scale passage pool, and leverage these negatives and in-batch negatives
to train the Retriever2. Next, we train a cross-encoder reranker model based
on the mined negatives from Retriever2. Finally, we distil the knowledge from
the reranker into the Retrieverdistil by using it to produce soft labels for both
positives and mined negatives from Retriever2. Note that our pre-trained encoder
is used to initialize the Retriever1, Retriever2 and Retrieverdistil.
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Dataset Train Dev Test #Passage

MS MARCO Passage Ranking (MS-Pas) 502,939 6,980 - 8,841,823
TREC 2019 Deep Learning Track (TREC-2019) - - 200 8,841,823
TREC-2020 Deep Learning Track (TREC-2020) - - 200 8,841,823
Natural Questions (NQ) 58,880 8,757 3,610 21,015,324

Table 1: Statistics of the text retrieval datasets.

5 Experiment

5.1 Experimental Setting

Datasets and Evaluation. We conduct experiments on several text retrieval
datasets: MS-MARCO [22], TREC-2019 Deep Learning Track [2], TREC-2020
Deep Learning Track [1], and Natural Questions (NQ) [14]. The statistics of
the above datasets are shown in Table 1. MS-MARCO consists of real queries
collected from Bing search engine.NQ is an open domain QA dataset.

Baselines. We compare our approach with a variety of methods: BM25 [40]
is a widely-used sparse retriever based on exact matching. DeepCT [3] and
docT5query [23] enhance BM25 with neural models. ANCE [39], TAS-B [10]
and STAR [41] are dense retrieval methods that adopt top-k hard negatives to
improve training. RocketQA [25], AR2 [42] and ERNIE-search [19] utilize knowl-
edge distillation technique that leverages a teacher model to guide the training
of the dual-encoder retriever. COIL [8], ColBERT [13] and ColBERTv2 [31]
utilize multiple representations for text retrieval. SEED [18], RetroMAE [17],
Condenser [6], PAIR [29], coCondenser [7], CoT-MAE [36] and SimLM [35] design
special pre-training tasks to improve the backbone models.

Implementation Details. During pre-training, we leverage BERT-base to
initialize the shared encoder, and all decoders are randomly initialized two-layer
Transformers. Following previous work [7,36,35], we leverage the passages in MS-
MARCO and NQ dataset as the pre-training corpus of them, respectively. The
pre-training steps are setting to 120k. During fine-tuning, we also follow SimLM
that progressively trains Retriever1, Retriever2, and Retrieverdistil, where our
pre-trained deep Transformer encoder is leveraged to initialize their parameters.
Our all other hyper-parameters are the same as SimLM [35].

5.2 Main Results

Performance on Web Search Datasets. Table 2 shows the results on three
web search benchmarks, i.e., MS-MARCO, TREC-2019 and TREC-2020. First,
we can see that with or without distillation strategy, the best baselines are
both pre-training dense retrieval methods, i.e., CoT-MAE and SimLM, even
outperforming methods using multiple representations. It indicates that proper
pre-training strategies are helpful to the downstream dense passage retrieval tasks.
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Model with KD?
MS-MARCO TREC-19 TREC-20

MRR@10 R@50 R@1k nDCG@10 nDCG@10

BM25 [40] 18.5 58.5 85.7 51.2 47.7
DeepCT [3] 24.3 69.0 91.0 57.2 -
docT5query [23] 27.7 75.6 94.7 64.2 -

ANCE [39] 33.0 - 95.9 64.5 64.6
STAR [41] 34.7 - - 68.3 -
TAS-B [10] ✓ 34.0 - 97.5 71.2 69.3
RocketQA [25] ✓ 37.0 85.5 97.9 - -
RocketQAv2 [30] ✓ 38.8 86.2 98.1 - -
AR2 [42] ✓ 39.5 87.8 98.6 - -
ERNIE-Search [19] ✓ 40.1 87.7 98.2 - -
AR2+SimANS [45] ✓ 40.9 88.7 98.7 - -

COIL [8] 35.5 - 96.3 70.4 -
ColBERT [13] 36.0 82.9 96.8 - -
ColBERTv2 [31] ✓ 39.7 86.8 98.4 - -

SEED [18] 33.9 - 96.1 - -
RetroMAE [17] 35.0 - 97.6 - -
Condenser [5] 36.6 - 97.4 69.8 -
coCondenser [7] 38.2 86.5 98.4 71.7 68.4
CoT-MAE [36] 39.4 87.0 98.7 - 70.4
PAIR [29] ✓ 37.9 86.4 98.2 - -
SimLM [35] ✓ 41.1 87.8 98.7 71.2 69.7

MASTER ✓ 41.2 88.6 98.8 72.7 71.7

Table 2: Results on three web search datasets. The best and second-best methods
are marked in bold and underlined, respectively. The ✓in the column of “with
KD?” means that the model has used knowledge distillation.

