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Abstract. We propose propagate, a fast approximation framework to
estimate distance-based metrics on very large graphs such as: the (effective)
diameter or the average distance within a small error. The framework assigns
seeds to nodes and propagates them in a BFS-like fashion, computing the
neighbors set until we obtain either the whole vertex set (for computing the
diameter) or a given percentage of vertices (for the effective diameter). At each
iteration, we derive compressed Boolean representations of the neighborhood
sets discovered so far. The propagate framework yields two algorithms:
propagate-p, which propagates all the s seeds in parallel, and propagate-
s which propagates the seeds sequentially. For each node, the compressed
representation of the propagate-p algorithm requires s bits while propagate-
s 1 bit only. Both algorithms compute the average distance, the effective
diameter, the diameter, and the connectivity rate (a measure of the the
sparseness degree of the transitive closure graph) within a small error with high
probability: for any ε > 0 and using s = Θ

(
logn
ε2

)
sample nodes, the error for

the average distance is bounded by ξ = ε∆
α
; the errors for the effective diameter

and the diameter are bounded by ξ = ε
α
; and the error for the connectivity

rate is bounded by ε where ∆ is the diameter and α is the connectivity
rate. The time complexity of our approaches is O(∆ ·m) for propagate-
p and O

(
logn
ε2

·∆ ·m
)
for propagate-s, where m is the number of edges

of the graph and ∆ is the diameter.The experimental results show that the
propagate framework improves the current state of the art in accuracy, speed,
and space. Moreover, we experimentally show that propagate is also very
efficient for solving the All Pair Shortest Path problem in very large graphs.

1 Introduction

The fast computation of distances between pairs of nodes in a graph is a fundamental
task in network applications. Distance-based metrics are also used to compute different
notions of centrality for nodes or edges that can be used to detect communities in
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2 Amati et al.

very large graphs, as proposed by Girvan and Newman [26] or Fortunato et al. [25].
The diameter, i.e. the maximum distance between all reachable pairs in a graph,
is an important parameter for analyzing graphs that, for example, change over the
time [30], or real-world graphs as the web and social network graphs, which have small
diameters [29] that shrink as they grow [33]. The fastest exact algorithm for computing
the diameter of sparse graphs is based on solving the All-Pairs Shortest Paths (APSP)
problem which, for unweighted graphs, can be computed by executing a Breadth-First
Search (BFS) for each vertex, with a time complexity ofΩ(mn), where n is the number
of nodes and m the number of edges. For dense graphs, the best algorithm is based
on matrix multiplication [19], which can be performed in time of Õ(nω), where ω <
2.38 [17,41]. However, its well known that computing the diameter of a graph with m
edges requires m2−o(1) time under the Strong Exponential Time Hypothesis (SETH),
which can be prohibitive for very large graphs [1,20], so efficient approximation
algorithms for diameter are highly desirable. A trivial 2-approximation algorithm for
the exact diameter in undirected graphs can be computed in O(m+n) time by means
of a BFS-visit starting from an arbitrary node. A 3/2-approximation algorithm was
first presented by Aingworth et al. [2] with a time complexity of Õ(m

√
n+n2), further

improved to Õ(m
√
n) [38], and, with the same approximation ratio, to Õ(m3/2) or

o(n2), depending on the degree of sparsity of the graph [13]. If a graph is weakly
connected, experiments with real-world graph data sets show that heuristics may
decrease the average running time of the diameter computation [10]. The computation
of the exact diameter is however susceptible to outliers. For this reason, it is preferable
to use more robust metrics, such as the effective diameter, which is defined as the a
percentile distance between nodes (e.g. 90th), i.e. the maximum distance that allows
to connect that percentage of all reachable pairs [35,39]. For large real graphs, even
the exact computation of the effective diameter remains prohibitive since possible
approaches are still based either on solving APSP or on computing a transitive closure.
Also, some diameter approximation algorithms [10,12] cannot be used to compute the
effective diameter, that is because they are based on the computation of the greatest
distances from the nodes that do not necessarily pass through all reachable pairs
[10] or on merging the diameters independently computed on smaller subgraphs [12].
An alternative approach is to compute the neighborhood function to derive distance
metrics. A neighborhood N(u, r) is the set of all nodes reachable from the node u by
a path of length at most r. N(u, r) is also known as the ball of center u and radius r.
The most efficient algorithms for approximating the effective diameter are based on
the estimate of the size of neighborhoods. For example, ANF [36] is based on BFS
and the use of Flajolet-Martin (FM) probabilistic counters [24], and HyperANF [7] is
based on the same approach as ANF but with the use of HyperLogLog as probabilistic
counter [21]. Cohen [16] uses an approach based on a non-probabilistic counter, that
uses k hash functions on neighborhoods by keeping only the minimum hash value
(MinHash) for each hash function (k-mins sketches). When the hashing values are
in the unit interval [0,1], then it is possible to estimate |N(u, r)| by means of the
unbiased cardinality estimator 1

MinHash(N(u,r)) , with the standard error a function of

k. The MHSE framework [4], instead, uses the MinHash approach to derive dense
representations (signatures) of large and sparse graphs that preserve similarity and
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thus providing an approximation of the size of the neighborhood of a node using the
Jaccard similarity. ANF, HyperANF and MHSE are grounded on the observation
that the size of N(u, r) is sufficient to estimate the distance-based metrics.

Our contributions. We propose a framework to estimate the distance-based metrics
on graphs based on a mixed approach: sampling and counting. The core idea of our
approach is to consider a small set of s seed nodes and to count the nodes that can
be reached by at least one of these seeds, that is, the size of the neighbourhood set
at distance d. We define two implementations of our framework: propagate-p, and
propagate-s. The time complexity of our approaches is, respectively, O(∆ ·m), and
O(s ·∆ ·m), while the space complexity is O (s · n+m), and O(n+m). We provide
an estimate on the sample size needed to achieve a good estimate of the distance
metrics up to a small error bound. More precisely, we prove that s = Θ( logn

ε2 ) sample
nodes are sufficient to estimate, with probability at least 1− 2

n2 : (1) the average

distance with the error bounded by ε∆
α ; (2) both the effective diameter and the

diameter with the error bounded by ε
α ; and, (3) the connectivity rate α with error

bounded by ε, where α be the connectivity rate of the network (see Section 3 for
the formal definition). It is important to underline that both the algorithms admit a
straightforward and simple implementation in a fully distributed and parallel setting.

