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Abstract. This work introduces interpretable regional descriptors, or
IRDs, for local, model-agnostic interpretations. IRDs are hyperboxes
that describe how an observation’s feature values can be changed with-
out affecting its prediction. They justify a prediction by providing a set
of “even if” arguments (semi-factual explanations), and they indicate
which features affect a prediction and whether pointwise biases or im-
plausibilities exist. A concrete use case shows that this is valuable for
both machine learning modelers and persons subject to a decision. We
formalize the search for IRDs as an optimization problem and introduce
a unifying framework for computing IRDs that covers desiderata, initial-
ization techniques, and a post-processing method. We show how existing
hyperbox methods can be adapted to fit into this unified framework. A
benchmark study compares the methods based on several quality mea-
sures and identifies two strategies to improve IRDs.

Keywords: Interpretable machine learning, · Model-agnostic local in-
terpretability · Semi-factual explanations · Hyperboxes.

1 Introduction

Supervised machine learning (ML) models are widely used due to their good
predictive performance, but they are often difficult to interpret due to their
complexity. Post-hoc interpretation methods from the field of interpretable ma-
chine learning (IML) can help to draw conclusions about the inner processes of
these models. Two types of interpretation methods can be differentiated: local
methods that explain individual predictions, and global methods that explain
the expected behavior of the model in general. Doshi-Velez and Kim [4] define
model interpretability as “the ability to explain or to present in understandable
terms to a human”. A topological form that satisfies this notion of interpretabil-
ity is a hyperbox. In this work, we investigate hyperboxes as local interpretations
that describe how the feature values of an observation can be changed without
affecting its prediction. We call these boxes interpretable regional descriptors
(IRDs). IRDs describe feature spaces by intervals for real-valued features and
subsets of all possible classes for categorical features (see Table 1).
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Table 1: Example based on the credit dataset [5,9] with 9 features. The second
column shows the values of a customer with a moderate credit risk prediction.
The IRD (generated by MaxBox & post-processing (Section 4)) shows how all
features could be changed simultaneously so that the credit is still of moder-
ate risk. The 1-dim IRD shows how a single feature could be changed without
changing the prediction (keeping the other features fixed). For features in the
upper half, the IRD covers the full observed value range in the training data.
Feature Customer IRD 1-dim IRD Range
sex female {female, male} {female, male} {female, male}
saving.accounts little {little, moderate {little, moderate, {little, moderate,

rich} rich} rich}
purpose car {car, radio/TV, {car, radio/TV, {car, radio/TV,

furniture, others} furniture, others} furniture, others}
age 22 [19, 22] [19, 75] [19, 75]
job skilled {skilled, highly {unskilled, skilled, {unskilled, skilled,

skilled} highly skilled} highly skilled}
housing rent {rent} {own, free, rent} {own, free, rent}
checking.account moderate {little, moderate} {little, moderate} {little, moderate,

rich}
credit.amount 4000 [4000, 5389] [2127, 8424] [276, 18424]
duration 30 [26, 33] [6, 44] [6, 72]

1.1 Motivating Example for the Use of IRDs

Consider bank lending as a motivating example: a customer applies for a credit
of e4000 at a bank to buy a new car. She is 22 years old, skilled, lives in a
rented accommodation, has few savings and a moderate balance on her checking
account. An ML model predicts whether the credit is of low, moderate or high
risk. Due to a moderate risk prediction, the bank rejects the application. The
IRD in Table 1 answers the question “to what extent the feature or multiple
features can be changed such that the prediction is still in the moderate risk
class”. From an IRD, multiple insights into a prediction can be obtained.

First, IRDs offer a set of semi-factual explanations (SFEs) — also called a
fortiori arguments — to justify a decision in the form of “even if” statements
[19]. For these statements to be convincing, domain knowledge is required, e.g.,
that higher balances in the savings and checking account, and that higher skilled
jobs decrease the risk for a bank. Given such knowledge, a multitude of semi-
factual explanations can be derived from the IRD of Table 1 that (1) justify that
a person is in the moderate risk class instead of the low risk class (e.g., “even if
you had a moderate balance in the savings account and become highly skilled,
your credit is still of moderate risk”), and that (2) justify that a person is in the
moderate risk class instead of the high risk class (“even if you only have little
balance in your checking account, your credit would still be of moderate risk”).
The latter statement also reveals a “safety bound” if some of the features change
in the undesirable direction (high risk class) in the future.
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Second, the interval width or cardinality of a feature in an IRD relative to its
entire feature space can indicate whether a feature affects a prediction locally (if
Theorems 1 and 2 hold). For example, compared to the credit amount or balance
status of her checking account, savings or purpose seem to have no local effect on
the prediction in the bank lending example, since the regional descriptor covers
the whole observed feature range in these two dimensions. These insights also
reveal what can be options to change a given prediction.3

Third, IRDs are tools for model auditing. If the insights from a box (e.g., a
semi-factual explanation) agree with domain knowledge, users have more trust
in the model, while disagreement helps to reveal unintended pointwise biases
or implausibilities of a model. For example, an IRD that does not cover male
customers might indicate that the model classifies individuals differently based
on gender.4 An IRD that covers a credit amount of e300 and high balances in
the checking account could be an indicator of an inaccurate model because such
customers should pose only a low risk to the bank. In addition to credit risk, we
show other practical applications of IRDs in Appendix A.

1.2 Contributions

Our contributions are: 1) We introduce IRDs as a new class of local interpre-
tations to describe regions in the feature space that do not affect the predic-
tion of an observation; 2) We formalize the search for IRDs as an optimization
problem and develop desired properties of IRD methods; 3) We introduce a
unifying framework for computing IRDs including initialization techniques and
post-processing methods; 4) We show how existing hyperbox methods from data
mining or IML can be adapted to fit into our unified framework; 5) We present
a set of quality measures and compare our derived methods accordingly in a
benchmark study; 6) We provide open-access repositories with an R package for
the implemented approaches and the code for replicating the benchmark study.5

2 Methodology

Let f̂ : X → R be the prediction function of an ML model, where X denotes a
p dimensional feature space. For classification models, we consider a pre-defined
class of interest for which f̂ returns the predicted score or probability.

