
ar
X

iv
:2

30
4.

14
74

2v
1

 [
cs

.A
I]

 2
8

A
pr

 2
02

3

LitCQD: Multi-Hop Reasoning in Incomplete

Knowledge Graphs with Numeric Literals

Caglar Demir, Michel Wiebesiek, Renzhong Lu, and Axel-Cyrille Ngonga Ngomo

Stefan Heindorf

Paderborn University

Abstract. Most real-world knowledge graphs, including Wikidata, DBpedia, and

Yago are incomplete. Answering queries on such incomplete graphs is an im-

portant, but challenging problem. Recently, a number of approaches, including

complex query decomposition (CQD), have been proposed to answer complex,

multi-hop queries with conjunctions and disjunctions on such graphs. However,

all state-of-the-art approaches only consider graphs consisting of entities and re-

lations, neglecting literal values. In this paper, we propose LitCQD—an approach

to answer complex, multi-hop queries where both the query and the knowledge

graph can contain numeric literal values: LitCQD can answer queries having nu-

merical answers or having entity answers satisfying numerical constraints. For

example, it allows to query (1) persons living in New York having a certain age,

and (2) the average age of persons living in New York. We evaluate LitCQD

on query types with and without literal values. To evaluate LitCQD, we gener-

ate complex, multi-hop queries and their expected answers on a version of the

FB15k-237 dataset that was extended by literal values.

1 Introduction

Knowledge Graphs (KGs) such as Wikidata [29], DBpedia [3], and YAGO [24] have

been of increasing interest in both academia and industry, e.g., for major question an-

swering systems [1, 9, 26] and for intelligent assistants such as Amazon Alexa, Siri,

and Google Now. Natural language questions on such KGs are typically answered by

translating them into subsets of First-Order Logic (FOL) involving conjunctions (∧),

disjunctions (∨), and existential quantification (∃) of multi-hop path expressions in the

KGs. However, this approach to modeling queries has an important intrinsic flaw: Al-

most all real-world KGs are incomplete [8, 10, 19]. Traditional symbolic models, which

rely on sub-graph matching, are unable to infer missing information on such incom-

plete KGs [13]. Hence, they often return empty answer sets to queries that can be an-

swered by predicting missing information. Hence, several approaches (e.g., GQE [13],

Query2Box [21], and CQD [2]) have recently been proposed that can query incomplete

KGs by performing neural reasoning over Knowledge Graph Embeddings (KGEs).

However, all the aforementioned models operate solely on KGs consisting of entities

and relations and none of them supports KGs with literal values such as the age of

a person, the height of a building, or the population of a city. Taking literal values

into account, however, has been shown to improve predictive performance in many

tasks [14, 17].

http://arxiv.org/abs/2304.14742v1

2 Authors Suppressed Due to Excessive Length

In this paper, we remedy this drawback and propose LitCQD, a neural reasoning

approach that can answer queries involving numerical literal values over incomplete

KGs. LitCQD extends CQD by combining a KGE model (e.g. ComplEx-N3 [18]) that

predicts missing entities/relations with a literal KGE model (e.g. TransEA [30]) able

to predict missing numerical literal values. Therewith, LitCQD can mitigate missing

entities/relations as well as missing numerical values to answer various types of queries.

Moreover, we increase the expressiveness of queries that can be answered on KGs with

literal values by allowing queries (1) to contain filter restrictions involving literals and

(2) to ask for predictions of numeric values (see Example 1).

Example 1. The query “Who (P?) is married to somebody (P) younger than 25?” with

a filter restriction “younger than 25” can be rewritten as P?.∃P,C : hasAge(P,C) ∧
lt(C, 25) ∧married(P, P?).

To answer this query, we predict the age of all persons P in the knowledge graph and

check whether the condition “less than 25” is fulfilled. Then, all persons P? married to

persons P are returned.

A particular challenge was to develop an efficient continuous counterpart to discrete,

Boolean filter expressions such as “less than 25” that works on incomplete knowledge

graphs. To this end, we introduce continuous attribute filter functions (Section 4.1,

Equations 8–9) and improve them by introducing attribute existence checks (Equa-

tions 11–12). Another challenge was predicting attribute values for a subset of entities

specified by a query on an incomplete knowledge graph. We predict attribute values by

means of a beam search over entities obtained via attribute filter functions (Section 4.2).

We experimented with several variants, but due to space constraints, we focus on the

best-performing one in this paper and mention alternative variants only briefly.

In our experiments, we use a similar setup to Arakelyan et al. [2], Garcı́a-Durán

and Niepert [12], Hamilton et al. [13] and use the FB15k-237 dataset augmented with

literals [12]. However, as previous work did not contain queries with literal values,

we generate such queries and their expected answers. Our experiments suggest that

LitCQD can effectively answer various types of queries involving literal values, which

was not possible before (Tables 3, 4). Moreover, our results show that including literal

values during the training process improves the query answering performance even on

standard queries in our benchmark (Table 2). Our contributions can be summarized as

follows:

– Filter restrictions with literals: We propose an approach that can answer multi-hop

queries where numeric literals are used to filter valid answers (e.g., “return entities

whose age is less than 25”)

– Prediction of literal values: We propose an approach that can predict the numeric

values of literals (e.g., “return mean age of married people’).

– Benchmark construction: We generate multi-hop queries with numeric literals and

their expected answers

– Embeddings with literals: We show that using knowledge graph embeddings that

support literal values even yields better results for traditional queries without literal

values

LitCQD: Multi-Hop Reasoning 3

2 Background and Preliminaries

In this section, we give a brief introduction to knowledge graphs without literals and

queries on knowledge graphs without literals, before introducing our approach for knowl-

edge graphs with literals in Section 4.