In Section 2, we give an overview of relevant results on approximation algorithms of
distance based metrics. In Section 3 we provide some basic preliminaries to understand
our work. In Section 4, we describe the core idea behind our novel framework, then
we introduce the new algorithms propagate-p and propagate-s, and provide an
unbiased error bound for the computation of the effective diameter, the diameter, the
average distance, and the connectivity rate. In Section 5, we compare our framework
with the state-of-the-art algorithms for approximating the distance-based metrics.
Finally, in Section 6, we conclude and present future research directions.

2 Related Works

The literature on approximating distance-based metrics being vast, we restrict our
attention to approaches that are closest to ours. We, thus, particularly focus on
sampling and probabilistic techniques.

Estimating Diameter by Sampling. There are three main questions to be addressed
when sampling from large graphs [32]: how to sample nodes and edges, how to set
a good sample size, how to evaluate the goodness of the sample, as well as the
goodness of the chosen sampling method. In the case of undirected and connected
graphs, the centrality of nodes can be estimated by sampling only O( logn

ε2 ) nodes
and compute all the distances to all other nodes, with an error of ε∆, where ∆ is the
graph diameter [22,18], thus reducing the time complexity to O( logn

ε2 (n logn+m)).

Estimating Diameter by Probabilistic Counters. Palmer et al. proposed the ANF
algorithm that exploits the (Flajolet-Martin) FM-counter [24] to derive the distance-
based metrics of a graph. The core idea is to count the number of distinct nodes in



4 Amati et al.

each neighborhood N(u, r), for all nodes u and radius r. For each set N(u, r), ANF
yields a concatenation of l bit-masks (sketches), where a bit-mask l has probability
1

2i+1 of having the i-th bit set to 1. An approximation of the number of distinct
elements in a stream is derived by averaging the index of the least significant bit with
value 0 in each of the l bitmasks, and is set to 2mean

0.77351 [24]. Building upon this approach,
Boldi et al. [7] proposed HyperANF that uses the HyperLogLog algorithm [21,23]
and improves ANF in terms of speed and scalability, providing a better estimate
for the same amount of memory and number of passes. Although HyperLogLog
is the best approximate data stream counting algorithm, it is known that it tends
to overestimate the real size of small sets [27]. Empirical bias correction has been
introduced in [27], where the correction works well in a good range of sizes, however
errors persist on small sets where the LinearCounting algorithm [40], provides the
best results. Alternatively, the MinHash technique can be used to estimate the size of
the neighborhood with respect of All Distance Sketch (ADS) of a node of a weighted
graph [15,16]. For each node, an ADS consisting of the first k MinHash is maintained.
The estimate of the neighborhood of a node u is given by hashing the nodes in
the interval [0,1] and filtering a node v when its hash value is less than the k-th
MinHash of the ADS, and when any other node in ADS is closer to u than to v. This
algorithm computes, for each pair (u, v) the closeness similarity which generalizes
the inverse probability of the MinHash estimate [6] with a Jaccard-like similarity
function, that is 1

max(πvx,πux)
in the case of k = 1, where πu,v is the Dijkstra rank

of u with respect to the node v according to the position of u by increasing distance
from v. If the graph is unweighted, then the BFS visit can be used and Cohen’s
framework can be considered equivalent in the spirit to HyperANF but with the use
of the MinCount probabilistic counter of [6] instead of HyperLogLog probabilistic
counter. However, its implementation is very different from the one presented in [6]
and does not yield a O(m) space complexity as in [6]. Amati et al. proposed a different
probabilistic approach based on the MinHash counter [4], and experimentally showed
its superiority in comparison to HyperLogLog based counters. Another sketching and
sampling based technique to model public-private social network graphs proposes
to efficiently preprocess the public graph G and to integrate it with a private user
graph node in order to derive graph properties and measures [14].

3 Preliminaries

We proceed by formally introducing the terminology and concepts that we use
in what follows. For k ∈ N, we let [k] = {1, . . . , k}. An undirected graph4 is an
ordered pair G = (V,E), where V is a set whose elements are called vertices or
nodes, and E is a set of unordered pairs of vertices, whose elements are called edges,
or links or arcs. In a directed graph G = (V,E), E is a set of ordered pairs of
vertices. Let d(u, v) be the number of edges in the shortest path between u and
v. Given a graph G = (V,E), define the neighborhood at distance at most r for
a node u ∈ V as N(u, r) = {v ∈ V : d(u, v) ≤ r}5. Additionally, we define the

4 We use the terms “graph” and “network” interchangeably.
5 Sometimes, we use the term “ball of radius r centered in u” to denote N(u, r).
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neighborhood function at hop r as the size of the set of pairs of nodes within distance
r, formally: |N(r)| = |{(u, v) ∈ V × V : d(u, v) ≤ r}|. The diameter ∆ of a graph is
the longest shortest path in the graph. In terms of the neighborhood function we
have: ∆ = minr∈[0,n−1] {r :

∑
u |N(u, r)| =

∑
u |N(u, r+ 1)|}. Similarly, the effective

diameter is defined as ∆eff = minr∈[0,n−1] {r :
∑

u |N(u, r)| ≥ τ ·
∑

u |N(u,∆)|} for

τ ∈ [0,1]. In this work, we consider τ = 0.9, i.e. the 90th percentile distance be-
tween the nodes. We can also evaluate the average distance of a graph G = (V,E).
Let R(u, v) be the reachability function that assumes value 1 if and only if u can

reach v and 0 otherwise. Thus we can write: AvgDist =
∑

u,v∈V R(u,v)·d(u,v)∑
u,v R(u,v) =∑

u

∑
r∈[∆](|N(u,r)|−|N(u,r−1)|)·r∑

u|N(u,∆)| . Observe that the number of reachable pairs can be

also defined using the neighborhood function as: Nr.Reachable Pairs = |N(∆)|.
Finally, we define the connectivity rate α of a graph as the sparseness degree of its
transitive closure. α = 1

n·(n−1)

∑
u,v
u̸=v

R(u, v) ∈ [0,1]. Notice that the more the graph

is connected the higher is α, and vice versa. As extreme values α = 1 for a connected
undirected graph, while α = 0 when all the vertices are isolated.