2.1 Formalizing the General Task for IRDs

Our goal is to find the largest hyperbox B covering a point of interest x′ ∈ X
where all data points in B have a sufficiently close prediction to f̂(x′). The

3 However, the concrete strategies can only reveal counterfactual explanations [27].
4 Note that if all genders are part of the box, it does not mean the model is fair.
5 Links will be shared upon acceptance. For review, we attached a zip file.
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hyperbox B should have p dimensions B = B1 × ...×Bp

with Bj =
{
{c|c ∈ Xj} categorical Xj

[lj , uj ] ⊆ Xj numeric Xj

, (1)

consisting of intervals for numeric features and a subset of possible classes for cat-
egorical features. Xj reflects the value space of the jth feature Xj . In accordance
with Lemhadri et al. [18], a prediction is sufficiently close if it falls into a closeness
region, which is a user-defined prediction interval Y ′ = [f̂(x′) − εL, f̂(x′) + εH ]
with εL, εH ∈ R≥0.6 In the bank lending example, the closeness region should
cover all model predictions that lead to the moderate risk class, e.g., a predicted
probability of 30-60 % of defaulting, i.e., Y ′ = [0.3, 0.6]. To operationalize the
above goal, we need three measures [22,24]:

1. coverage(B) = P(x ∈ B|x ∈ X ), which measures how much a hyperbox cov-
ers the entire feature space. Since, in practice, not all x ∈ X are observable,
we use an empirical approximation given data (xi)1≤i≤n with xi ∈ X

̂coverage(B) = 1
n

n∑
i=1

I(xi ∈ B). (2)

2. precision(B) = P(f̂(x) ∈ Y ′|x ∈ B), the fraction of points within a box B
whose predictions are inside Y ′. Again, we use an empirical approximation

̂precision(B) =
∑n

i=1 I(xi ∈ B ∧ f(xi) ∈ Y ′)∑n
i=1 I(xi ∈ B)

. (3)

3. an indicator of whether B covers x′

locality(B) = I(x′ ∈ B). (4)

The following operationalizes the search for an IRD [22]:7

argmax
B⊆X

( ̂coverage(B))

s.t. ̂precision(B) = 1 and locality(B) = 1.
(5)

Definition 1. A box is maximal if and only if no box could be added under full
precision, such that for all numeric Xj, it holds that (@xj ∈ Xj ∧ xj < lj :
precision(B ∪ [xj , lj ]) = 1)∧ (@xj ∈ Xj ∧ xj > uj : precision(B ∪ [uj , xj ]) = 1),
and for all categorical Xj, it holds that (@xj ∈ Xj \Bj : precision(B ∪xj) = 1).

6 For classification models, Y ′ ⊂ [0, 1] must hold.
7 For this, we extended the optimization task of Ribeiro et al. [22] to target IRDs by
aiming for a precision of 1 and by including the locality constraint.
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A box B with maximum coverage satisfies this maximality property. We aim for
a maximal B, since B can then detect features that are not locally relevant for
a prediction f̂(x′). We prove the following in Appendix B.

Theorem 1. If B is maximal, Bj = [min(Xj),max(Xj)] holds for a feature Xj

that is not involved in the model f̂ .

Similarly, we aim for homogeneous boxes B such that precision(B) = 1. Then,
B can detect features that are locally relevant for f̂(x′). We prove the following
in Appendix C.

Theorem 2. If precision(B) = 1, Bj ⊂ Xj holds for a feature that is locally
relevant for f̂(x′).

2.2 Desiderata for IRDs

In Section 3, we discuss related methods to generate B. The suitability of these
methods as IRD methods relies on whether they consider all objectives of Eq. (5)
and whether they satisfy the following desired properties for IRDs.

Interpretability In order for B to be interpretable, we only consider methods
that return a single p-dimensional hyperbox. The hyperrectangular structure of
B allows for a natural interpretation, which is not the case for hyperellipsoids
or polytopes formed by halfspaces [18]. According to Eq. (5), B needs to cover
x′, which is the case if the following holds: ∀j ∈ {1, ..., p} : x′j ∈ Bj .

Model-agnosticism The definition of f̂ does not pose any restrictions on the ML
model or the feature space. Therefore, methods should be model-agnostic such
that they could explain both regression or classification models with various
feature types (binary, nominal, ordinal or continuous).

Sparsity constraints Eckstein et al. [6] proved that the optimization task for the
maximum box problem is NP-hard if the features defining the box are not fixed.
This also applies to the search for IRDs, which only additionally requires x′ ∈ B.
Since the search space for hyperboxes grows with the number of features, it is
infeasible to consider all potential solutions. Furthermore, the fact that IRDs
have as many dimensions as the dataset impedes their interpretability – the
very goal of IRDs in the first place. To reduce the number of features, methods
should be able to adhere to user-defined sparsity constraints such that for some
features Xj , Bj = x′j . Section 7 discusses other solutions.

3 Related Work

The optimization task of Eq. (5) can be understood mathematically as finding
the preimage of prediction values ∈ Y ′ in the neighborhood of x′. Therefore,
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Table 2: Overview of approaches that search for hyperboxes in feature spaces.
Objectives Desiderata

Coverage Precision Locality Interpretable Agnostic Sparse
Level set methods
PBnB [28,29]

√ √
× ×

√
×

Data mining
MaxBox [6]

√ √
×

√
× ×

PRIM [10] × × ×
√

× ×
Post-hoc IML
Anchors [22]

√ √ √ √
× ×

MAIRE [24]
√ √ √ √

× ×
LORE [12,13] × ×

√ √ √
×

Interpretable classifier
Column generation [2]

√ √
× ×

√
×

IRDs can be seen as a subset of a level set for function values ∈ Y ′. Level set ap-
proximations often consist of points [7], and only a few approaches approximate
these via hyperboxes [28,29]. These methods produce multiple boxes instead
of a single one and do not require to contain a given x′. Hence, they are not
interpretable in our sense and, therefore, not useful to produce IRDs.

In data mining, [6] proposed a maximum box (MaxBox) approach for datasets
with binary outcomes to find the largest homogeneous hyperbox w.r.t. the posi-
tive class. Friedman and Fisher [10] derived the Patient Rule Induction Method
(PRIM) for seeking boxes in the feature space in which the outcome mean is
high. Both approaches do not require x′ to be in the box.