Second, SimLM mostly outperforms other baselines. It employs a bottlenecked
architecture that learns to compress the input information into a dense vector,
and adopts a replaced language modeling objective to pre-train it. Such a way is
more effective to force the dense vector to reserve the important semantics.

Besides, our approach outperforms all the baselines in terms of all metrics on
all datasets. Our approach adopts a multi-task pre-training framework that unifies
five tasks on recovering of corrupted passages, related passages and PLMs outputs,
based on a bottlenecked one-encoder multi-decoder architecture. In this way, we
can force the output dense vector from the encoder to be more informative and
functional to accomplish these tasks, leading to better representative capacity.

Performance on Open Domain QA Datasets. Table 3 shows the results
an open domain QA datasets, NQ. For a fair comparison, we only report the
performance of Retriever2 without performing knowledge distillation. First, we
can also see that pre-training dense retrieval methods mostly outperform other
methods. It further indicates the effectiveness of pre-training techniques in open
domain QA tasks. Besides, coCondenser and SimLM perform better than other
methods, the reason is that they both adopt a bottlenecked architecture to
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Model DPR ANCE RocketQA Condenser PAIR coCondenser SimLM MASTER

R@20 78.4 81.9 82.7 83.2 83.5 84.3 84.3 84.6
R@100 85.4 87.5 88.5 88.4 89.1 89.0 89.3 89.4

Table 3: The performance of Retriever2 without knowledge distillation on NQ.

Dataset BERT LaPraDoR SimCSE DiffCSE SEED Condenser SimLM* MASTER

TREC-COVID 0.615 0.492 0.460 0.492 0.627 0.750 0.637 0.620
BioASQ 0.253 0.308 0.263 0.258 0.308 0.322 0.350 0.354
NFCorpus 0.260 0.335 0.260 0.259 0.278 0.277 0.323 0.330

NQ 0.467 0.473 0.435 0.412 0.446 0.486 0.477 0.516
HotpotQA 0.488 0.495 0.502 0.499 0.541 0.538 0.581 0.589
FiQA-2018 0.252 0.314 0.250 0.229 0.259 0.259 0.292 0.328

Signal-1M(RT) 0.204 0.231 0.262 0.260 0.256 0.261 0.257 0.252

TREC-NEWS 0.362 0.374 0.356 0.363 0.358 0.376 0.326 0.409
Robust04 0.351 0.368 0.330 0.343 0.365 0.349 0.368 0.405

ArguAna 0.265 0.469 0.413 0.468 0.389 0.298 0.421 0.395
Touche-2020 0.259 0.182 0.159 0.168 0.225 0.248 0.292 0.320

CQADupStack 0.282 0.288 0.290 0.305 0.290 0.347 0.332 0.327
Quora 0.787 0.847 0.844 0.850 0.852 0.853 0.773 0.791

DBPedia 0.314 0.338 0.314 0.303 0.330 0.339 0.345 0.399

SCIDOCS 0.113 0.155 0.124 0.125 0.124 0.133 0.145 0.141

FEVER 0.682 0.646 0.623 0.641 0.641 0.691 0.657 0.692
Climate-FEVER 0.187 0.209 0.211 0.200 0.176 0.211 0.163 0.215
SciFact 0.533 0.599 0.554 0.523 0.575 0.593 0.588 0.637

Avg. 0.371 0.396 0.369 0.372 0.391 0.407 0.407 0.429

Table 4: Zero-shot dense retrieval nDCG@10 performances on beir benchmark.
Results with * are from our reproduction.

compress the information into the dense vectors. Finally, we can see that our
approach outperforms all the baselines. As a comparison, our approach can
enhance the informativeness of dense vectors by integrating multiple pre-training
tasks, which compress the semantic information within passages, model the
relations between passages, and learn the knowledge from other PLMs.

Zero-Shot Evaluation. We evaluate the zero-shot retrieval performance of
our approach on BEIR benchmark [33]. It contains 18 datasets, covering dense
retrieval tasks across different domains.Following [33], we fine-tune our approach
in MS-MARCO training set and evaluate it on the BEIR benchmark using
the official evaluation toolkit.nDCG@10 is chosen as the evaluation metrics. As
shown in Table 4, the average performance of our approach surpasses all baselines
significantly. Since our approach incorporates multiple pre-training tasks for
learning the dense representations, such a way can enrich the informativeness of
them and help better adapt into different domains and retrieval tasks.