4 propagate Framework

Any graph traversal algorithm, efficiently scans the edge list of a graph in a random
order. However, if the algorithm needs to be efficient on graphs that do not fit in
memory, we can not use standard graph traversal routines. As in [36,7,4], we can find
the nodes that are reachable from u within r hops by first retrieving their neighbors
reachable in r− 1 hops from u. Given u’s neighborhood at hop 0, N(u,0) = {u}, we
can computeN(u, r) incrementally as:N(u, r) =

⋃
(u,v)∈E N(v, r−1). This technique

allows to iterate over the edge set instead of performing a classical graph traversal.
Probabilistic counters have been used to efficiently compute in terms of time and
space the number of distinct elements in N(u, r). The best known algorithms, namely
HyperANF [7], and MHSE [4], use respectively the HyperLogLog [23] and the
MinHash counter and drop the required memory down to 2 ·s ·n · log2(log2(n/s)) bits
and 2·s·n·log2 n (where s is the number of seed nodes from which we are starting the
edge scan procedure). Even though their performance are impressive, they turn out to
be prohibitive on very large graphs if our memory budget is low. Our novel framework
overcomes such problems by using a clever implementation of a boolean array-like
data structure allowing to have high-quality approximations of the distance-based
metrics on machines with low memory requirements. Given a set of starting nodes
S = {x1, x2, . . . , xs}, propagate assigns to each node u ∈ V a Boolean signature
array Sig(u) of length s defined as follows: for all i ∈ [s] Sigi(u) = 1 [u ∈ S], i.e., if the
node u is a seed, we set its coordinate to 1. Next, we extend the concept of signature
to a set of nodes of arbitrary size. Let K ⊆ V be a subset of nodes, then its signature
is defined as the bitwise OR between the signatures of every node u ∈ K, formally
Sigi(K) =

∨
u∈K Sigi(u) for every i ∈ [s]. Notice that the ith index of Sig(K) is equal

to 1 if and only if there exists at least one vertex u ∈ K such that Sigi(u) = 1. The
intuition behind our boolean signature is as follows. Suppose that we have only one seed
node x, by definition its signature will be of the form Sig(x) = ⟨1⟩ i.e., Sig1(x) = 1.
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Subsequently, we expand the ball centered in x to its hop-1 neighborhood and for
each neighbor v ∈ N(x) we create a new signature Signew(v) equal to the bitwise OR

between Sig(x) and Sig(v). After updating all x’s neighbors, for each v ∈ N(x) we
count the number of indices in its new signature that assumed value 1 (one), we refer
to the number of such indices as collisions between the seed’s bit and nodes’ signatures.
The total number of ones will be equal to the size of x’s hop-1 neighborhood. Observe
that such value can be efficiently computed by summing the number of ones obtained
by performing the XOR (exclusive OR) operation between Sig(v) and Signew(v) for
each neighbor v, formally |N(x)| =

∑
u∈V ∥Sig(u)⊕ Signew(u)∥. If we iterate this

process ∆ times, we will compute the number of nodes at distance of exactly r from
x for each r ∈ [∆]. By repeating this process ∆ times for each node x ∈ V , we will
obtain the exact neighborhood function |N(r)| for each r ∈ [∆]. Recall that, under
SETH, computing the exact neighborhood function cannot be done in O(n3−ε) for
ε > 0 [41], thus we run the propagate framework on a subset of nodes S sampled
uniformly at random from V . Given a uniform sample of s nodes from the vertex
set V , the propagate framework can be implemented in two different ways: (1)
every node has a signature of s bits, and expands the s balls (one for each seed
node) in parallel until there is at least one signature that changed its value; (2) in a
sequential fashion, every node spreads its bit until there is a signature that changed
its value. We refer to these two implementations as propagate-p (Section 4.1), and
propagate-s (Section 4.2). propagate-s is preferable to propagate-p when s
is very large and s · n bits becomes too big to be kept in the memory of a single
machine. For example, when the set of seeds is the entire vertex set V , that is
s = |V |, then propagate computes the exact neighborhood function. To compute
the ground-truth values, propagate-p needs n2-bit array that, for big graphs, can
be too large to be stored on a single machine. propagate-s, instead, needs only n
bits. Thus, for this task, propagate-s is preferable to propagate-p . In Section
5.2 we compare the execution times of propagate-s and the All Pair Shortest Path
algorithm to compute the exact neighborhood function of big real-world graphs.

4.1 propagate-p Algorithm

Given s sample nodes {x1, . . . , xs} ⊆ V , propagate-p (Algorithm 1) works as a
synchronous diffusion process. It starts by initializing (line 2-3) the signature s-array
for each node u ∈ V , Sig(u) as described in Section 4. Subsequently, at each hop r,
it computes for each node u the signature of the ball N(u, r) = {v ∈ V : d(u, v) ≤ r}.
The variable Count (line 5) keeps track of the number of new collisions at hop r, that
is the number of vertices at distance exactly r from u. The collisions at hop r are
subsequently stored in CountAll[r] and if new collisions have been detected during
the current hop, then the diameter lower-bound MaxHop is updated, the approximated
neighborhood function at hop r is computed (R[r] contains the number of pairs at
distance at most r), the variable AvgDist is increased with the difference between
R[r] and R[r− 1] times the hop r, and the hop r+1 is processed (lines 17-20). Once
the stopping criterion is met, i.e. no more collisions have been detected, the algorithm
finds the minimum hop r such that the ratio between the reachable pairs at hop r and
at the maximum hop is greater than 90% i.e., computes the effective diameter ∆eff
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(line 21), and normalizes the average distance value by dividing it with the maximum
number of reachable pairs (line 22). Algorithm propagate-p can be implemented
using an array of s bits for each vertex, thus we have the following theorem:

Theorem 1. Algorithm propagate-p (Algorithm 1) computes the: diameter, effec-
tive diameter, average distance and number of reachable pairs in O(∆ ·m) time using
O(s · n+m) space.

Proof. After the initialization of the node signatures, at every step of the do-while,
Algorithm 1 scans the graph by iterating over the nodes. During iteration r, if a node
u ∈ V has at least one of its s signature bits set to 0, it updates its signature by per-
forming a bitwise OR between its signature and the one of its neighbors. Notice that,
once a bit flips to 1, it cannot go back to 0. Subsequently, for each node u ∈ V it counts
the number of “bit-flips” occurred in the current iteration, and stores the value in
CountAll[r]. The algorithm stops when the set of bits that change values to 1 is empty.
Notice that a seed s can perform at most n− 1 hops. Since, at every iteration of the
do-while every seed is propagated in parallel (as a synchronous diffusion process), the
algorithm iterates for at most ∆ steps. Every iteration of the do-while requires at
mostO(m) steps. Thus, the time complexity of the loop isO(∆·m). Subsequently, the
algorithm computes the effective diameter. This can be done in linear time in the diam-
eter of the graph∆. Algorithm 1, needs s bits for each node signature, and two arrays
of length ∆ to store the number of collisions at each time step and the neighborhood
function. Thus the space required by the algorithm isO (s · n+m). The correctness of
the algorithm follows from the definition of the propagate framework in Section 4.