As described earlier, IRDs may also be seen as a method to summarize a
multitude of SFEs. Most proposed methods for SFEs return only a single point
as an explanation [3,14,19]. In contrast, the approach by Guidotti et al. [12,13]
returns a set of SFEs using surrogate trees. Their approach reveals which feature
values are most important for deriving a prediction by following the path to the
point of interest. The reliability of surrogate trees depends on the assumption
that the tree can adequately replicate the underlying model, which is often not
the case. Furthermore, IRDs require homogeneous boxes, which is only possible
with overfitting/deep-grown trees. Therefore, the tree structure is only suitable
for deriving SFEs when the underlying model is tree-based [8,25].

An IML method that utilizes hyperboxes is the Anchors approach [22]. The
returned hyperbox indicates how features must be fixed or anchored to prevent
a model from changing the classification of a data point. Anchors were originally
proposed to aim for hyperboxes that also partly cover observations of other
classes; a precision of 0.95 is the default in its implementation [23]. Although
the precision can be changed to 1, Anchors are nevertheless not suitable for the
generation of IRDs due to their limited search space: Either the box boundary
of a feature is set to the full feature range observed in the data, or to the
value of x. This bears the risk of “overly specific anchors” with low coverage
[22]. To generate boxes with larger coverage, features can be binned beforehand.
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However, no established discretization technique for Anchors exists so far and
the optimization procedure underlying Anchors does not allow adaptions of the
bins during optimization.

To overcome the discretization problem, Sharma et al. [24] proposed the
model-agnostic interpretable rule extraction (MAIRE) procedure. MAIRE finds
more optimal boundaries for continuous features via gradient-based optimiza-
tion. It still does not allow a more precise choice for categorical features; either
the box allows no changes to a feature or it covers all possible values of a feature.

Dash et al. [2] proposed a classifier based on a set of hyperboxes. The method
focuses on an optimal combination of hyperboxes to derive an accurate model
for inputs from the whole feature space using column generation. As such, the
method does not focus on locality and is not interpretable in our sense.

Table 2 summarizes whether the addressed methods are suitable for gener-
ating IRDs. Overall, none of the methods satisfies all objectives of Eq. (5) and
desiderata from Section 2.2. Specifically, none of them addresses sparsity con-
straints, and only a few are model-agnostic. In Section 4.4, we modify MaxBox,
PRIM, and MAIRE such that they fulfill all of our requirements to transform
them into useful IRD methods. All other methods cannot be modified to the re-
quired extent, since their underlying, irreplaceable optimization methods either
target multiple boxes or different search spaces. The latter applies in particular
to Anchors. However, the method serves as a baseline method for our benchmark
study in Section 6.

4 Generating IRDs

We now present a unifying framework for generating IRDs, which consists of
four steps: restriction, selection, initialization, and optimization. Optionally, a
post-processing step can be conducted (Section 4.5).

4.1 Restriction of the Search Space

To restrict the initial search space for B, we propose a simple procedure to
find the largest local box B̄

¯
of x′ such that B ⊂ B̄

¯
. For a continuous feature

Xj , we vary its value x′j of x′ on an equidistant grid. Upper and lower bounds
of B̄

¯ j are set to the minimal changes in x′j , yielding a prediction outside Y ′.
This approach is similar to individual conditional expectation (ICE) values [11].
For a categorical feature Xj , B̄¯ j comprises all classes of Xj that still lead to a
prediction ∈ Y ′ after adapting x′j of x′. If a user sets the sparsity constraint
that feature Xj is immutable, B̄

¯ j = x′j must hold. We prove the following in
Appendix D.

Theorem 3. For any box B that solves the optimization problem of Eq. (5) it
holds that B ⊆ B̄

¯
.
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4.2 Selection of the Underlying Dataset

All methods need a dataset X̄
¯

consisting of x ∈ X as an input. This dataset is
used for evaluating (competing) boxes w.r.t. the empirical versions of coverage
and precision (Eq. (2) and Eq. (3)). For some methods, the dataset also offers
a set of potential box boundaries to be evaluated. A suitable dataset is the
training data. Since only instances ∈ B̄

¯
are relevant (Theorem 3), we remove all

instances 6∈ B̄
¯
from X̄

¯
. Consequently, xj = x′j ∀x ∈ X̄

¯
holds for all immutable

features Xj . More features and sparsity constraints increase the risk that X̄
¯

is
only sparsely populated around x′. Since we aim for IRDs that are faithful to the
model and not to the data-generating process (DGP), new data can be generated
by uniformly sampling from the admissible feature ranges of B̄

¯
. In Section 6, we

inspect how double-in-size sampled data within B̄
¯

8 affects the quality of IRDs
and IRD methods compared to using training data.

4.3 Initialization of a Box

All methods require an initial box B as an input, which is either set to the largest
local box B̄

¯
covering all X̄

¯
or the smallest box possible which only contains x′. We

define methods that start with the largest local box as top-down IRD methods,
and methods that start with the smallest box possible as bottom-up methods.

4.4 Optimization of Box Boundaries

The last step comprises the optimization of the box boundaries. Top-down meth-
ods iteratively shrink the box boundaries of the largest local box to improve the
box’s precision (upholding that x′ ∈ B), while bottom-up methods iteratively
enlarge the box boundaries of the smallest box to improve the box’s coverage
(upholding the precision at 1). In this section, we describe the MaxBox, MAIRE,
and PRIM approaches and our extensions such that the methods optimize Eq. (5)
and fulfill the desiderata of Section 2.2. Pseudocodes and illustrations of the in-
ner workings of the extended approaches are given in Appendix E. All methods
receive as input a dataset X̄

¯
and an initial box B.

MaxBox – Top-down Method MaxBox was originally proposed for binary classi-
fication problems – with a positive and negative class. The method starts with
the largest box covering all data. A branch and bound (BnB) algorithm [17] in-
spects the options to shrink the box to optimize its precision w.r.t. the positive
class. The branching rule creates new boxes by bracketing out a sample x of
the negative class, such that the box is shrunk to be either below or above the
values of x in at least one feature dimension (categorical features are one-hot en-
coded). Estimates of the upper bound for the coverage of a box determine which
imprecise box is branched next, which sample is used for branching, and which
boxes are discarded because their upper bound does not exceed the coverage of
8 Double-in-size refers to the size of the training data, not of X̄

¯
.
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the current largest homogeneous box. If no boxes to shrink are left, the largest
homogeneous box is returned as an IRD.