2.1 Knowledge Graph without Literals

A knowledge graph (KG) without literals is defined as G = {(h, r, t)} ⊆ E × R × E ,

where h, t ∈ E denote entities and r ∈ R denotes a relation [13, 21]. G can be regarded

as a FOL knowledge base, where a relation r ∈ R corresponds to a binary function r̂ :
E × E → {1, 0} and a triple (h, r, t) corresponds to an atomic formula α = r̂(h, t) [2].

When it is clear from the context that r̂ denotes a binary function, we may simply write

r as in the following definitions.

2.2 Multihop Queries without Literals

Conjunctive Queries. A conjunctive graph query [2, 13, 21, 22] q ∈ Q(G) over G is

defined as

q = E? . ∃E1, . . . , Em : α1 ∧ α2 ∧ . . . ∧ αn, (1)

where

– αi = r(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αi = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E 6= E′, r ∈ R.

In the query, the target variableE? and the existentially quantified variablesE1, . . . , Em

are bound to subsets of entities E . The entities bound to E? represent the answer nodes

of the query. The conjunction α1 ∧ α2 ∧ . . . ∧ αn consists of n atoms defined over

relations r ∈ R, anchor entities e ∈ E and variables E,E′ ∈ {E?, E1, . . . , Em}.

Example 2. To give a concrete example, the natural language question “Which (D?)

drugs are to interact with (P) proteins associated with the diseases e1 and e2?” can be

represented as the conjunctive graph query

q = D?.∃P : assoc(e1, P) ∧ assoc(e2, P) ∧ interacts(P,D?), (2)

where D?, P are bound to subsets of entities E , e1, e2 ∈ E are anchor entities and

interacts , assoc ∈ R are relations.

The dependency graph of a query q ∈ Q(G) is defined over its query edges α1, α2,
. . . , αn with nodes being either anchor entities or variables [13]. Following Arakelyan

et al. [2], Hamilton et al. [13], we focus on queries whose dependency graph forms a

Directed Acyclic Graph (DAG) with anchor entities being source nodes and the target

variable being the unique sink node (such queries are called valid queries in previous

work [2, 13]). For example, Figure 2 (left) represents the dependency graph of the

query in Equation (2). Note that for the sake of brevity, we use the term of entity in a G
interchangeably with a node in a dependency graph.

4 Authors Suppressed Due to Excessive Length

e1

e2

P D?

assoc

assoc
interacts

e1

e2

p1

p2

p3

p4

d1

d2

d3

d4

assoc

assoc

interacts

interacts

assoc interacts

interactsassoc

assoc interacts

interacts

Fig. 1. Example query without literals (see Equation (2)). Dependency graph of query (left) and

symbolic query answering on an incomplete graph (right). Solid bold lines represent paths leading

to answer entities. Dashed lines represent missing triples.

The dependency graph of a query encodes the computation graph to obtain the

answer set JqK via projection P and intersection I operators [21]. Starting from a set

of anchor nodes (e.g. e1, e2), JqK is derived by iteratively applying P and/or I until the

unique sink target node (e.g.D?) is reached. Given a set of entities S ⊆ E and a relation

r ∈ R, the projection operator is defined as P(S, r) := ∪e∈S {x ∈ E : r̂(e, x) = 1}
where the binary function r̂ : E×E → {1, 0} indicates whether the triple (e, r, x) exists

in G.1 Given a set of entity sets {S1, S2, . . . , Sn}, Si ⊆ E , the intersection operator I
is defined as I({S1, S2, . . . , Sn}) := ∩n

i=1Si. Therefore, the conjunctive query defined

in Equation (2) can be answered via the computation

P
(

I
({

P({e1}, assoc),P({e2}, assoc)
})

, interacts
)

. (3)

In the example of Figure 2 (right), a traditional, symbolic approach yields the answer

set JqK = {d3, d4} although the complete answer set taking missing triples into account

would be JqK = {d2, d3, d4}. The result is obtained as follows: Starting at the anchor

entities e1 and e2, the entity p3 is the only entity for which both assoc(e1, p3) and

assoc(e2, p3) hold. Moving on from p3, a traditional, symbolic approach can only reach

the entities d3, d4 via the “interacts” relation, but not the entity d2 because the edge

(p3, interacts, d2) is missing. Note that d1 is not part of the answer set because both p1
and p2 are only associated with e1.

Existential Positive First-order (EPFO) Queries. An EPFO query q in its Disjunctive

Normal Form (DNF) is a disjunction of conjunctive queries [2, 21]:

q = E? . ∃E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

n1
∧ · · · ∧ αd

nd
), (4)

where αj
i are defined as above. Its dependency graph is a DAG having three types of di-

rected edges: projection, intersection, and union; the union U of entity sets S1, S2, . . . ,
Sn ⊆ E is U({S1, S2, . . . , Sn}) := ∪n

i=1Si.

1 When computing the ground truth answer on the complete graph, we check whether (e, r, x) ∈
G (see details on query generation below and in Hamilton et al. [13]). When performing neural

reasoning, r̂ is approximated with a link predictor yielding a score between 0 and 1.

LitCQD: Multi-Hop Reasoning 5

3 Related Work

In this section, we overview the state of the art with regards to knowledge graph em-

beddings and neural query answering on incomplete knowledge graphs.