4.2 propagate-s Algorithm

We derive an even more space efficient algorithm in which we process each sample
vertex at a time using a single bit for each node in the graph, as with a Bernoulli
process. propagate-s’s pseudo code, is presented in the extended version of this
paper [5]. Differently from propagate-p which maintains a signature s-array for
each vertex u ∈ V , propagate-s uses a n-array Sig(V ) that represents the signature
of the whole graph G = (V,E). More precisely, given a seed node xi Sig(V ), at
each hop r, maintains the size of xi’s neighborhood at distance at most r. Although,
propagate-s has higher running time than propagate-p, the independence of the
seeds in propagate-s allows for a very simple implementation of the algorithm
in a fully distributed and parallel processing, where cores or machines can be cou-
pled with hash functions. Additionally, propagate-s can be implemented using
progressive sampling heuristics, that establish the sample size “on the fly” (see [5] for
propagate-s’s incremental approach). When s = |V | = n, all propagate algorithms
can compute the exact distance-based metrics of interest. In this case, propagate-
p requires as signature a n bit array for each vertex u ∈ V thus requiring overall n2

bits, which for large graphs is impracticable. However, propagate-s would require
only a n-bit array at each iteration and can be used to compute the exact values for
various graphs faster than the APSP algorithm implemented in WebGraph [8] (see
Section 5). For huge graphs, the only feasible algorithm in a standalone setting is the
propagate-s algorithm. The above considerations lead to the following theorem:
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Algorithm 1: propagate-p Algorithm

Data: G = (V,E) : |V | = n, s sample of vertices S ⊆ V , eff. diameter threshold τ.
Result: ∆eff effective diameter, ∆LB

diameter, R[∆LB] number of reach. pairs, and AvgDist average distance.
1 Sigi(u) = 0; ∀u ∈ V, i ∈ [s] // n× s matrix of the nodes’ signature

2 for each xi ∈ S do
3 Sigi(xi) = 1

4 CountAll[0] = s,Count = 0,AvgDist = 0,r = 0,∆LB = 0
5 R = [0,0, . . . ,0] // Neighborhood function

// Process one hop at a time for all the sample vertices xi.

6 do
7 Count = 0 // Collision counter for hop r
8 foreach u ∈ V do
9 Signext(u) = Sig(u)

10 foreach u → v do
11 Signext(u) = Signext(u)∨ Sig(v)

12 foreach u ∈ V do
13 Count = Count+ ∥Signext(u)⊕ Sig(u)∥
14 Sig(u) = Signext(u) // Update u’s signature

15 CountAll[r] = Count // Reachable vertices at hop r
16 ∆LB = max{r,∆LB} // Update diameter lower bound

17 R[r] = R[r− 1] + CountAll[r] // R[−1] treated as 0 when r = 0
18 AvgDist = AvgDist+ r · (R[r]− R[r− 1]) // R[−1] treated as 0 when r = 0
19 r = r+ 1

20 while Count > 0

21 ∆eff = mink

{
k : R[k]

R[∆LB]
≥ τ

}
// Compute the effective diameter ∆eff

22 AvgDist = AvgDist/R[∆LB] // Compute the average distance

23 R[∆LB] = (n/s) ·R[∆LB] // Compute the number of reachable pairs

24 return ∆eff,∆LB,R[∆LB],AvgDist

Theorem 2. propagate-s computes the: diameter, effective diameter, average dis-
tance and number of reachable pairs in O(s ·∆ ·m) time using O(n+m) space.

Proof. The proof is similar to that of Algorithm 1. For each seed s, the algorithm
scans the graph ∆ times. Thus the time complexity is O(s ·∆ ·m). In this case, the
algorithm uses a signature of n bits. Thus, the space complexity drops to O (n+m).

Error Bounds of the sample size. We now evaluate the accuracy of the approximations
of the propagate framework. We use Hoeffding’s inequality [28] to obtain the sample
size s for good approximations of the distance-based metrics of interest.

Theorem 3. With a sample of s = Θ
(
lnn
ε2

)
nodes, with high probability (at least

1− 2
n2 ), propagate framework (propagate-p and propagate-s) compute:

i. the average distance with the absolute error bounded by ε∆
α
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Algorithm 2: propagate-s Algorithm
Data: G = (V,E) : |V | = n, s sample of vertices S ⊆ V , eff. diameter threshold τ.
Result: ∆eff effective

diameter, ∆LB diameter, R[∆LB] number of reach. pairs, and AvgDist average distance.
1 Sig(u) = 0; ∀u ∈ V // Graph’ signature
2 CountAll[0] = s, Count = 0, AvgDist = 0, r = 0,∆LB = 0
3 R = [0,0, . . . ,0] // Neighborhood function

// Process each sample node xi at a time.
4 foreach xi ∈ S do

// Graph signature set to 1 to the current sample node xi position, 0 otherwise
5 Sig(xi) = 1
6 Count = 0 // Initialize the collisions accumulator
7 r = 0
8 do
9 NewSig = Sig

10 foreach u ∈ V do
11 if Sig(u) = 0 then
12 foreach u → v do
13 NewSig(u) = NewSig(u) ∨ Sig(v)
14 if NewSig(u) = 1 then
15 Break;

16 Count = Count+ ∥NewSig⊕ Sig∥
17 ∆LB = max{r,∆LB} // Update diameter lower bound
18 Sig = NewSig
19 CountAll[r] = CountAll[r] + Count
20 r = r+ 1

21 while Count > 0

// Compute distance based metrics.
22 R = [0,0, . . . ,0] // It contains the overall reachable pairs at distance ≤ r
23 for k = 0 to r − 1 do

24 R[k] =
(
n ·

∑
i≤k CountAll[i]

)
/s

// Computation of the average distance
25 for k = 0 to r − 1 do
26 AvgDist = AvgDist+ k · (R[k]− R[k − 1]) // R[−1] treated as 0 when k = 0

27 AvgDist = AvgDist/R[∆LB] // Compute the average distance

28 ∆eff = mink

{
k :

R[k]
R[∆LB]

≥ τ
}

// Compute the effective diameter ∆eff

29 return ∆eff,∆LB,R[∆LB], AvgDist

ii. the effective diameter with the absolute error bounded by ε
α̃

iii. the diameter with the absolute error bounded by ε
α̃

iv. the connectivity rate α with the absolute error bounded by ε

where α̃ = α · n−1
n , and ε > 0 a positive constant. Thus, propagate-s requires

O( lnn
ε2 ·∆·m) time andO(n+m) space . While, propagate-p requiresO

(
n logn

ε2 +m
)

space complexity.