Extensions By labeling observations with predictions ∈ Y ′ as positive, the
approach becomes model-agnostic. Since the original algorithm does not consider
whether corresponding boxes still include x′, we adapted the approach to discard
boxes that do not contain x′ to guarantee locality.

PRIM – Top-down Method The method originally aims for boxes with a high
average outcome. The procedure starts with a box that includes all points. In
the peeling phase, PRIM iteratively identifies a set of eligible subboxes (defined
by the α- and (1-α)-quantile for numeric features and each present category for
categorical features) and peels off the subbox that results in the highest average
outcome after exclusion. This step is repeated until the number of points included
in the box drops below a fraction of the total number of points. In the pasting
phase, the box is iteratively enlarged by adding the subbox that increases the
outcome mean the most. These subboxes consist of at least α observations with
the nearest lower or higher values in one dimension (numeric Xj) or with a new
category (categorical Xj).

Extensions We adapted the approach to target Eq. (5): in each peeling itera-
tion, the subbox is excluded such that the resulting box has the highest precision
(coverage acts as a tiebreaker), and in each pasting iteration, the largest homoge-
neous subbox is added. If the precision and coverage are not sufficient to select a
best box for peeling or pasting, a subbox is randomly selected from the best ones.
Peeling stops as soon as the resulting box is homogeneous, while pasting stops
as soon as there exists no homogeneous box to add. Furthermore, only subboxes
that do not cover x′ are peeled. According to the authors’ recommendation, we
use α = 0.05 for the benchmark study (Section 6).

MAIRE – Bottom-up Method The method starts with a box covering x′. In
each iteration, the box boundaries are adapted via ADAM [15] by optimizing
a differentiable approximation of the coverage measure. If the precision falls
below a certain threshold or x′ is not part of the box, the method additionally
optimizes a differentiable version of Eq. (3) and Eq. (4), respectively. MAIRE
stops after a specified number of iterations. In the end, the method returns the
largest homogeneous box over the iterations.

Extensions The method requires 0-1-scaled features. To overcome the one-
vs-all issue for categorical features (Section 3), we one-hot-encode categorical
features. We implemented a convergence criterion for a fair comparison with the
other (convergent) approaches: we let MAIRE enlarge the box boundaries un-
til the precision falls below 1, then MAIRE is only allowed to run for another
100 iterations. The implementation for the experiments in Section 6 is based on
the authors’ implementation [24] with the discussed modifications. The hyper-
parameters were set according to the authors’ recommendations. We only set
the precision threshold to 1, rather than 0.95.
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4.5 Post-processing

All methods described in the previous section determine box boundaries based
on a finite number of data points in X̄

¯
. The limited access carries the risk

that some regions of the feature space are not represented in X̄
¯

and that the
boundaries of a generated B are suboptimal: There could be areas in B that
have predictions /∈ Y ′, or there could be adjacent areas outside of B that also
have predictions ∈ Y ′. To improve the box boundaries of a given box B, we
developed the following post-processing method using newly sampled data. The
procedure consists of peeling and pasting as PRIM.

First, the precision of B is measured based on newly sampled data. If ∃x ∈ B
with f̂(x) /∈ Y ′, subboxes with the lowest precision in proportion to their size
(according to newly sampled data within this subbox) are iteratively peeled. If
all subboxes to peel are homogeneous, peeling stops. In the subsequent pasting
step, the largest subboxes that proved to be homogeneous (according to newly
sampled data within this subbox) are added. If the best box cannot be clearly
determined (because several boxes have the same precision and coverage), a
subbox is randomly chosen. The method has three hyperparameters: the number
of samples used for evaluation, the relative box size (in relation to the size of
Xj) for peeling or pasting boxes for continuous features, and a threshold for
the minimum box size. The latter acts as a stopping criterion for pasting. If no
homogeneous subbox can be added, the relative box size to add for continuous
features is halved as long as the relative box size is not lower than the threshold.
The pseudocode of our method displays Appendix F.

Section 6 investigates whether our post-processing method improves IRDs.
For the experiments, we set the number of samples to evaluate boxes to 100, the
relative box size to 0.1, and the threshold for the minimum box size to 0.05.

5 Quality Measures

We now present a set of quality measures for generated IRDs and IRD methods.
These measures apply to a single instance x′ to be explained, where B is the
returned IRD of x′ of an IRD methodG. The assessment requires evaluation data
E consisting of x ∈ X ; for the benchmark study in Section 6, we use training
data and new data uniformly sampled from B̄

¯
. Training data helps to assess

whether the methods use the training data appropriately during IRD generation
(e.g., precision should be 1), while a proliferated number of newly generated data
∈ B̄

¯
leads to a more precise evaluation w.r.t. the model, not the DGP.

Locality The IRD should cover x′. This property is fulfilled if locality(B) =
I(x′ ∈ B) equals 1.

Coverage Given two IRDs with equal precision, we prefer the one with higher
coverage (Eq. (2)). To evaluate the coverage, we use samples x ∈ E from the
connected convex level set L covering x′.
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Definition 2. A datapoint x with f̂(x) ∈ Y ′ is part of L of x′ iff there exists a
path between x and x′ for which all intermediate points have a prediction ∈ Y ′.

Paths are identified via the identification algorithm of Kuratomi et al. [16],
details are given in Appendix G.

Precision Given two IRDs with equal coverage, the IRD with higher precision
is preferred (Eq. (3)).

Maximality A box should be maximal according to Definition 1 based on x ∈ E
instead of x ∈ X .

No. of Calls Lower number of calls to f̂ of an IRD method are preferred.

Robustness If we rerun method G on the same x′ and f̂ R times using the same
X̄
¯
, the produced IRDs B1, ..., BR should overlap with the originally produced

B, such that robustness(G) = min
k∈{1,...,R}

∑
x∈E

I(x∈B∩Bk)∑
x∈E

I(x∈B∪Bk)
has a high value.