3.1 Knowledge Graph Embeddings and Literals

In the last decade, a plethora of knowledge graph embedding (KGE) models have been

successfully applied to tackle various tasks, including link prediction, relation predic-

tion, community detection, fact checking, and class expression learning [16, 19, 23, 28].

KGE research has mainly focused on learning embeddings for entities and relations tai-

lored towards predicting missing entity/relation given a triple, i.e., tackling single-hop

queries [4, 6–8, 19, 25, 28, 32, 33]. Despite their effectiveness in tackling single-hop

queries, KGE models cannot be directly applied to answer multi-hop queries. This is

due to the fact that multi-hop query answering over KGs is a strict generalization of

knowledge graph completion (i.e., single-hop query answering) [20]. Moreover, most

KGE do not incorporate literals (e.g. numeric attributes) in KGs. Consequently, embed-

dings for entities and relations are learned without incorporating knowledge encoded

with literals (e.g., age of a person, height of a person or date of birth). To alleviate this

limitation, there has been a growing interest in designing KGE model incorporating lit-

erals in recent years. For instance, Wu et al. [31] propose TransEA by extending the

translation loss used in TransE [5] by adding the attribute loss as a weighted regular-

ization term. Garcia-Duran and Niepert [12] propose KBLRN that is based on relation

features, numerical literals, and a KGE model. A predicted score of a triple is com-

posed of relation feature values, predicted scores via a KGE model, and a numerical

literal feature. A relation feature is a logical 2-hop formula (e.g. ∃x : bornIn(a, x) ∧
capitalOf (x, b)) generated by AMIE+ [11] that acts as a binary classifier and assigns

1 if there is a path from an entity a to b, otherwise 0. A literal feature is constructed by

taking the difference between a numeric value of subject and object entities for a given

relation. Garcı́a-Durán and Niepert [12] show that the mean differences of birth years

is 0.4 on Freebase between entities occurring with /people/marriage/spouse,

whereas it is 32.4 for the relation /person/children. Kristiadi et al. [17] pro-

pose LiteralE that applies a non-linear parameterized function to merge entity embed-

dings with numerical literals. By this, LiteralE is computationally less demanding than

KBLRN as it does not require any rule generation and is more expressive than TransE

as TransE integrates the impact of literals linearly. Learning a parameterized function

to enrich entity embeddings with their numerical literal information available in KGs

improves the link prediction performance across benchmark datasets.

3.2 Neural Query Answering on Incomplete Knowledge Graphs

In recent years, significant progress has been made on querying incomplete KGs. Hamil-

ton et al. [13] laid the foundations for multi-hop reasoning with graph query embed-

dings (GQE). Given a conjunctive query (e.g. Equation (2)), they learn continuous vec-

tor representations for queries, entities, and relations. Queries on incomplete knowledge

graphs are answered by performing projection P and intersection I operations in the

6 Authors Suppressed Due to Excessive Length

embedding vector space. Ren et al. [21] show that GQE cannot answer EPFO queries

(see Equation (4)) since GQE does not model the union operator U . To answer EPFO

queries in DNFs, Ren et al. [21] propose Query2Box that represents an EPFO query

with a set of box embeddings, where a one box embedding is constructed per conjunc-

tive subquery. A query is answered by returning the entities whose minimal distance to

one of the box embeddings is smallest.

All the aforementioned models learn query embeddings and answer queries via

nearest neighbor search in the embedding space. However, learning embeddings for

complex, multi-hop queries involving conjunctions and disjunctions can be compu-

tationally demanding. Towards this end, Arakelyan et al. [2] propose complex query

decomposition (CQD). They answer EPFO queries by decomposing them into single-

hop subqueries and aggregate the scores of a pre-trained single-hop link predictor (e.g.

ComplEx-N3). Scores are aggregated using a t-norm and t-conorm—continuous gen-

eralizations of the logical conjunction and disjunction [2, 15]. Their experiments sug-

gest that CQD outperforms GQE and Query2Box; it generalizes well to complex query

structures while requiring orders of magnitude less training data. Zhu et al. [34] high-

light that CQD is the only interpretable model among the aforementioned models as

it produces intermediate results. In this work, we extend CQD to answer multi-hop

queries involving literals.

4 LitCQD: Multi-hop Reasoning with Literals

A knowledge graph with numeric literals (i.e. with scalar values), can be defined as

GA = {(h, r, t)} ⊂ (E × R × E) ∪ (E × A × R), where R ∩ A = ∅ and A and

R denote numeric attributes and real numbers, respectively [17]. The binary function

â : E × R 7→ {1, 0} indicates whether an entity has attribute a ∈ A and we might just

write a instead of â when this is clear from context. We categorize EPFO queries q ∈
Q(GA) involving literals depending on the type of their answer sets JqK: In Section 4.1,

we define queries with entities as answer set JqK ⊆ E ; in Section 4.2, we define queries

with a literal value as answer JqK ∈ R.

4.1 Multihop Queries with Literals and Entity Answers

An EPFO query q on a knowledge graph with numeric literals (GA) can be defined as

q = E? . ∃E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

1 ∧ · · · ∧ αd
nd
), (5)

where

– αj
i = r(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E 6= E′, r ∈ R or

– αj
i = a(E,C) ∧ af(C, c), with E ∈ {E?, E1, . . . , Em}, C ∈ {C1, . . . , Cl} a ∈ A,

af ∈ {lt, gt, eq}, c ∈ R.

In the query, the target variable E? and the variables E1, . . . , Em are bound to sub-

sets of entities E and the variables C1, . . . , Cl are bound to numeric values from R.