Proof. Let us start with the average distance. Let Xi =
n·
∑

u d(u,vi)·R(u,vi)∑
u

∑
v R(u,v) with

{v1, . . . , vs} ⊆ V a sample, where Xi ∈ [0, ∆α ]. The expectation of Xi is the average
distance:

E(Xi) =
∑
vi∈V

Xi ·Pr(vi) =

∑
u

∑
vi∈V d(u, vi) ·R(u, vi)∑
u

∑
vi∈V R(u, vi)

(1)
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Then, Hoeffding’s inequality [28] generates the following bound:

Pr

(∣∣∣∣∣1s ·
s∑

i=1

(E(Xi)−Xi)

∣∣∣∣∣ ≥ ξ

)
≤ 2 · exp

(
−2sξ2α2

∆2

)
(2)

If ξ = ε∆
α then Equation 2 becomes:

Pr

(∣∣∣∣∣1s ·
s∑

i=1

(E(Xi)−Xi)

∣∣∣∣∣ ≥ ε
∆

α

)
≤ 2 · exp

(
−2sε2

)
(3)

Therefore it is sufficient to take s = Θ
(
lnn
ε2

)
to have, with high probability (at

least 1− 2 · exp (−2 lnn) = 1− 2
n2 ), an error at most ε∆

α .
In a similar way we can derive error bounds for the effective diameter. Let r be

the effective diameter, and

Xr
i =

∑
{u:d(u,vi)≤r} n ·R(u, vi)∑

u

∑
v R(u, v)

=
n · |N(vi, r)|

|N(∆)|
(4)

where Xr
i ∈ [0, 1

α̃ ], where α̃ = α · n−1
n . Again, the expectation of the Xr

i is:

E(Xr
i ) =

∑
vi∈V

Xr
i ·Pr(vi) =

∑
vi∈V |N(vi, r)|
|N(∆)|

=
|N(r)|
|N(∆)|

(5)

Applying Hoeffding’s inequality, with ξ = ε
α̃ , we approximate |N(r)|

|N(∆)| by
∑s

i=1 Xr
i

s =

n ·
∑s

i=1 |N(u, vi)|
s · |N(∆)|

with a sample of s = lnn
ε2 nodes and an error bound of ε

α̃ , with

high probability (at least 1 − 2
n2 ). Since the diameter ∆ can be defined in terms

of effective diameter mind′
{
d′ : |N(d′)|

|N(∆)| ≥ τ
}
by choosing τ = 1 instead of 0.9, the

effective diameter error bound holds also for the diameter. Finally, we give a bound
for the number |N(∆)| of reachable pairs. Since |N(∆)| is a very large number we

give the error bound for the ratio α = |N(∆)|
n(n−1) . Let us define the random variable

X∆
i = |N(vi,∆)|

n−1 where X∆
i ∈ [0,1]. The expected value of X∆

i is

E(X∆
i ) =

∑
vi∈V

1

n

|N(vi,∆)|
n− 1

=
|N(∆)|
n(n− 1)

= α (6)

Applying Hoeffding’s inequality we approximate α with s = logn
ε2 and error bound

of ε, with high probability (at least 1− 2
n2 ).

In the following theorem we show that propagate and MHSE produce the same
estimates. In other words, we can create a mapping between propagate’s signature
and MHSE’ signature. This implies that the results in Theorem 3 can be extended
to the MHSE Algorithm.

Theorem 4. Given a graph G = (V,E) and a subset S ⊆ V of s seeds, propa-
gate and MHSE produce the same set of reachable pairs R[r] for 0 ≤ r ≤ ∆.
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Proof. It is sufficient to prove that both MHSE algorithm and propagate Algo-
rithms produce the same set R of of all reachable pairs at distance at most r. The
key observation is that, for each collision with the minhash value of the graph for the
MHSE Algorithm we have a collision in the signature Sig(·) for the propagate Al-
gorithm and viceversa. Formally, let H be a set of s hash functions over the nodes of
the graph, and let SigMHSE(·) be the signature with the minhash values of the nodes
over the H hash functions. Let U = {ui} be the set of nodes that have the minimum
hash values with i ∈ H. We define Sigi(u) = 1 if and only if u = ui. Viceversa, if we
have a Boolean signature Sig(·) we may always define a signature SigMHSE(·) with s
hash functions having their minimum on the nodes with Sigi(u) = 1. At each hop and
each hash function i, MHSE counts the number of source nodes for which the merge
operation of their signatures with the signature of their target nodes produces a new
collision (see Amati et al. [5] for more details), that is when SigMHSE(u) becomes the
minimum, that is when u = ui, that is when Sigi(u) = 1, in other words, when there is
a new collision for propagate. This show that the two Algorithms produce the same
set of reachable pairs R for each 0 ≤ r ≤ ∆. Thus, they produce the same output.

5 Experimental Evaluation

In this section, we summarize the results of our experimental study on approximating
the distance-based metrics in real-world networks. We compare our framework with
the state-of-the-art algorithms to approximate the distance metrics, i.e., for each algo-
rithm, we compute the average distance, effective diameter, and number of reachable
pairs. Subsequently, we evaluate (using various metrics) how these estimates relates
to the exact ones computed by the All Pairs Shortest Path algorithm.

5.1 Experimental Setting

Algorithms. Our study includes several competitor algorithms for approximating
the neighborhood function. We provide a short description and a space complexity
analysis of the considered algorithms.

HyperANF: The O(∆ ·m) algorithm of Boldi et al. [7,8], which uses HyperLogLog
algorithms [21,23] to approximate the neighborhood function. HyperANF re-
quires for each node 2b = s registers that records the position R with the bit 1
starting the tail ending with all 0s. More precisely, if n is the number of distinct
nodes in the graph, HyperANF needs 2·s·n·log2 (log2 (n/s)) bits for the registers.