6 Performance Evaluation

In a benchmark study, we address the following research questions (RQs):

1. Based on the stated quality measures of Section 5, how do the different
methods of Section 4.4 perform against each other and the baseline method
when training data are used as X̄

¯
(without post-processing)?

2. What effect do double-in-size sampled data originating from B̄
¯
have on the

quality of the IRDs and methods compared to using training data?
3. What effect does the post-processing (Section 4.5) have on the quality of the

IRD methods?

As a baseline method, we use the Anchors approach [22] with a precision of 1
and 20-quantile-based bins for numeric features (see Section 3 for details).

6.1 Setup

To answer the RQs, we utilize six datasets available on the OpenML platform
[26], either with a binary, multi-class or continuous target variable. Table 3 sum-
marizes the datasets’ dimensions as well as the target and feature types. Before
training a model, five randomly sampled datapoints were excluded from the
datasets to be x′. On each of the datasets, four models are trained: a hyperbox
model, a logistic regression/multinomial/linear model (depending on the out-
come), a neural network with one hidden layer, and a random forest model. The
number of trees for the random forest model and the neurons on the hidden layer
are tuned (details are given in Appendix H). The hyperbox model is derived from
a classification and regression tree (CART) model for each x′ individually. For a
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Table 3: Overview of benchmark datasets. ID: OpenML id; Type: target type;
Obs: number of rows; Cont/Cat: number of continuous/categorical features.

Name ID Type Obs Cont Cat
diabetes 37 binary 768 8 0
tic_tac_toe 50 binary 958 0 9
cmc 23 three-class 1473 2 7
vehicle 54 four-class 846 18 0
no2 886 regression 500 7 0
plasma_retinol 511 regression 315 10 3

given x′, the post-processed model predicts 1 if a point falls in the same terminal
node as x′ and 0 otherwise.9

For classification models, the prediction function returns the probability of
the class with the highest probability for x. For binary targets, we set Y ′ =
[0.5, 1]. For regression and multi-class targets, Y ′ is set to [f̂(x) − δ, f̂(x) + δ]
with δ as the standard deviation of predictions f̂ of the training data. For multi-
class, the interval is additionally capped between 0 and 1. For each dataset,
model, and x′, we generate IRDs with MaxBox, PRIM, and MAIRE, as well as
Anchors – our baseline method. The hyperparameters of the methods were set
according to Section 4. The methods were either run on training or on uniformly
sampled data from B̄

¯
(RQ 2), and either without or with post-processing (RQ

3). For the robustness evaluation, we repeated the experiments R = 5 times.
The methods and their generated IRDs were evaluated based on the perfor-

mance measures of Section 6 – either evaluated on the training data or 1000 new
instances sampled uniformly from B̄

¯
. We also compared the methods statistically

by conducting Wilcoxon rank-sum tests for the hypothesis that the distribution
of the coverage and precision values do not differ between two (IRD) methods
(RQ 1), for a method using training vs. sampled data (RQ 2), and for a method
without vs. with post-processing (RQ 3). The experiments were conducted on a
computer with a 2.60 GHz Intel(R) Xeon(R) processor, and 32 CPUs. Overall,
generating the boxes took 63 hours spread over 20 CPUs. The five repetitions
for the robustness evaluation required another 316 hours.

6.2 Results

Figure 1 compares the coverage and precision values of the methods visually.
Table 4 shows the frequency of fulfilling maximality and the number of calls to
f̂ of the methods. The separate results for each dataset and model, the statistical
analysis, and the results of robustness are shown in Appendix I. We omitted the
results for the locality measure because all returned IRDs covered x′.

RQ 1 - comparison of methods Without post-processing and training data
as X̄

¯
(first row, Figure 1), MaxBox had the highest precision as evaluated on

9 The true hyperbox of the CART model might be larger than the terminal node-
induced hyperbox (see Figure 6 in the Appendix).
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Table 4: Comparison of methods w.r.t. maximality and no. of calls to f̂ aver-
aged over all datasets, models and x′. Each method was run or evaluated on
training data or uniformly sampled data from B̄

¯
, and without (0) or with (1)

post-processing. Higher maximality and lower no. of calls are better.
Traindata Sampled

Maxtrain Maxsamp No. calls to f̂ Maxtrain Maxsamp No. calls to f̂

0 1 0 1 0 1 0 1 0 1 0 1

MaxBox 0.60 0.42 0.06 0.41 184 55769 0.23 0.45 0.24 0.43 1621 37627
PRIM 0.42 0.37 0.18 0.39 184 46070 0.20 0.42 0.25 0.39 1621 42958
MAIRE 0.18 0.41 0.04 0.41 184 68126 0.06 0.41 0.11 0.35 1621 92976
Anchors 0.27 0.42 0.16 0.40 26402 94448 0.31 0.42 0.18 0.36 77818 129276

training and newly sampled data, followed by MAIRE. The IRDs of PRIM had
on average the largest coverage, but they also covered sampled data with predic-
tions outside Y ′. Due to the randomized choice of a subbox in the case of ties,
PRIM is not robust according to our robustness metric. None of the methods
outperformed the other methods w.r.t. maximality. Overall, all methods outper-
formed the baseline method Anchors according to coverage and precision and
calls to f̂ . The latter is because competing boxes are evaluated on column-wise
permutations of the observed data. All other methods only called f̂ |X̄

¯
| times.

RQ 2 - training vs. sampled data On average, double-in-size sampled data
originating from B̄

¯
led to slightly higher coverage, precision and maximality rates

w.r.t. newly sampled data but not w.r.t. the training data. Due to the increase
in the size of X̄

¯
, more calls to f̂ were necessary.10

RQ 3 - without vs. with post-processing Post-processing increased the cover-
age and precision of IRDs for all methods. The difference in the quality of IRDs
between the methods and between the underlying data scheme (training data vs.
sampled data) diminished. Quality enhancement comes at the cost of efficiency
and robustness; on average, post-processing resulted in 57,000 additional calls
to f̂ and the sampling of new data decreased the robustness. MAIRE required
on average the most post-processing iterations, followed by Anchors.