LitCQD: Multi-Hop Reasoning 7

The binary function r : E × E 7→ {1, 0} denotes whether a relation exists between

the two entities, a : E × R 7→ {1, 0} denotes whether an attribution relation exists,

and af : R × R 7→ {1, 0} is one of the attribute filter conditions lt (less-than), gt

(greater-than), or eq (equal-to). For example, lt(20, 25) returns 1 because 20 ≤ 25. To

approximately answer queries defined with Equation (5) and assuming an incomplete

knowledge graph, we propose the following optimization problem:

argmax
E?,E1,...,Em

(

α1
1 ⊤ . . . ⊤ α1

n1

)

⊥ . . . ⊥
(

αd
1 ⊤ . . . ⊤ αd

nd

)

(6)

where

– αj
i = φr(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = φr(E,E

′), with E,E′ ∈ {E?, E1, . . . , Em}, E 6= E′, r ∈ R or

– αj
i = φaf,a(φa(E), c), with E ∈ {E?, E1, . . . , Em}, c ∈ R,

and φr : E × E 7→ [0, 1] is a link predictor that predicts a likelihood of a link between

two entities via a relation r. φa : E 7→ R is an attribute predictor that predicts a value of

an attribute a given an entity. An attribute filter predictor φaf, a : R×R 7→ [0, 1] predicts

a likelihood that the filter condition is met given the predicted attribute value ĉ := φa(·)
and the constant value c ∈ R specified in the query. All three predictors are derived from

a KGE model as described below. A t-norm ⊤ : [0, 1]× [0, 1] 7→ [0, 1] is considered as a

continuous generalization of the logical conjunction [2, 15]. Given a t-norm⊤, the com-

plementary t-conorm can be defined as ⊥(a, b) = 1−⊤(1− a, 1− b) [2]. Numerically,

the Gödel t-norm ⊤min(x, y) = min{x, y}, the product t-norm ⊤prod(x, y) = x · y, or

the Łukasiewicz t-norm ⊤Luk(x, y) = max{0, x+ y− 1} can be used to aggregate pre-

dicted likelihoods to obtain a query score [2]. With this formulation, various questions

involving numerical values can be asked on incomplete GA. For example, the question

“Which entities are younger than 25?” can be represented as

q = E? . ∃C : hasAge(E?, C) ∧ lt(C, 25). (7)

The dependency graph of this query q is visualized in Figure 2 (left). Let S? be the

entities bound to variable E?. Then the projection of S? with hasAge is performed by

an attribute prediction model φhasAge(S?) ∈ R
|E| that predicts the value of the attribute a

for each entity in e ∈ E. Then the answer set is obtained by filtering entities via φlt. A

subgraph in GA satisfying this query is visualized in Figure 2 (right). While a symbolic

approach would only yield the answer set JqK = {e1}, our approach involving link

predictors can identify the full answer set JqK = {e1, e2}.

We solve the optimization problem in Equation (6) approximately with a variant

of beam search by greedily searching for sets of entities S?, S1, . . . Sm substituting the

variablesE?, E1, . . . , Em in a fashion akin to CQD [2]. In the example in Equation (7),

given the hasAge attribute, attribute values ĉ = φhasAge(e) ∈ R are predicted for all

entities e ∈ E .2 Next, likelihoods of fulfilling the filter condition “less than 25” can be

inferred via φlt(ĉ, 25). Finally, all entities are sorted by their query scores in descending

order and the top k entities are considered to be answers of q.

2 This operation can be done in a single step on a GPU by using the entity embedding matrix [2].

8 Authors Suppressed Due to Excessive Length

E? C < 25hasAge

e1

e2

e3

22

24

27hasAge

hasAge

hasAge

Fig. 2. Example query with literals and entity answer (see Equation (7)). On the left, the query’s

dependency graph is shown and on the right, symbolic query answering on an incomplete graph

with literal values. Bold lines represent paths leading to answer entities, dashed lines represent

missing triples, solid existing triples.

It is important to note that LitCQD like CQD not only computes the final answer but

also intermediate steps leading to this answer. In this sense, LitCQD can be considered

an interpretable model.

Joint Training of Link and Attribute Predictors. Following Arakelyan et al. [2], we use

ComplEx-N3 [18] as entity predictor φr(·, ·). As attribute predictor φa(·), we employ

TransEA [30]. We jointly train the KGE models underlying both models.

The link predictor ComplEx-N3 has previously been found to work well for multi-

hop query answering [2] and to perform better than DistMult [2, 32]. In a pilot study, we

also experimented with the attribute predictor MTKGNN [27]. Overall, it achieved sim-

ilar performance to TransEA, but we decided to move forward with TransEA, because

it slightly outperformed MTKGNN in terms of MRR and required less parameters.

KBLN [12] and LiteralE [17] can only be used to compute knowledge graph embed-

dings based on literal information, but they do not allow to predict the value of attributes

which is required in our framework.