MHSE: The O(∆ ·m) algorithm of Amati et al. [4], which uses the MinHash counter
to approximate the neighborhood function. MHSE is based on a BFS visit and
it requires an O(logn) register for each node to record the signature, hence, it
has the same space complexity as ANF (ANF maintains a bitwise O(logn)
register to count new incoming nodes in the stream, instead). MHSE requires
2 · s · n · log2 n bits.

rand-BFS: The algorithm by Eppstein and Wang [22], which estimates the distance-
based metrics using BFS visits starting from random nodes. Its time complexity
is O(s ·m) and needs O(n+m) space.
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APSP: The Java implementation of the All Pair Shortest Path algorithm available
in WebGraph[8]. The algorithm has been used to compute the exact values of
the distance metrics and as a competitor algorithm for the second part of the
experimental evaluation.

Networks We evaluate all of the above competitors on real-world graphs of different
nature, whose properties are summarized in Table 1. The networks come from two
different domains: social networks and web-crawls. According to Theorem 3, the col-
lection BlackFriday6 should require larger number of samples than other collections,
because of a small connectivity rate (see Table 1).

Graph n m ∆ α Type Ref.

BlackFriday 2700815 3811922 70 0.002 D [3]

Youtube-Links 1138495 4942298 23 0.446 D [31]

Amazon-2008 7600595 5158388 48 0.854 D [9]

Web-BerkStan 685230 7600595 715 0.488 D [34]

Twitch-Gamers 168114 13595114 8 1 U [31]

Hollywood-2009 1139905 113891327 12 0.88 U [9]

Orkut-2007 3072441 234370166 61 0.356 U [9]

it-2004 41291594 1150725436 - - D [9]

gsh-2015-host 68660142 1802747600 - - D [9]

sk-2005 50636154 1949412601 - - D [9]

gsh-2015 988490691 33877399152 - - D [9]

clueweb12 978408098 42574107469 - - D [9]

uk-2014 787801471 47614527250 - - D [9]

eu-2015 1070557254 91792261600 - - D [9]

Table 1: The data sets used in our evaluation, where n denotes the number of nodes,
m the number of edges, ∆ the exact diameter, α the exact connectivity rate (type
D stands for directed and U for undirected). The first seven graphs have been
used in comparison of the four algorithms (propagate, HyperANF,MHSE, and
rand-BFS) for accuracy and effectiveness, and speed. The last seven have been used
to compare the performances of the algorithms on huge graphs. Dashed lines indicate
that the exact metrics are not available due to the dimension of the data set.

Implementation and Evaluation details. We released an open source platform for
analyzing large graphs. This tool is developed in Java7 and uses some WebGraph
libraries [8] to load and parse the graph in compressed form. We chose WebGraph both
for benchmarking with the compared algorithms and to allow us to: (1) compress very
large graphs; (2) iterate the neighbor list of a node with faster random access; and, (3)

6 The BlackFriday graph is built from Twitter considering retweet and reply activities
([3]). This graph is comparable in size to the largest publicly available social network
graphs, and is very sparse.

7 https://github.com/BigDataLaboratory/MHSE/tree/propagate-ecmlpkdd

https://github.com/BigDataLaboratory/MHSE/tree/propagate-ecmlpkdd
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use its offline methods to process very big graphs that cannot be loaded in memory.
We executed the experiments on a server running Ubuntu 16.04.5 LTS equipped with
AMD Opteron 6376 CPU (2.3GHz) for overall 32 cores and 64 GB of RAM. All the
algorithms are fairly compared, i.e. using the same number of seeds/registers and cores.
For the comparison between propagate, HyperANF, MHSE, and rand-BFS we
use 256 sample nodes/registers and 32 cores. For the comparison between propagate-
s and APSP we use 32 cores. For the first part of the experiments, we repeat every test
10 times and average over the results for every algorithm (HyperANF, MHSE, rand-
BFS, propagate-p, and propagate-s). Whenever we are able to compute the exact
value x̂ and thus the residual (x̂− x̃)/x̂ where x̃ its estimate we also exhibit a p-value.
More precisely, we perform a two-sided unpaired t-test [11] with confidence interval of
0.95. Given a set X of estimates of the distance metric y obtained after 10 runs of an
algorithm A, the null hypothesis is that its mean X is equal to the exact value X. If
the displayed p-value is in the range [0.9,1.0] then we fail to reject the null hypothesis,
and conclude that the means are not significantly different. Therefore, we can conclude
that algorithm A provides reliable and statistically significant estimates of y.

5.2 Experimental Results

Accuracy and effectiveness In our first experiment, we run on the networks listed
in the first group of Table 1 all the discussed approximation algorithms. In Table 4,
we show the accuracy and effectiveness of all the competitor algorithms. propagate-
p and propagate-s are grouped under the name of propagate, that is because
both algorithm produce the same results. We observe that our novel framework leads
the scoreboard against its competitors. It provides the best estimations in terms of ac-
curacy and statistical significance. For the average distance, propagate outperforms
all the other algorithms on all the graphs except on Orkut, in which rand-BFS
provides the best estimate. Moreover, it provides the best effective diameter estimates
on all the datasets. Finally, for the number of reachable pairs, propagate provides
very accurate estimations on all the networks except on Youtube for which MHSE’s
estimate has lower residual. Observe that propagate is the algorithm that provides
the higher number of statistically significant estimations and does not perform worse
than the competitor algorithms.

Speed. As a second experiment, we compared the average execution times of
propagate-p, propagate-s, HyperANF, MHSE, and rand-BFS. In the left
side of Table 2, we show the running times (in milliseconds) of the algorithms. We
observe that propagate framework outperform its competitors on almost every
data set. Remarkably, propagate-p, leads the scoreboard with the fastest execution
times on four over seven graphs. It is slightly slower than rand-BFS on balck-

Friday, Amazon-2008, and Web-BerkStan i.e. the datasets with low connectivity
rate and longest diameters for which a classic traversal algorithm should require
less time than our framework. We point out that, rand-BFS does not scale well
as the size of the graph increases (as shown in the next experiment). We observe
that, on average, propagate-p is 60% faster than HyperANF and 81% faster than
MHSE. Moreover, propagate-p outperform (in terms of speed) HyperANF, and
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MHSE on all the graphs. HyperANF’s execution time is comparable with the one
of propagate-s while MHSE is the slowest one. More precisely, MHSE is slower
than every other algorithm on every network for which it does not require more than
64GB or RAM i.e., does not generate a memory overflow error.