7 Conclusion, Limitations and Outlook

Conclusion We introduced IRDs that describe regions in the feature space that
do not affect the prediction of an instance in the form of hyperboxes. These
hyperboxes provide a set of semi-factual explanations to justify a prediction, and
indicate which features affect a prediction and whether there might be pointwise
biases or implausibilities. We formalized the search for IRDs, and introduced
desiderata, a unifying framework and quality measures for IRD methods. We
10 The size decuples instead of doubles compared to the training data, because not all

training data are ∈ B̄
¯
and, thus, not in X̄

¯
.
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Fig. 1: Comparison of IRD methods w.r.t. coverage and precision as evaluated
on the training data or newly sampled data within B̄

¯
. Addendum L means that

for the coverage evaluation only training or sampled points within L are con-
sidered. Each point in the boxplot reflects the performance of a generated IRD
of one experimental setting (dataset, model and x′). Each method was either
run or evaluated on training data (traindata) or uniformly sampled data from
B̄
¯
(sampled), and the methods were run either without or with post-processing

(postproc). Higher values for precision and coverage are better.

discussed three existing hyperbox methods in detail and adapted them to search
for IRDs. The lack of a method “ruling it all” in the benchmark study emphasizes
the need for a unifying framework comprising multiple methods. The study also
revealed that access to a larger, uniformly sampled dataset or using our proposed
post-processing method can further enhance the quality of IRDs.

Limitations Our work offers potential for further research, e.g., on the sensitivity
of the methods’ hyperparameters, on the influence of sampling sizes, or on the
methods’ robustness w.r.t. slight changes in x′ or the underlying data. While
we only considered low-dimensional datasets in the benchmark study, for high-
dimensional datasets we proposed two strategies to restrict the search space:
either by letting users decide which features can be changed and which cannot
(Section 2.2), or by deriving the largest local box B ⊂ B̄

¯
based on ICE curves

(Section 4.1). Further research can explore: (1) the use of other IML methods,
such as feature importance methods, to select features for which changes are
investigated (all other features are set to their admissible value range); (2) the
consideration of feature correlations or causal relations to generate IRDs, which
not only naturally restricts the search space but also makes the IRD faithful to
the DGP. Considering feature correlations is also important for the application
of IRDs beyond tabular data. While all presented methods are model-agnostic,
we leave concrete investigations on image and text data to future research.

Outlook We believe that our work can also be a starting point for investigations
on the application of IRDs in other fields, e.g., for hyperparameter (HP) tuning: if
a promising HP set for an ML model was identified by a tuning method, IRDs can



Interpretable Regional Descriptors 15

reveal its sensitivity and whether there are other equally good but more efficient
HP settings. IRDs might also identify high-fidelity regions for interpretable local
surrogate models, like LIME [21]. LIME approximates predictions of a black-
box model f̂(x) around an observation x′ using a (regularized) linear model
ĝ(x). Here, it might be useful to understand in which region B the linear model
approximates the black-box model (high-fidelity region); ĝ only provides valuable
insights in the region B around x′ where ∀x ∈ B : ĥ(x) := |f̂(x) − ĝ(x)| ≤ ε

for a user-defined ε > 0. With ĥ as the prediction model and Y ′ = [0, ε], IRD
methods might identify such high-fidelity regions B in an interpretable manner.
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B Proof of Theorem 1

Proof. Given a feature Xj that is not involved in the prediction model f̂ such
that ∀x̃ ∈ X ∧ ∀xj ∈ Xj :

f̂(x̃1, ..., x̃j−1, x̃j , x̃j+1, ..., x̃p) = f̂(x̃1, ..., x̃j−1, xj , x̃j+1, ..., x̃p), (6)

and given a box B for x′ that is maximal according to Definition 1. We assume
now that Theorem 1 does not hold such that Bj = [lj , uj ] ⊂ Xj . However, since
Eq. (6) holds, either (∃xj ∈ Xj ∧ xj < lj : precision(B ∪ [xj , lj ]) = 1), or
(∃xj ∈ Xj ∧ xj > uj : precision(B ∪ [uj , xj ]) = 1) for numeric Xj or (∃xj ∈
Xj \Bj : precision(B ∪ xj) = 1) for categorical Xj holds which contradicts the
maximality assumption of B.

C Proof of Theorem 2

Proof. Given a box B with precision(B) = 1 and x′ ∈ B, and given a feature Xj

that is relevant for f̂(x′) such that ∃xj ∈ Xj\Bj : f̂(x′1, ..., x′j−1, xj , x
′
j+1, ..., x

′
p) 6∈

Y ′. We assume now that Theorem 2 does not hold, such that Bj = Xj . This
contradicts the statement that precision(B) = 1 because xj that leads to a
prediction 6∈ Y ′ for x′ is also covered by the box.

D Proof of Theorem 3

Proof. Without loss of generality, we assume that we only have numeric features.
Assume we computed B̄

¯
=
⋃p

j=1[lj , uj ] such that ∀j ∈ {1, ...p} :

f̂(x′1, .., x′j−1, lj , x
′
j+1, ..., x

′
p︸ ︷︷ ︸

:=x′
l

) 6∈ Y ′ ∧ f̂(x′1, .., x′j−1, uj , x
′
j+1, ..., x

′
p︸ ︷︷ ︸

:=x′
u

) 6∈ Y ′.

We assume that B ⊂ B̄
¯
is not true for now such that there is a homogeneous

B with min(Bj) < lj or max(Bj) > uj and x′ ∈ B. However, then either x′l or
x′u would also be part of B but for both f̂(x′u) 6∈ Y ′ or f̂(x′l) 6∈ Y ′ holds, which
contradicts that B is homogeneous.
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E Pseudocode and Illustrations of IRD Methods

E.1 Pseudocode

Algorithm 1 Adapted MaxBox approach [6]

Input: Targeted instance x′, desired range Y ′, prediction model f̂ : X → R, input
dataset X̄

¯
, initial box B

Initialize candidates = [ ], upper_bound_coverage_best = -Inf, current_best = [ ]
if ∃x ∈ X̄

¯
∧ x ∈ B : f̂ 6∈ Y ′ then

candidates = candidates.append(B)
while length(candidates) > 0 do
Bbest = choose_best(candidates)

. if upper_bound_coverage_best < 0, Bbest corresponds to the box with
the most no. of shrinking steps done before (with the upper bound of the
coverage as a tiebreaker), else, Bbest corresponds to the box that maximizes(
|{x∈B|f̂(x)∈Y }|
|{x∈B|f̂(x)6∈Y }|

)
.

candidates = candidates.remove(Bbest)
children = create_new_candidates(Bbest) . in Figure 2, C and D are new

candidates created from the initial box
for B ∈ children do
if ∀x ∈ B : f̂(x) ∈ Y ′ then
coverage = upper_bound_coverage(B)
if coverage > upper_bound_coverage_best then

current_best = B
upper_bound_coverage_best = coverage

end if
else
if upper_bound_coverage(B) > upper_bound_coverage_best then

candidates = candidates.append(B)
end if

end if
end for

end while
else
current_best = B

end if
return current_best
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Algorithm 2 Adapted PRIM approach [10]

Input: Targeted instance x′, desired range Y ′, prediction model f̂ : X → R, input
dataset X̄

¯
, initial box B

while ∃x ∈ X̄
¯
∧ x ∈ B : f̂ 6∈ Y ′ do

for j ∈ {1, ..., p} do
Cj = [ ] . create candidates for peeling
if Xj numeric then
Cj = Cj .append(B−j , B

+
j ) where B−j = [lj ,min(Xj(α), x

′
j)] and

B+
j = [max(Xj(1−α), x

′
j), uj ] with xj(α) and xj(1−α) as the α- and (1− α)-quantiles

of Xj in the current box B
else if Xj categorical then
Cj = {s ∈ Bj | s 6= x′j}

end if
end for
bbest = arg max

b∈Cj , j∈{1,...,p}
precision(B \ b)

B = B \ bbest
end while
homogeneous = TRUE
while homogeneous do
for j ∈ {1, ..., p} do
Cj = [ ] . create candidates for pasting
if Xj numeric then
inbox = {x ∈ X̄

¯
| xk ∈ Bk}, for k ∈ {1, ..., j − 1, j + 1, ...p}

number_added = |{x ∈ X̄
¯
| x ∈ B}| · α

Cj = Cj .append(B−j , B
+
j ) with B−j = [xlj , lj ] and B+

j = [uj , xuj ] with
xlj as the jth feature value of the (number_added)th observation x ∈ inbox with a
value xj lower than lj and
xuj as the jth feature value of the (number_added)th observation x ∈ inbox with a
value xj higher than uj

else if Xj categorical then
Cj = {s ∈ Xj | s 6∈ Bj}

end if
Cj = {b ∈ Cj | precision(B ∪ b) = 1}

end for
if ∃j ∈ {1, ..., p} : |Cj | > 0 then
bbest = arg max

b∈Cj , j∈{1,...,p}
coverage(B \ b)

B = B ∪ b
else
homogeneous = FALSE

end if
end while
return B
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Algorithm 3 Adapted MAIRE approach [24]

Input: Targeted instance x′, desired range Y ′, prediction model f̂ : X → R, input
dataset X̄

¯
, initial box B, precision threshold τ (default 1), maximum number of

iterations max_iterations (default 100)
Scale all feature values of x ∈ X̄

¯
and x′ to 0-1 range

best_coverage = 0
converged = FALSE
best_candidate = B
i = 0
while i ≤ max_iterations do
B = optimize_with_adam(B)

. optimizes differentiable versions of coverage, precision and locality
if precision(B) ≥ τ ∧ coverage(B) ≥ best_coverage then

best_candidate = B
else if precision(B) < τ then

converged = TRUE
end if
if converged = TRUE then

i = i + 1
end if

end while
return best_candidate

E.2 Illustrations

A

B

C

D

Fig. 2: Illustration of the adapted MaxBox algorithm. The algorithm starts with
B̄
¯

(dashed box). In the box are two data points with predictions 6∈ Y ′ (called
negative samples) and the box needs to be further optimized. First, a negative
sample is chosen - either the one in A or B. Therefore, the number of samples
with predictions ∈ Y ′ after excluding the points in one feature dimension are
inspected. The resulting boxes of both negative samples cover a maximum of
seven samples. We chose the one of A (B is also fine). Its resulting boxes are the
new subproblems/candidates (C and D). Both boxes in C and D only include
samples with predictions ∈ Y ′, but the box in C is chosen as an optimum because
it includes more samples with predictions ∈ Y ′. D is discarded because it has
a lower number. Since C and D cannot be further split because no negative
samples are within both boxes, the returned box by MaxBox is the box in C.
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A

B

i

ii

i C

D

iii
i

Fig. 3: Illustration of the adapted PRIM algorithm. The algorithm starts with
B̄
¯
. In the first iteration, there exist four potential subboxes (two in each feature

dimension (A vs. B)) that could be removed. The subbox i is chosen because it
has the highest precision but compared to ii it has a smaller size. In the next
step (C & D), again four subboxes can be potentially removed. Again, we choose
i for the same reason as before. After its removal, the resulting box is at the
same time the final box because in the pasting step only one subbox could be
added – i again. All other dimensions are maximal.

A

B

C

D

Fig. 4: Illustration of the adapted MAIRE algorithm. The algorithm starts with
the smallest box possible. The box boundaries are then iteratively enlarged (A-
D). The box boundaries are only updated if the precision of the new box = 1.
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F Pseudocode of post-processing Approach

Algorithm 4 Post-processing algorithm - peeling (inspired by [10])

Input: Targeted instance x′, desired range Y ′, prediction model f̂ : X → R, initial
box B, number of samples for evaluation M (default 100), relative subbox size of
continuous features α (default 0.1)
for j ∈ {1, ..., p} do
if Xj numeric then
sj = (max(Xj)−min(Xj)) · α . derive subbox sizes for numeric

features based on X
if Xj integer then
sj = round(sj)

end if
end if

end for
X̄
¯

= sample_uniformly(B,n = M · 5) . sample new data to check
if B homogeneous
if ∃x ∈ X̄

¯
∧ x ∈ B : f̂ 6∈ Y ′ then

not_homogeneous = TRUE . start peeling
while not_homogeneous do
for j ∈ {1, ..., p} do
Cj = [ ] . create candidates for peeling
if Xj numeric then
Cj = Cj .append(B−j , B

+
j )

where B−j = [lj ,min(lj + sj , x
′
j)] and B+

j = [max(uj − sj , x′j), uj ]
else if Xj categorical then
Cj = {s ∈ Bj | s 6= x′j}

end if
Cj = {b ∈ Cj | precision(Bbj ) < 1} with Bbj = (B1 × ...× Bj−1 × b× Bj+1 ×

...×Bp)
end for
if ∃j ∈ {1, ..., p} : |Cj | > 0 then
bbest = arg max

b∈Cj , j∈{1,...,p}
precision_to_boxsize(Bbj ) . evaluate on M new

instances sampled within Bbj
Bbest = (B1× ...×Bj−1×bbest×Bj+1× ...×Bp) . choose the one with lowest

precision relative to size
B = Bbest

else
not_homogeneous = FALSE

end if
end while

end if
return B, s = {sj | Xj numeric}
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Algorithm 5 Post-processing algorithm - pasting (inspired by [10])

Input: Targeted instance x′, desired range Y ′, prediction model f̂ : X → R, initial
box B (potentially peeled), number of samples for evaluation M (default 100), rel-
ative subbox size of continuous features α (default 0.1), lower threshold for relative
subbox size α0 (default 0.05), subbox sizes of numeric features s
homogeneous = TRUE . start pasting
stepsize = 1
while homogeneous do
for j ∈ {1, ..., p} do
Cj = [ ] . create candidates/subboxes for pasting
if Xj numeric then
Cj = Cj .append(B−j , B

+
j )

where B−j = [lj − stepsize · sj , lj ] and B+
j = [uj , uj + stepsize · sj ]

else if Xj categorical then
Cj = {s ∈ Xj | s 6∈ Bj}

end if
Cj = {b ∈ Cj | precision(Bbj ) = 1} with Bbj = (B1×...×Bj−1×b×Bj+1×...×Bp)

end for
if ∃j ∈ {1, ..., p} : |Cj | > 0 then
bbest = arg max

b∈Cj , j∈{1,...,p}
size(Bbj ) . evaluate onM new instances sampled within

Bbj
B = B ∪ b . choose largest one with precision 1

else
if stepsize ≥ α0 then
stepsize = stepsize/2 . if no box with precision 1 exists,

consider reducing the subbox sizes
else
homogeneous = FALSE

end if
end if

end while
return B
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Fig. 5: Illustration of the post-processing algorithm. The algorithm starts with
the box generated by another method (solid brown box, which is a subbox of the
dashed box B̄

¯
). First, new points are sampled and it is assessed whether the box

is homogeneous (A). If not, the subboxes with the lowest precision compared
to their size are peeled iteratively (B). The precision is assessed based on newly
sampled points within the subboxes. First subbox i is peeled then subbox ii (both
contain a sample with a prediction 6∈ Y ′). If no subbox with precision < 1 exists,
it is assessed whether the box could be further enlarged (C). If all considered
subboxes have precisions < 1, the subbox sizes are halved (D) as long as the
relative subbox size does not fall below a threshold.

A

B

C

D
i

ii

G Level Set Identification

The algorithm starts at x′ and tries to find a connection ∈ Y ′ between the
nominal, then the ordinal, and then the continuous features of x and x′. If
a path is found, x is part of L. For categorical features, all permutations of
feature orders are inspected.11 For continuous features, the shortest linear path
for a given number of equidistant steps is checked. Kuratomi et al. [16] used
DBSCAN, for which the choice of the maximum distance threshold is ambiguous.
The identification algorithm has a complexity of O(c! · c+ o! ·

∑o
j=1 kj + q) with

c and o as the number of nominal and ordinal features, respectively, kj as the
number of possible values of an ordinal feature Xj and q as the number of
inspected steps for continuous features.

The level set could be further enriched by attempting to find connections
between the unconnected and connected points. For the comparison of IRD
methods, however, a convex level set is sufficient, since the hyperbox itself is
convex.

H Tuning of ML models

For hyperparameter tuning, we used random search (with 15 evaluations), and
5-fold cross-validation (CV) with the misclassification error (classification) or
mean squared error (regression) as a performance measure. Table 5 shows the
tuning search space of each model. The rather limited tuning setup should be
11 If the number of permutations exceeds 100 permutations, 100 feature orders are

randomly chosen.
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sufficient for our task of explaining a prediction model – a less accurate model is
not a hindrance. Unbalanced datasets such as tic_tac_toe, diabetes and cmc were
balanced with the SMOTE algorithm [1]. For SMOTE, numeric features were
standardized and categorical ones were one-hot encoded. The optimizer for the
neural network was ADAM [15] with 500 epochs. For all other hyperparameters,
the default values of the mlr3keras R package were used [20] (apart from the no.
of layer units, see Table 5). Table 6 shows the accuracies of each model using
nested resampling with 5-fold CV in the inner and outer loop).

Table 5: Tuning search space of each model. Hyperparameter values of num.trees
were log-transformed.

Model Hyperparameter Range
random forest num.trees [1, 1000]
logistic regression - -
linear model - -
multi-nomial model - -
hyperbox/rpart - -
neural net layer_units [1, 20]

Table 6: Classification error or mean squared error (regression) of each model
on each dataset. The performances were computed using nested resampling with
5-fold CV in the inner and outer loop. We did not measure the performance of
the (terminal node) hyperbox model because the model differs for each x′.

Random forest Linear model Neural net Hyperbox
diabetes 0.233 0.224 0.229 -
tic_tac_toe 0.036 0.019 0.094 -
cmc 0.466 0.495 0.389 -
vehicle 0.256 0.201 0.254 -
no2 33502.856 37678.319 77866.331 -
plasma_retinol 45391.218 59224.452 297481.249 -
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         5  7 

Terminal node hyperbox        
True hyperbox          

x2

x1

2

Fig. 6: True hyperbox vs. terminal node hyperbox for a CART tree. The white
cross corresponds to x′.
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Fig. 7: Comparison of MaxBox, PRIM, Anchors, and MAIRE w.r.t. coverage and
precision for each model separately. Each method was either run or evaluated on
training data (traindata) or uniformly sampled data from B̄

¯
(sampled) without

post-processing. Higher values for precision and coverage are better.
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on training data (traindata) or uniformly sampled data from B̄

¯
(sampled) with
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