Attribute Filter Function without Existence Check. The attribute filter function returns a

score indicating the likelihood that the filter condition is met. First, we define a prelim-

inary version φ′af,a of the function, which does not check whether the attribute relation

a actually exist for an entity. The function is defined case by case as described in the

following. For the equal-to condition, i.e., for af = eq, we define it as

φ′eq,a(ĉ, c) :=
1

exp(|ĉ− c|/σa)
, (8)

where ĉ = φa(e), e ∈ E , c ∈ R is a numeric literal (e.g. 25 in Figure 2, left) and

σa denotes the standard deviation of Ca where Ca := {c ∈ R|â(e, c) = 1, e ∈ E}
are all literal values found on GA given an attribute a. With φeq,a(ĉ, c), we map the

difference between the predicted attribute value ĉ and the constant value ĉ specified in

the query into the unit interval [0, 1]. As the difference | ĉ−c | approaches 0, φeq,a(ĉ, c)
approaches 1. The division by the standard deviation σ normalizes the difference | ĉ−
c |. For the attribute filter function with less-than (af = lt), we define

φ′lt(ĉ, c) :=
1

1 + exp((ĉ− c)/σa)
. (9)

LitCQD: Multi-Hop Reasoning 9

As ĉ − c → −∞, φlt(ĉ, c) → 1. Following Equation (9), the attribute filter function

with greater-than is defined as

φ′gt(ĉ, c) := 1− φlt(ĉ, c). (10)

We also experimented with a version where the standard deviation σα was not computed

per attribute but for all literal values in the knowledge graph.

Attribute Filter Function with Existence Check. The preliminary attribute filter function

φ′af, a assumes that the attribute relation a exists for each entity in the knowledge base

which is clearly not the case. Hence, we employ a model φexists,a(e) that scores the

likelihood that the attribute relation a exists for entity e. Then the final attribute filter

function φaf, a is obtained by combining the attribute existence predictor φexist,a(e) with

the preliminary filter predictor φ′af, a:

φaf,a(ĉ, c) := φexists,a(e) · φ
′
af, a(ĉ, c) (11)

Technically, the attribute existence predictor is realized by adding a dummy entity eexists
to the knowledge base along with dummy edges ra(e, eexists) if entity e has an attribute

relation a. Then, the existence of an attribute is predicted with the link predictor as

φexists,a(e) := φra(e, eexists) (12)

Note that the dummy entity and the dummy relations are only added to the train set but

not the validation or test set.

4.2 Multihop Queries with Literals and Literal Answers

Here, we define an EPFO query q on an incomplete GA, whose answer JqK ∈ R is a real

number (instead of a subset of entities) as follows

q = ψ(C?) . ∃E?, E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

1 ∧ · · · ∧ αd
nd
), (13)

where ψ : 2R 7→ R is a permutation-invariant aggregation function and

– αj
i = r(e, E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E 6= E′, r ∈ R or

– αj
i = a(E,C) ∧ af(C, c), with E ∈ {E?, E1, . . . , Em}, C ∈ {C?, C1, . . . , Cl}
a ∈ A, af ∈ {lt, gt, eq}, c ∈ R.

Variable bindings S?, S1, . . . , Sm for E?, E1, . . . , Em are obtained via the same op-

timization problem as in Section 4.1. Then the set of values C? can be computed by

applying the attribute value predictor φa on the entities in S?.

With this formulation, various questions can be asked on incomplete GA. For in-

stance, the question “What is the average age of Turing award (TA) winners?” can be

answered by computing the mean of a set of numeric literals C?:

mean(C?).∃E? : winner(E?, turingAward) ∧ hasAge(E?, C?) (14)

10 Authors Suppressed Due to Excessive Length

E? C?TA hasAgewinner

e1

e2

TA

22

24
winner

winner

winner

hasAge

hasAge

Fig. 3. Example of a query predicting attribute values (see Equation (14)). On the left, the depen-

dency graph of the query is shown, on the right a subgraph to answer q. Dashed lines represent

missing information. Bold lines represent paths leading to the symbolic answer JqK = 22.

Similarly, the question “What is the minimum age of Turing award (TA) winners?” can

be answered by computing the minimum of a set of numeric literals C?:

min(C?).∃E? : winner(E?, turingAward) ∧ hasAge(E?, C?) (15)

Figure 3 visualizes a subgraph of GA to answer q defined in Equation (14). Having

found the binding S? = {e1, e2} forE?, to each e ∈ S?, we apply the attribute predictor

φwinner(e, turingAward) and average the results, yielding the answer JqK = 22+24
2

=
23—in contrast to JqK = 22 by a symbolic approach that neglects missing information.

5 Experimental Results

After a brief description of the experimental setup, we evaluate the performance of

LitCQD on the query types shown in Table 1. Finally, we show the answers of LitCQD

for an example query. Our code is publicly available. 3

5.1 Experimental Setup

Dataset and Query Generation We use the FB15k-237 dataset augmented with at-

tributes as done by Garcı́a-Durán and Niepert [12]. The dataset contains 12,390 enti-

ties, 237 entity relations, 115 attribute relations, and 29,229 triples. Queries and their

expected answers are generated the same way as by Hamilton et al. [13]. The newly

introduced attribute filter conditions (af) are handled as follows: When checking for

equality (af(C, c) = eq(C, c)), we consider all entities whose attribute value lies within

one standard deviation from c as correct where the standard deviation is computed per

attribute relation a; when checking the less-than or greater-than criterion, the criterion

is checked exactly, i.e., all entities with attribute value “≤ c” or “≥ c” are consid-

ered correct. Table 1 gives an overview of the newly introduced query types along with

previous query types.

Hyperparameters For each query type, we tried 16 different configurations on the vali-

dation set and chose the best before applying the model to the test set. As our framework

is derived from the CQD framework, it allows two different optimization algorithms:

Continuous optimization (Co), Combinatorial optimization (Beam); two t-norms: Gödel

3 https://github.com/dice-group/LitCQD

https://github.com/dice-group/LitCQD

LitCQD: Multi-Hop Reasoning 11

Table 1. Different query types with their internal representation and how their answers are com-

puted. Entity queries without literals were proposed by Ren et al. [21]. Entity queries with literals

and queries with literal answers are newly proposed in this paper.