Execution time

Milliseconds Hours

Graph Prop-P Prop-S HyperANF MHSE Rand-BFS Prop-S APSP

b.Friday 282.162 2899.075 22495.344 51034.047 69.21 9.513 33.705

YT-Links 1761.891 5040.347 5986.410 6655.706 1771.25 7.217 11.118

Amazon 4339.072 12686.703 8451.259 195200.019 1767.12 11.027 11.914

W.Berk. 1535.781 2477.531 2741.563 5980.219 645.25 33.108 122.59

Twitch-G. 1562.219 2901.497 2288.231 4486.044 1863.10 0.344 3.617

Hollywood 4113.060 15537.897 11068.953 46409.728 7672.18 47.77 158

Orkut 2875.688 8121.125 3833.688 ✗ 12783.13 840 960

Table 2: For each network (column 1), we show on the left side of the table the
average execution time (in milliseconds) over ten runs for each algorithm. On
the right side, we show the execution time (in hours) of propagate-s, versus
WebGraph’s APSP algorithm to compute the ground truth distance-based metrics.
✗ indicates that the experiment was interrupted due to a memory overflow error.

Estimating Distance Metrics on huge graphs. As a third experiment, we run all the
approximation algorithms on the biggest networks available in [9] (see the second group
of data sets in Table 1). We aim to to investigate the performances of all the competitor
algorithms on very big graphs that cannot be loaded in the main memory. In Table 3,
we show the running times of the approximation algorithms. The first column indicates
whether the graph can be fully loaded in memory in its uncompressed form. If this is
not possible, we use WebGraph’s offline methods to access the compressed graph from
the disk without loading it in memory. Observe that accessing the compressed graph
directly from the disk, slows down the overall execution of the algorithms. However, it
is the only way to analyze these graphs with our 64GB memory machines. We observe
that propagate-s can compute the distance metrics on every graph. Considering
the size of the data sets, propagate-s requires a reasonable amount of time to
approximate the neighborhood function using 256 seeds. propagate-p can compute
the distance metrics for it-2004, gsh-2015-host, and sk-2005. Moreover, it is still
possible to run propagate-p on the remaining graphs by appropriately decreasing
the number of sample nodes. Instead, HyperANF can be used only to compute
the approximated neighborhood function only on it-2004, and sk-2005. Finally,
MHSE and rand-BFS cannot be used on any of these networks. Before comparing
the time performances, we point out that the red dash (–) in Table 3 indicates that
the algorithm requires more than 64GB of memory even with 1 seed/register. Thus,
decreasing the number of seeds/registers is not enough to run these algorithms on
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these huge networks, we would need to upgrade the RAM of the machine. From
the results in Table 3, we observe that (on it-2004, and sk-2005) propagate-p is
on average 64% faster than HyperANF. Furthermore, propagate-s is the best
algorithm to approximate the neighborhood function on huge data sets. It requires
n · s bits, to store the graph signature. Indeed, for eu-2015, i.e. the biggest graph
in Table 1, it needs approximately at most 1GB to store the graph signature. Thus,
using WebGraph’s offline methods to scan the graph, propagate-s could provide
the approximated neighborhood function of eu-2015 using an average laptop.

Execution Time

Graph In memory Propagate-P Propagate-S HyperANF MHSE rand-BFS

it-2004 Yes 33.26 minutes 52.13 minutes 62.18 minutes – –

gsh-15-h No 40 minutes 4.16 hours – – –

sk-2005 Yes 44 minutes 6 hours 4 hours – –

gsh-2015 No ✗ 11 hours – – –

clueweb12 No ✗ 9.56 hours – – –

uk-2014 No ✗ 39 hours – – –

eu-2015 No ✗ 7 days – – –

Table 3: For each network (column 1), we show the loading method (column 2) “Yes”
means that it is possible to load the entire graph in memory, while “No” indicates
that is not possible. In such a case, we use WebGraph’s offline methods to iterate
trough the successor lists. For each algorithm, we show the execution time (using 256
seeds/registers). ✗ indicates that the experiment was interrupted due to a memory
overflow error of the algorithm while initializing the signature/registers array. Here,
the red dash – indicates that the algorithm cannot run even with 1 seed/register.

Computing ground truth metrics with propagate. As a last experiment, we compare
propagate-s with the WebGraph implementation of the All Pair Shortest Path
(APSP) algorithm to compute the exact neighborhood function. Among all the
competitor algorithms, HyperANF cannot be used to compute the ground truth
values of a graph. That is because its neighborhood function estimator that uses
the HyperLogLog counter is asymptotically almost unbiased [7]. MHSE instead,
cannot be employed because of its high space complexity. Observe that rand-BFS
coincides with WebGraph’s APSP algorithm. As showed in the proof of Theorem 3
(see [5]) propagate’s distance metrics estimators are all unbiased. Thus, our novel
framework can be used to compute the ground truth values. Given a n vertices graph
G = (V,E), propagate suffices of the entire vertex set V as set of seeds to compute
the exact distance metrics. For this experiment, we use propagate-s because it
needs only n bits to store the graph signature, while propagate-p would need n2

bits and with a 64GB machine can be used only for computing the ground truth
metrics of the first three graphs in Table 1. In the right side of Table 2, we show the
running times of propagate-s and APSP. We observe that propagate-s is faster
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(a) (b) (c)

Fig. 1: Effectiveness of propagate on real world graphs with different number of
seeds. Plots of the residuals for: Average Distance, Effective Diameter at 90% , and
Number of Connected Pairs.

than WebGraph’s APSP implementation on all the data sets. These results suggest
that our implementation of propagate-s is preferable for retrieving exact values of
distance-based metrics on very large real-world graphs.

propagate-s’s incremental approach. In this experiment, we aim to better inves-
tigate the dependency of propagate’s performance with respect to its sample size.
We recall that Theorem 3 states that a sample of O(logn) nodes is enough to ob-
tain good approximations of the average distance and the effective diameter with
high probability, although 256 seeds give really good approximations (see Table 4).
Figure 1, shows the performances of the propagate framework with a representa-
tive increasing number of seeds, that is s = 16,64,256. propagate achieves high
quality approximations with 64 seeds even for Orkut-2007 and Web-BerkStan i.e.
the graphs that have low connectivity rate α. Our novel framework performs well for
each approximation (average distance, effective diameter, and number of reachable
pairs) with 64 seeds on both directed and undirected graphs. Figure 1 (c) shows the
effectiveness of the framework as a probabilistic counter of the set of reachable nodes
for both, directed and undirected graphs. Therefore, propagate-s can be used with
a progressive sampling approach [37]. Indeed we could start with a small sample
of nodes and progressively increase it if a certain stopping criterion is not met yet,
allowing for an even faster approximation approach.