5.3 Further Analysis

Fine-tuning Performance in Three Stages. To further investigate the
effectiveness of our approach, we show the performances of MASTER and other
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Model
coCondenser CoTMAE SimLM MASTER

MRR@10 R@1k MRR@10 R@1k MRR@10 R@1k MRR@10 R@1k

Retriever1 35.7 97.8 36.8 98.3 38.0 98.3 38.3 98.8
Retriever2 38.2 98.4 39.2 98.7 39.1 98.6 40.4 98.8
Retrieverdistil 40.2 98.3 40.4 98.7 41.1 98.7 41.2 98.8

Table 5: Comparison with different pre-training dense retrieval methods in three
stages of our fine-tuning pipeline on the dev set of MS-MARCO.

Model MASTER w/o CPR w/o RPR w/o POR +Shared-Dec SimLM

Retriever1 38.3 37.7 37.6 37.6 37.4 38.0
Retriever2 40.4 39.9 39.8 39.8 39.1 39.1

Table 6: Ablation and variation study of our approach. We report MRR@10 of
the retriever1 and retriever2 on the dev set of MS-MARCO.

pre-training dense retrieval methods in each stage of our fine-tuning pipeline.
Here, the models in the three stages are all initialized by corresponding pre-
trained parameters of these methods. As shown in Table 5, the performances
of all pre-training methods are consistently improving with the process of the
three-stage training.In addition, our approach also outperforms all other pre-
training methods in the three stages. It indicates the superiority of our proposed
multi-task pre-training strategy.

Ablation and Variation Study. Our proposed approach incorporates a multi-
decoder architecture and three types of tasks for pre-training. To verify the
effectiveness of each part, we conduct the ablation and variation study on the dev
set of MS-MARCO to analyze their contributions. We remove the CPR, RPR and
POR tasks individually, and propose a variants that adopts a shared decoder to
deal with the multiple tasks. As shown in Table 6, we can see that all the ablation
and variation models will lead to the performance degradation. It indicates that
all the pre-training tasks and our multi-decoder architecture are useful to improve
the performance. Besides, after removing any type of pre-training tasks, our
Retriever2 still outperforms the SOTA method, SimLM. It further shows the
promising effectiveness of multi-task pre-training for dense retrieval tasks.

Performance w.r.t. Different Pre-training Steps. As a pre-training ap-
proach, the number of pre-training steps will affect the performance on down-
stream tasks. In each step, we optimize the model parameters using a batch of
pre-training data by gradient descent algorithm. However, too many pre-training
steps are time-consuming and costly. Here, we investigate the performance con-
vergence speed of our approach during pre-training. As shown in Figure 3(a), we
can see that our model performs well with few pre-training steps, especially that
the retriever2 of our method achieves the 39.1 on MRR@10 metric (the same as
SimLM) after 10k steps. It shows that our approach is more effective to pre-train
effective dense vectors, with no need for too many pre-training steps.
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Fig. 3. Performance comparison w.r.t. different number of pre-training steps and data
proportions on MS-MARCO.

Model CoLA MRPC STS-B QQP

BERT 59.1 87.7 87.8 89.7
Ours 60.7 89.1 88.0 89.8

Table 7: Experimental results on four NLU tasks from GLUE.

Few-Shot Learning. In our approach, as we have pre-trained the backbone via
a multi-task manner, the pre-learned dense vectors can be easily adapted into
downstream tasks with less data. To validate it, we reduce the training data size
into 50%, 20%, 10% and 5%, and compare the performance of our approach with
the pre-training method SimLM. As shown in Figure 3(b), we can see that the
performance substantially drops when less training data is used. Additionally,
our approach is consistently better than SimLM in all cases, especially in an
extreme sparsity level (5%). It indicates that MASTER is better pre-trained to
effectively adapt to downstream dense retrieval task.

Natural Language Understanding Tasks. In our approach, as we integrate
multiple pre-training tasks, our model can capture diverse knowledge from these
tasks. In this part, we evaluate if our pre-training methods can also benefit for
natural language understanding (NLU) tasks. We select the single-sentence and
similarity tasks from the GLUE benchmark [34] (i.e., CoLA, MRPC, STS-B and
QQP), which focus on predicting the acceptability, similarity and paraphrase
of sentences from different domains (e.g., news and misc). We fine-tune our
pre-trained model on these tasks. and all the hyper-parameters are following the
suggestions of the original BERT paper [4]. As shown in Table 7, our approach
improves the performance of BERT on these NLU tasks. It indicates that our
multi-task pre-training can also enrich the useful knowledge about NLU tasks.

Hyper-parameter Tuning. The masked rates of the deep encoder and multiple
decoders are two important hyper-parameters, as they control the information
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Model 30% En-50% De 15% En-50% De 50% En-50% De 30% En-30% De 30% En-70% De

Retriever1 38.3 37.9 37.6 37.5 38.0
Retriever2 40.4 39.9 39.7 39.8 39.9

Table 8: Performance comparison w.r.t. different masked rates in the encoder and
decoder. We report MRR@10 of the Retriever1 and Retriever2 on MS-MARCO.

bottleneck in our approach. Here, we set the masked rate in the encoder to be
15%, 30% and 50%, and that in decoders to be 30%, 50% and 70%. Table 8
shows the evaluation results. First, our model is robust to these different settings.
Besides, when the masked rates of the encoder and decoders are set to 30% and
50% respectively, our model performs slightly better than others. Therefore, we
apply 30% and 50% as the masked rates of the encoder and decoders.

6 Conclusion

In this paper, we proposed MASTER, a multi-task pre-trained bottlenecked
masked autoencoder for dense retrieval task. In our approach, we adopted a
bottlenecked multi-decoder architecture to integrate a variety of pre-training
tasks, and devised three types of pre-training tasks about corrupted passages
recovering, related passage recovering and PLMs outputs recovering. The three
types of tasks focused on compressing the information within the passages,
modeling relations among passages, and learning the knowledge from external
public generative PLMs, respectively, leading to more informative and effective
dense vectors. Experimental results have shown the superiority of our approach.

Limitations

A major limitation of our approach is the cost of pre-training. Actually, it is not
necessary for researchers or developers to complete the whole pre-training process,
as they can directly utilize our publicly released checkpoints for initialization.
Besides, in this work, we evaluate our approach mainly on passage retrieval tasks,
and do not consider the retrieval of very long documents. Another possible issue
derives from that we continually pre-train the parameters of BERT. Since existing
works have revealed that BERT might represent biases from the pre-training
corpus, such an issue may also be inherited by our approach.
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A Case Study

To further analyze the effectiveness of our proposed three types of pre-training
tasks, we select representative examples from the MS-MARCO dataset, to show
the Win/Lose case study of the retrieved top-1 document using different pre-
training objectives. As shown in Table 9, from the first example, we can see
that given the query about the definition of perveance, the original BERT has
retrieved the definition of “pervade” in the 1st place by mistake. As discussed
in Condenser [5], the internal attention structure of BERT is not ready-to-use
for dense encoders, which fails to aggregate the information of the keyword
“perveance” into the dense representation. As a comparison, after pre-training
with CPR that focuses on modeling the semantic information within the passage,
our model successfully retrieves the relevant document.

From the second example, we can see that the retrieved documents from
the two variations are indeed relevant to the given query, and many words are
co-occurring in the query and documents. Whereas, the retrieved one from PT
w CPR+RPR is more proper to answer the given query, since it focuses on the
keyword ”measure accuracy” and provides a detailed description of the ”Accuracy
Formula” to illustrate how it can measure the accuracy. It indicates that with
the help of the RPR task, our model can better focus on useful information from
the text that can capture important relationships between queries and passages.

From the third example, we can see that the two retrieved documents are
very relevant to the given query and both focus on the keyword ”dress down”.
However, the retrieved one from PT w CPR+RPR does not clearly answer the
given query but just lists several possible answers. As a comparison, the retrieved
one from PT w CPR+RPR+POR provides a concrete answer about the means
of ”dress down”. Since POR loss aims to learn the correlations between the
passage and the PLM-generated related text, it can meet more examples from
other publicly released PLMs, further improving its capacity to model complex
query-document relationships.
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Query perveance definition

Top-1 by BERT Definition of Pervade. transitive verb To pass or flow through,
as an aperture, pore, or interstice; to permeate.

Top-1 by PT w CPR Perveance. Perveance is a notion used in the description of
charged particle beams. The value of perveance indicates how
significant the space charge effect is on the beam motion.

Query when typing which formula is used to measure accuracy

Top-1 by PT w CPR Formula for Measure Typing Speed in Mastering Typing. Include
gross WPM and net WPM that used to calculate accuracy in
Mastering Typing Formula for Measure Typing Speed in Master-
ing Typing.

Top-1 by PT w
CPR+RPR

Formula to measure typing speed in WPM. Accuracy Formula:
Accuracy is a percentage ratio of Gross and Net Word Speed:
Accuracy = Net-WPM / Gross-WPM * 100. Calculation of
Errors. Errors are calculated by following two criteria. Errors
that are made and corrected; Errors that are made and not
corrected.

Query what does dress it down mean

Top-1 by PT w
CPR+RPR

When people say dress down/up what does it mean?. Asker’s
rating. 1 Dress Down Meaning. 2 I can nest answer this with
an example. 3 to dress it up means to go more formal than
school/work clothes. 4 Dressing up is when you are doing some-
thing fancier then an everyday thing. 5 For the best answers,
search on this site.

Top-1 by PT w
CPR+RPR+POR

When people say dress down/up what does it mean?. Best An-
swer: Dress up means to dress more fancier, like you are going
out to a fancy restaurant and you want to dress up for it. To
dress down, means if you are wearing something fancy and you
are going somewhere that doesn’t need you to be so well dressed,
you dress down into something more casual.

Table 9: Examples of retrieved results on MS-MARCO by our approach.
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