Multihop queries without literals

1p E? . r(e,E?)
2p E? . ∃E1 : r1(e,E1) ∧ r2(E1, E?)
3p E? . ∃E1E2.r1(e,E1) ∧ r2(E1, E2) ∧ r3(E2, E?)
2i E? . r1(e1, E?) ∧ r2(e2, E?)
3i E? . r1(e1, E?) ∧ r2(e2, E?) ∧ r3(e3, E?)
ip E? . ∃E1.r1(e1, E1) ∧ r2(e2, E1) ∧ r3(E1, E?)
pi E? . ∃E1.r1(e1, E1) ∧ r2(E1, E?) ∧ r3(e2, E?)
2u E? . r1(e1, E?) ∨ r2(e2, E?)
up E? . ∃E1.[r1(e1, E1) ∨ r2(e2, E1)] ∧ r3(E1, E?)

Multihop queries with literals and entity answers

ai E? . ∃C1.a(E?, C1) ∧ af (C1, c)
2ai E? . ∃C1C2.a1(E?, C1) ∧ af1 (C1, c1) ∧ a2(E?, C2) ∧ af2 (C2, c2)
pai E? . ∃V1.r(e,E?) ∧ a(E?, C1) ∧ af (C1, c1)
aip E? . ∃E1C1.a(E1, C2) ∧ af (C1, c1) ∧ r(E1, E?)
au E? . ∃C1C2.a1(E?, C1) ∧ af1 (C1, c1) ∨ a2(E?, C2) ∧ af2 (C2, c2)

Multihop queries with literals and literal answers

1ap mean(C?) . a(e, C?)
2ap mean(C?) . ∃E1.r(e,E1) ∧ a(E1, C?)
3ap mean(C?) . ∃E1E2.r1(e,E1) ∧ r2(E1, E2) ∧ a(E2, C?)

(min), product (prod); and 7 different beam sizes k ∈ {22, 23, . . . , 28} for the combina-

torial optimization algorithm. Each optimization algorithm is computed for both of the

t-norms resulting in 2 configurations using the continuous optimization algorithm and

14 using the combinatorial optimization algorithm as every beam size is evaluated for

both t-norms.

5.2 Multihop Queries without Literals

In a first experiment (Table 2), we compare the performance of our approach LitCQD

to CQD [2] and Query2Box [21] on multihop entity queries without literals, which can

be answered by all three models—in contrast to more expressive queries that can only

be answered by LitCQD. While CQD does not utilize literal information and employs

the vanilla ComplEx-N3 [18] model, LitCQD employs a model combining ComplEx-

N3 [18] with TransEA [30]. Table 2 shows that LitCQD clearly outperforms CQD and

Query2Box in terms of the mean reciprocal rank (MRR), and Hits@k for k ∈ {1, 3, 10}.

5.3 Multihop Queries with Literals and Entity Answers

Table 3 shows the evaluation results for the new query types with filter restrictions

introduced in Section 4.1 (second block in Table 1). For the simple ai query, each filter-

12 Authors Suppressed Due to Excessive Length

Table 2. Query answering results with different attribute embedding models for multihop entity

queries without literals. Results were computed for test queries over the FB15k-237 dataset and

evaluated in terms of mean reciprocal rank (MRR) and Hits@k for k ∈ {1, 3, 10}.

Method Average 1p 2p 3p 2i 3i ip pi 2u up

MRR

Query2Box 0.213 0.403 0.198 0.134 0.238 0.332 0.107 0.158 0.195 0.153

CQD 0.295 0.454 0.275 0.197 0.339 0.457 0.188 0.267 0.261 0.214

LitCQD (ours) 0.301 0.457 0.285 0.202 0.350 0.466 0.193 0.274 0.266 0.215

HITS@1

Query2Box 0.124 0.293 0.120 0.071 0.124 0.202 0.056 0.083 0.094 0.079

CQD 0.211 0.354 0.198 0.137 0.235 0.354 0.130 0.186 0.165 0.137

LitCQD (ours) 0.215 0.355 0.206 0.141 0.245 0.365 0.129 0.193 0.168 0.135

HITS@3

Query2Box 0.240 0.453 0.214 0.142 0.277 0.399 0.111 0.176 0.226 0.161

CQD 0.322 0.498 0.297 0.208 0.380 0.508 0.195 0.290 0.287 0.230

LitCQD (ours) 0.330 0.506 0.309 0.214 0.395 0.517 0.204 0.296 0.295 0.235

HITS@10

Query2Box 0.390 0.623 0.356 0.259 0.472 0.580 0.203 0.303 0.405 0.303

CQD 0.463 0.656 0.422 0.312 0.551 0.656 0.305 0.425 0.465 0.370

LitCQD (ours) 0.472 0.660 0.439 0.323 0.561 0.663 0.315 0.434 0.475 0.379

ing expression (less-than, equals, greater-than) is evaluated separately; the other query

types contain all three filtering expressions. Except for aip queries, all query types with

literals can be answered with a performance of at least 0.329 which is comparable to

query types without literals (cf. Table 2).

Moreover, we experimented with different variants of our model and perform an

ablation study. As described in Section 4.1, Equation (11), the attribute filter predictor

φaf,a is a product of φexists,a(e) and φ′af, a(ĉ, c). We performed three experiments, where

we replaced each/both of the two scoring functions by the constant value 1. Table 3

shows that both components are crucial and the performance drops drastically if one of

them is removed.