6 Conclusions

We proposed propagate, a novel framework for estimating distance-based metrics on
very large graphs. In Section 4, we provided two different implementation of our frame-
work, that, so far, can approximate: average distance, (effective) diameter, and the
connectivity rate up to a small error with high probability. Our experimental results are
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summarized in Section 5.1, which depicts the performance of our framework versus the
state-of-the-art algorithms. Our approach over-perform in terms of accuracy and run-
ning time all its competitors. Moreover, when applied to very large real-world graphs,
propagate-s (and propagate-p if applicable) clearly outperforms all the other
algorithms in terms of scalability. As indicated in Table 3, our framework is the only
available option to approximate distance-based metrics when we do not have access to
servers with a large amount of memory. In the spirit of reproducibility, we developed an
open source framework in Java that allows any user with an average laptop to approx-
imate the distance-based metrics considered in this paper on any kind of graph. Some
promising future directions are to use propagate to compute centrality measures
on vertices and edges, and to extend our framework to community detection tasks.
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under the Italian National Recovery and Resilience Plan (NRRP) of NextGenera-
tionEU, partnership on “Telecommunications of the Future” (PE00000001 program
“RESTART”)
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Neighborhood Function Estimation
Residual/x̂ (p-value)

G
ra

p
h

Algo.
Av.
Dist.

Eff.
Diam.
90

Nr. of conn
pairs

Av.
Dist.

Eff.
Diam.
90

Nr. of conn
pairs

b
l
a
c
k
F
r
i
d
a
y Exact(x̂) 16.124 22.722 11,300,563,035

prop. 16.143 22.551 11,259,575,354 -0.001(0.92•) -0.008(0.95•) 0.003(0.72)

H.ANF(▲) 16.214 22.841 11,032,542,659 0.01(0.26) 0.005(0.40) -0.024(0.34)
MHSE 16.338 23.029 12,193,068,803 -0.01(0.12) -0.01(0.23) -0.07(0.09)

rnd-BFS 17.381 24.30 8,636,102,833 -0.078(0.60) -0.069(0.68) 0.24(0.09)

Y
o
u
t
u
b
e Exact(x̂) 5.104 6.244 577,863,455,179

prop. 5.104 6.291 578,216,139,787 0(1∗∗) -0.007 (0.44) -6e-4 (0.73)
H.ANF 5.131 6.301 602,314,527,291 -0.005 (0.1) -0.009 (0.11) -0.042 (0.1)
MHSE 5.105 6.165 577,569,359,888 0.003(0.25) 0.013(0.08) 5e-4(0.65)

rnd-BFS 5.11 6.217 579,121,217,963 -0.001(0.72) 0.004(0.60) -0.002(0.01)

A
m
a
z
o
n

Exact(x̂) 12.075 15.544 461,523,315,650
prop. 12.08 15.519 461,523,315,650 0.00(0.93•) -0.002(0.80) 0.00(1∗∗)
H.ANF 12.042 15.47 451,448,606,322 -0.003(0.44) -0.022(0.31) -0.022(0.31)
MHSE 12.1 15.542 462,552,552,254 -0.002(0.54) 1e-4(0.98∗) -0.002(0.65)

rnd-BFS 12.103 15.579 461,522,729,233 -0.002(0.36) -0.002(0.53) 1.27e-6(0.05)

B
e
r
k
S
t
a
n Exact(x̂) 13.905 17.777 229,179,533,137

prop. 13.883 17.777 229,015,123,311 0.02(0.42) 0(1∗∗ ) 7e-4(0.65)
H.ANF 14.645 17.728 233,108,112,819 0.053(0.40) -0.003(0.83) 0.017(0.49)
MHSE 15.29 18.14 239,485,315,387 0.099(0.61) 0.02(0.61) 0.045(0.36)

rnd-BFS 14.341 18.02 228,188,757,612 -0.031(0.44) -0.02(0.28) 0.004(0.80)

T
w
i
t
c
h Exact(x̂) 2.876 3.127 28,262,316,996

prop. 2.876 3.129 28,262,316,996 0.0(1∗∗) -0.001 (0.94•) 0.00(1.00∗∗)
H.ANF 2.891 3.180 28,451,734,342 -0.005 (0.03) -0.017 (0.06) -0.007 (0.78)
MHSE 2.881 3.140 28,262,316,996 -0.002(0.44) -0.001(0.62) 0.00(1.00∗∗)

rnd-BFS 2.868 3.096 28,262,020,235 0.0027(0.33) 0.01(0.29) 1e-5(0.01)

H
o
l
l
y
w
o
o
d Exact(x̂) 3.855 4.394 1,143,030,619,175

prop. 3.855 4.397 1,143,485,513,294 -2e-4(0.92•) -3.9e-4(0.95∗) -8e-4(0.90•)
H.ANF 3.848 4.374 1,136,104,164,355 0.16(0.49) -0.46(0.5) 0.61(0.80)
MHSE 3.857 4.382 1,138,248,927,314 -3.91e-4 (0.86) 0.003 (0.65) 0.0042(0.56)

rnd-BFS 3.840 4.364 1,143,960,403,951 0.004(0.18) 0.007(0.16) -0.001(0.90•)

O
r
k
u
t

Exact(x̂) 6.397 8.906 3,359,893,990,935
prop. 6.402 8.895 3,386,716,107,589 -7e-4(0.90•) 0.001(0.82) -0.008(0.60)
H.ANF 6.389 8.917 3,336,311,224,217 0.001(0.53) -0.001(0.76) 0.01(0.45)
MHSE ✗ ✗ ✗ ✗ ✗ ✗

rnd-BFS 6.399 8.929 3,328,105,314,542 -4e-4(0.91•) -0.003(0.61) 0.01(0.32)

Table 4: The comparison of HyperANF, propagate, and MHSE using 10 trials
and 256 registers and 256 sample nodes respectively. Statistical significance at the
90%, 95% and 99% confidence level are marked with •, * and ** respectively. The
algorithms requiring more heap size are marked with ▲ , and ✗ indicates that the
algorithm needs more than 64GB of memory.
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