Moreover, the Equation (8) and Equation (10) normalize the difference ĉ − c by

dividing by the standard deviation σa that was computed on the set Ca and thus depends

on the attribute relation a. As an alternative, we computed a universal standard deviation

across all attributes of the knowledge base, i.e., the standard deviation σ of
⋃

a∈ACa.

Table 3 (last line) shows that using a universal standard deviation instead of an attribute-

specific standard deviation leads to a lower performance on 4 query types and to the

same performance on the remaining 3 query types.

LitCQD: Multi-Hop Reasoning 13

Table 3. Query answering results for multihop entity queries with literals. Our best-performing

model Complex-N3 + Attributes (KBLRN) is compared to variations thereof. Results were com-

puted for test queries over the FB15k-237 dataset and evaluated in terms of Hit@10.

Method ai-lt ai-eq ai-gt 2ai aip pai au

LitCQD 0.405 0.232 0.329 0.216 0.174 0.320 0.212

- w/o attribute filter predictor 0.280 0.005 0.237 0.148 0.124 0.421 0.054

- w/o attribute existence predictor 0.203 0.137 0.128 0.099 0.156 0.338 0.033

- w/o both 0.002 0.000 0.000 0.000 0.086 0.412 0.002

- w/o attribute-specific standard deviation 0.391 0.359 0.330 0.329 0.195 0.447 0.248

Table 4. Query answering results for multihop literal queries for test queries over the FB15k-237

dataset evaluated in terms of mean absolute error (MAE) and mean squared error (MSE).

Method
1ap 2ap 3ap

MAE MSE MAE MSE MAE MSE

LitCQD 0.050 0.011 0.034 0.005 0.041 0.007

Mean Predictor 0.341 0.143 0.346 0.141 0.362 0.152

5.4 Multihop Queries with Literals and Literal Answers

Table 4 evaluates the performance of queries asking for literal answers. The predicted

numeric values are compared to the actual numeric values in terms of mean absolute

error (MAE) and mean squared error (MSE). Interestingly, we notice that the mean ab-

solute error for the 2ap queries is lower than for 1ap queries. This can be explained by

the fact that for 1ap queries a single prediction of an attribute value is made whereas 2ap

queries average multiple predictions (the number of the beam width). For 3ap queries

the performance drops again because the relation path becomes longer and errors accu-

mulate.

As a simple baseline, we also report the results of the model that always predicts

the mean value 1
|Ca|

∑

c∈Ca
c of the attribute a in the whole knowledge graph (mean

predictor in the table).

5.5 Example Query and Answers

As an illustration of the model’s query-answering ability, consider the query “What are

musicians from the USA born before 1972?” and its logical representation

E? . ∃E1./music/artist/origin(USA, E?)∧

/people/person/date of birth(E?, V1) ∧ lt(E1, 1972).
(16)

Table 5 lists the top 10 returned answers. Although the model confuses the bands

Funkadelic and Spinal Trap as musicians with a date of birth, the model is able to

14 Authors Suppressed Due to Excessive Length

Table 5. Ranking of LitCQD’s top 10 answers to the query in Equation (16) including their ex-

pected and predicted attribute value for date of birth. The star (*) indicates attribute values

unseen during training and the double star (**) refers to attribute values not part of the dataset at

all. The dash (–) indicates that an entity does not have a date of birth.

Rank Answer Expected Attr. Predicted Attr.

1 John Denver 1944,00 1941,52

2 Donna Summer 1949,00 1948,55

3 Rob Thomas 1972** 1943,72

4 Funkadelic – 1925,21

5 James Ingram 1952,17* 1948,50

6 Dio 1942** 1935,59

7 Spinal Trap – 1942,65

8 Sheila E. 1958,00 1960,93

9 Linus Pauling 1901,17 1900,06

10 BT 1971,83* 1955,80

produce a reasonable ranking of entities. Out of these 10 entities, the entity Linus Paul-

ing receives the highest score of 0.95 for the attribute portion of the query. The model

is confident that the entity has the attribute /people/person/date of birth

and that its value is less than 1972. The entity BT only receives a score of 0.58 for

the attribute portion of the query because its predicted value is closer to the threshold

of 1972. The model is more certain that the connection /music/artist/origin,

USA exists for BT compared to Linus Pauling. Nevertheless, the learned embeddings

implicitly encode that Linus Pauling has another connection to the entity USA via the

/people/person/nationality relation. Hence, the model ranks Linus Pauling

before BT when answering this query.

6 Conclusion

In this paper, we propose LitCQD, a novel approach to answer multihop queries on

incomplete knowledge graphs with numeric literals. Our approach allows answering

queries that could not be answered before, e.g., queries involving literal filter restric-

tions and queries predicting the value of numeric literals. Moreover, our experiments

suggest that even the performance of answering multihop queries that could be an-

swered before improves as the underlying knowledge graph embedding models now

take literal information into account. This is an important finding as most real-world

knowledge graphs contain millions of entities with numerical attributes.

In future work, we plan to further increase the expressiveness of our queries, e.g.,

by supporting string literals, Boolean literals as well as datetime literals.

Bibliography

[1] Adolphs, P., Theobald, M., Schäfer, U., Uszkoreit, H., Weikum, G.: YAGO-QA:

answering questions by structured knowledge queries. In: ICSC, pp. 158–161,

LitCQD: Multi-Hop Reasoning 15

IEEE Computer Society (2011)

[2] Arakelyan, E., Daza, D., Minervini, P., Cochez, M.: Complex query answering

with neural link predictors. In: ICLR, OpenReview.net (2021)

[3] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia:

A nucleus for a web of open data. In: ISWC/ASWC, Lecture Notes in Computer

Science, vol. 4825, pp. 722–735, Springer (2007)

[4] Balazevic, I., Allen, C., Hospedales, T.M.: Tucker: Tensor factorization for knowl-

edge graph completion. In: EMNLP/IJCNLP (1), pp. 5184–5193, Association for

Computational Linguistics (2019)

[5] Bordes, A., Usunier, N., Garcı́a-Durán, A., Weston, J., Yakhnenko, O.: Translating

embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

[6] Demir, C., Moussallem, D., Heindorf, S., Ngomo, A.N.: Convolutional hypercom-

plex embeddings for link prediction. In: ACML, Proceedings of Machine Learning

Research, vol. 157, pp. 656–671, PMLR (2021)

[7] Demir, C., Ngomo, A.N.: Convolutional complex knowledge graph embeddings.

In: ESWC, Lecture Notes in Computer Science, vol. 12731, pp. 409–424, Springer

(2021)

[8] Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge

graph embeddings. In: AAAI, pp. 1811–1818, AAAI Press (2018)

[9] Diefenbach, D., Tanon, T.P., Singh, K.D., Maret, P.: Question answering bench-

marks for wikidata. In: ISWC (Posters, Demos & Industry Tracks), CEUR Work-

shop Proceedings, vol. 1963, CEUR-WS.org (2017)

[10] Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of dbpe-

dia, freebase, opencyc, wikidata, and YAGO. Semantic Web 9(1), 77–129 (2018)

[11] Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-

logical knowledge bases with amie++. The VLDB Journal 24(6), 707–730 (2015)

[12] Garcı́a-Durán, A., Niepert, M.: Kblrn: End-to-end learning of knowledge base

representations with latent, relational, and numerical features. In: UAI, pp. 372–

381, AUAI Press (2018)

[13] Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logical

queries on knowledge graphs. Advances in neural information processing systems

31 (2018)

[14] Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Golani, V.N., Demir, C.,

Ngomo, A.N.: Evolearner: Learning description logics with evolutionary algo-

rithms. In: WWW, pp. 818–828, ACM (2022)

[15] Klement, E., Mesiar, R., Pap, E.: Triangular norms. position paper I: basic analyt-

ical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)

[16] Kouagou, N.J., Heindorf, S., Demir, C., Ngomo, A.N.: Learning concept lengths

accelerates concept learning in ALC. In: ESWC, Lecture Notes in Computer Sci-

ence, vol. 13261, pp. 236–252, Springer (2022)

[17] Kristiadi, A., Khan, M.A., Lukovnikov, D., Lehmann, J., Fischer, A.: Incorporat-

ing literals into knowledge graph embeddings. In: ISWC, Lecture Notes in Com-

puter Science, vol. 11778, pp. 347–363, Springer (2019)

[18] Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for

knowledge base completion. In: ICML, Proceedings of Machine Learning Re-

search, vol. 80, pp. 2869–2878, PMLR (2018)

16 Authors Suppressed Due to Excessive Length

[19] Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine

learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

[20] Ren, H., Dai, H., Dai, B., Chen, X., Zhou, D., Leskovec, J., Schuurmans,

D.: SMORE: knowledge graph completion and multi-hop reasoning in massive

knowledge graphs. In: KDD, pp. 1472–1482, ACM (2022)

[21] Ren, H., Hu, W., Leskovec, J.: Query2box: Reasoning over knowledge graphs in

vector space using box embeddings. In: ICLR, OpenReview.net (2020)

[22] Ren, H., Leskovec, J.: Beta embeddings for multi-hop logical reasoning in knowl-

edge graphs. In: NeurIPS (2020)

[23] da Silva, A.A.M., Röder, M., Ngomo, A.N.: Using compositional embeddings for

fact checking. In: ISWC, Lecture Notes in Computer Science, vol. 12922, pp.

270–286, Springer (2021)

[24] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge.

In: WWW, pp. 697–706, ACM (2007)

[25] Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by rela-

tional rotation in complex space. In: ICLR (Poster), OpenReview.net (2019)

[26] Tahri, A., Tibermacine, O.: Dbpedia based factoid question answering system.

International Journal of Web & Semantic Technology 4(3), 23 (2013)

[27] Tay, Y., Tuan, L.A., Phan, M.C., Hui, S.C.: Multi-task neural network for non-

discrete attribute prediction in knowledge graphs. In: CIKM, pp. 1029–1038,

ACM (2017)

[28] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-

dings for simple link prediction. In: ICML, JMLR Workshop and Conference Pro-

ceedings, vol. 48, pp. 2071–2080, JMLR.org (2016)

[29] Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-

mun. ACM 57(10), 78–85 (2014)

[30] Wu, Y., Wang, Z.: Knowledge graph embedding with numeric attributes of enti-

ties. In: Rep4NLP@ACL, pp. 132–136, Association for Computational Linguis-

tics (2018)

[31] Wu, Y., Wang, Z.: Knowledge graph embedding with numeric attributes of enti-

ties. In: Rep4NLP@ACL, pp. 132–136, Association for Computational Linguis-

tics (2018)

[32] Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for

learning and inference in knowledge bases. In: ICLR (Poster) (2015)

[33] Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In:

NeurIPS, pp. 2731–2741 (2019)

[34] Zhu, Z., Galkin, M., Zhang, Z., Tang, J.: Neural-symbolic models for logical

queries on knowledge graphs. In: ICML, Proceedings of Machine Learning Re-

search, vol. 162, pp. 27454–27478, PMLR (2022)

	LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals

