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Abstract
Relation Extraction (RE) is the task of extracting
semantic relationships between entities in a sen-
tence and aligning them to relations defined in a
vocabulary, which is generally in the form of a
Knowledge Graph (KG) or an ontology. Various
approaches have been proposed so far to address
this task. However, applying these techniques to
biomedical text often yields unsatisfactory results
because it is hard to infer relations directly from
sentences due to the nature of the biomedical re-
lations. To address these issues, we present a
novel technique called ReOnto, that makes use of
neuro symbolic knowledge for the RE task. Re-
Onto employs a graph neural network to acquire the
sentence representation and leverages publicly ac-
cessible ontologies as prior knowledge to identify
the sentential relation between two entities. The
approach involves extracting the relation path be-
tween the two entities from the ontology. We eval-
uate the effect of using symbolic knowledge from
ontologies with graph neural networks. Experi-
mental results on two public biomedical datasets,
BioRel and ADE, show that our method outper-
forms all the baselines (approximately by 3%).

1 Introduction
In recent times, due to the exponential increase in data,
knowledge bases have gained popularity as a means to effi-
ciently store and organize information [Fensel et al., 2020].
Although considerable efforts are invested in updating and
maintaining knowledge bases, their incompleteness persists
due to the dynamic nature of facts, which constantly evolve
over the Web and other sources. Hence, there is a need to
automate the process of extracting knowledge from text. Re-
lation Extraction (RE) is task of predicting the relation given
a sentence and an entity pair [Bastos et al., 2021]. In domains
such as biomedicine, relation extraction task poses a few crit-
ical domain-specific challenges. Consider a sentence, atrio
ventricular (C0018827) conduction defects and arrhythmias
by selective perfusion of a-v conduction system in the ca-
nine heart (C0018787), with entities C0018827 (ventricular)
and C0018787 (heart) linked to UMLS [Bodenreider, 2004].

Here target relation is hasPhysicalPartOfAnatomicStructure.
The RE task aims to infer the semantic relationships. As
demonstrated in the example, working with biomedical cor-
pora poses several challenges. These include: complex input
sentences that may require extensive parsing and interpreta-
tion to extract relevant information. Indirectly inferred rela-
tions between entities in the text, which may require sophisti-
cated natural language processing techniques. Difficulty ob-
taining domain knowledge of the specific entities mentioned
in the text, which may require specialized expertise and ad-
ditional research. Moreover, in the biomedical domain, enti-
ties are intricately interlinked, resulting in numerous densely
linked entities with high degrees and multiple paths connect-
ing them [Angell et al., 2021]. Hence, inferring the correct
relation from a given sentence may require reasoning about
the potential path.

Limitation of Existing Works and Hypothesis. The ex-
isting approaches employ various techniques for relation ex-
traction such as multi-task learning [Crone, 2020], transform-
ers [Eberts and Ulges, 2020], Graph Neural Network (GNN)
models [Bastos et al., 2021; Zhu et al., 2019] have been used
to process complex relationships between entities. While
deep learning models [Nadgeri et al., 2021; T.Y.S.S et al.,
2021] can incorporate semantic information of entities. Al-
beit effective, these models employ standard message-passing
or attention-based approaches (transformers, GNNs) which
are inherently focused on homophilic signals [Balcilar et al.,
2020; Bastos et al., 2022] (i.e., only on neighborhood interac-
tions) and ignore long-range interactions that may be required
to infer the semantic relationship between two biomedical
entities. Furthermore, sufficient domain-specific knowledge
is available in various biomedical ontologies to be used as
background knowledge for relation extraction. It is also ev-
ident in the literature that reasoning over ontologies [Bona
et al., 2019; Winnenburg et al., 2015] allow capturing long-
range dependencies between two entities [Pan et al., 2019;
Zhang et al., 2022], which further helps in making predic-
tions. For instance, in [Hong et al., 2004], ontology infor-
mation was utilized as a tuple and transformed into a 3-D
vector for predicting compound relations. Hence, it remains
an open research question: for biomedical relation extrac-
tion, can we combine reasoning ability over publicly available
biomedical ontologies to enrich an underlying deep learning
model which is inherently homophilic?
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Contributions: To tackle this research question, to our
knowledge our approach represents the first neuro-symbolic
method for extracting relations in the biomedical domain.
Our method is two-fold. Firstly, we aim to aggregate the
symbolic knowledge in the form of axioms (facts) consist-
ing of logical constructs and quantifiers such as there exist,
for all, union and intersection between entities present in
various public ontologies and build background knowledge.
In the second step, we incorporate background knowledge
into a Graph Neural Network (GNN) to enhance its capa-
bilities to capture long-range dependencies. The rationale
behind using a GNN is to exploit the correlations between
entities and predicates due to its message-passing ability be-
tween the nodes. Inducing external symbolic knowledge
makes our approach transparent as we can backtrack the paths
used for inducing long-range dependencies between entities.
Hence, we empower the GNN by externally induced sym-
bolic knowledge to capture long-range interactions needed to
infer biomedical relations between two given entities and a
sentence. We name our approach as “ReOnto" containing fol-
lowing key contributions.

• Our novel relation extraction method, ReOnto, utilizes
an ontology model to learn subgraphs containing expres-
sive axioms connecting the given entities. It consists of a
symbolic module incorporating domain-specific knowl-
edge into a GNN, enabling the prediction of required re-
lations between two entities within a biomedical knowl-
edge graph.

• We study the effect of symbolic knowledge on the per-
formance of the underlying deep learning model by con-
sidering several key characteristics such as 1) entity
coverage from ontology, 2) the number of hops, etc.
We provide conclusive evidence that aggregating knowl-
edge from various sources to build the symbolic compo-
nent (instead of using just one ontology for background
knowledge) has a positive impact on the overall perfor-
mance.

• We provide an exhaustive evaluation on two standard
datasets, and our proposed method outperforms all base-
lines for biomedical relation extraction.

2 Related work
Muti-instance RE: Multi-instance relation extraction aims
to utilize previous mentions of entities in a given docu-
ment to infer the semantic relationship between them. Some
approaches leverage attention-based convolution neural net-
work [Shen and Huang, 2016], multi-level CNN atten-
tion [Wang et al., 2016] and by ranking with CNN to clas-
sify relation [Santos et al., 2015]. In contrast, alternative ap-
proaches employ recurrent neural networks for relation clas-
sification [Zhang and Wang, 2015] and hierarchical RNN
with attention. Besides this, some works also use entity con-
text information such as type and descriptions to improve the
performance [Vashishth et al., 2018]. To deal with the noise
at the sentence-level and bag level, [Ye and Ling, 2019] pro-
posed a distant supervision approach incorporating intra-bag
and inter-bag attentions.

Sentential and Biomedical RE: GP-GNN [Zhu et al.,
2019] proposed a graph neural network with generated pa-
rameters which solves the relational message-passing task
by encoding natural language as parameters and perform-
ing propagation from layer to layer. RECON [Bastos et al.,
2021] is an extended approach which uses the entity details
like alias, labels, description and instance in an underlying
GNN model for sentential RE. As discussed in [Nadgeri et
al., 2021], not all facts contribute to improved performance,
and therefore, the context must be dynamically selected based
on the given sentence. However, these works are limited to
general domain and finds their limitation in the biomedical
domain. In the biomedical domain, [Crone, 2020] introduced
a multi-task learning approach that utilizes joint signals from
entity extraction task to improve relation extraction. [T.Y.S.S
et al., 2021] enriched the performance of biomedical relation
extraction by incorporating linguistic information and entity
types into a BERT model. [Cabot and Navigli, 2021] em-
ployed an end-to-end seq2seq model for biomedical RE.

Ontology based RE: The authors of reference [Li and
Huan, 2008] proposed using an ontology as a hyperlink struc-
ture for the web to facilitate relation extraction. Authors uti-
lize the web structure using a breadth-first search for relation
extraction. [Aghaebrahimian et al., 2022] uses RNN with a
convolutional neural network to process three features: to-
kens, types, and graphs. Work claim that entity type and
ontology graph structure provide better representations than
simple token-based representations for RE. We point readers
to [Karkaletsis et al., 2011] for details on ontology-powered
information systems.

3 Problem Formulation and Approach
We define a KG as a tuple KG = (E ,R, T +) where E de-
notes the set of entities (vertices), R is the set of relations
(edges), and T + ⊆ E × R × E is a set of all triples. The
RE Task aims to find the target relation rc ∈ R for a given
pair of entities ⟨ei, ej⟩ within the sentence W . If no rela-
tion is inferred, it returns NA label. In this section, we first
discuss the ReOnto framework, which integrates the power
of the graph neural network (GNN) [Bastos et al., 2021] with
that of symbolic knowledge. A GNN primarily employs three
modules, which are encoding, propagation, and classification.
Symbolic knowledge is integrated with the GNN score in the
aggregation module (Figure 1).

3.1 Symbolic Module
As a first step, we aggregate symbolic knowledge(SK), avail-
able in public ontologies for extracting long-range dependen-
cies between entity pairs. We build a connected graph G of
the symbolic knowledge derived from ontologies. We define
G = (V, E, T+) where V has a set of entities such that each
edge (vs, vo) ∈ E and vs, vo ∈ V corresponds to a sequence
s = ss,o0 ss,o1 ss,o2 . . . ss,ol−1 extracted from the text where s, o
represent the source and destination entities. We also con-
sider related SK of entity pair SKs,o which consist of path in-
formation (

∑
pathi

0;
∑

axiom_pathi
0) ∈ SKs,o where i is

the number of hops traversed to get the path. Path consists
of multi hop details, each containing detailed information,



Figure 1: ReOnto Approach. The role of the symbolic module is
to aggregate symbolic knowledge. It takes the entity pair and gives
path information. 1) Encoding module accepts input vectors of sen-
tence and path information to provide transition matrix. 2) Propa-
gation module shares the hidden states of generated transition ma-
trix with its neighbors 3) Classification module provides scores of
prediction 4) Aggregator module integrates the score of the biased
relation (from ontology reasoning) with that of the one from GNN
to calculate loss.

while the axiom path contains path information enriched with
expressive axioms. We identify the, directly and indirectly,
connecting paths between the entities vs and vo (Algorithm
1).

Single hop. For retrieving the direct path, we query on
the ontology using SPARQL to check if a path exists be-
tween entity pair (es, eo). The study examined the potential
interactions in a sentence Sandimmun, a medication formu-
lated as cyclosporin (cya) in cremophor and ethanol, and
the muscle relaxants atracurium and vecuronium in anes-
thetized cats. The correct relation label between sandimmun
and cyclosporin is hasTradename. Upon querying this en-
tity pair from the ontology, it was found that the direct path
between given entity pairs is synonymOf relation which is
similar to the correct relation label hasTradename present
in the dataset. As depicted in Figure 2, the direct path be-
tween two given entities (if they exist) is extricated using
path(y; e) −→ cui(x; y) ⊓ edge(x; z) ⊓ cui(z; e), where
cui is concept unique identifier which uniquely identifies en-
tity (assuming x is entity1, y is cui of entity1, z is entity2
and e is cui of entity2). It retrieves the connecting edge be-
tween two given entities. Once assimilating the path synony-
mOf between entity pairs, the aggregator module in ReOnto
computes the similarity between the extracted path and all re-
lations, assigning the correct label hasTradename as the sim-
ilarity score reaches its maximum.

Figure 2: Subgraph of ontology illustrating direct connection be-
tween two entities

Algorithm 1: Path generation via ontology
Input : entity pair (vs,vo), Number of hops (N)
Output: finalpath
Initialization:

i = 1, source= vs, pathi−1, axiom_pathi−1,
finalpath, adjacent node, hop_pathi, axiom_pathi =
{}

finalpath = PathGeneration(vs, vo, N)
Function PathGeneration(vs, vo, N):

path, axiom_path, finalpath = {}
foreach entity pair vs, vo ∈ ontology do

path.append(ExplorePath(vs, vo, N))
axiom_path.append(ExploreSymbolicPath(vs, vo,
N))

end
finalpath = path ∪ axiom_path
return {finalpath}

Function ExplorePath(vs, vo, N):
hop_pathi, adjacent node=
GetNHopFromSource(vs, 1) // calculates 1 hop
distance from source

pathi = hop_pathi ∪ pathi−1

if vo ̸= adjacent node and i ̸= N then
pathi= ExplorePath(adjacent node, vo, N)
i = i+ 1

end
return {pathi}

Function ExploreSymbolicPath(vs, vo, N):
axiom_pathi, adjacent node =
GetNHopFromSource(vs, 2) // calculates 2 hop
distance from source containing there exist and
for all quantifier

axiom_pathi = hop_pathi ∪ axiom_pathi−1

if vo ̸= adjacent node and i ̸= N then
axiom_pathi= ExploreSymbolicPath(adjacent
node, vo, N)
i = i+ 1

end
return {axiom_pathi}

Multi hop. Multi-hop path reasoning over the knowl-
edge base aims at finding a relation path for an entity pair
by traversing along a path of triples from graph structure
data [Lv et al., 2021]. For retrieving indirect path rela-
tion, we query on the ontology if a n-hop distance path
exists between entity pair (es, eo) starting from 1-hop dis-
tance path. Consider the sentence Intravenous azithromycin-
induced ototoxicity with its relation label as hasAdverseEf-
fect. From ontologies, we get the path as a concatenation
of causative agent of, has adverse reaction using path(y;e)−→
cui(x;y) ⊓ edge(x;z) ⊓ edge(z;a) ⊓ cui(a;e). The aggrega-
tor module receives this path as input and using a similarity
score, assigns the target relation label adverseEffect. Refer to
Figure 3 for details.

Using axioms. So far, we have considered only shallow
and transitive relationships among the concepts. However,
the biomedical domain consists of several complex relations.



Figure 3: Subgraph of ontology depicting two hop distance between
two entities

We argue that those relations can be captured using expres-
sive axioms from ontology. Expressive axioms consist of log-
ical quantifiers such as there exist(∃), for all(∀), union(⊔),
intersection(⊓) which are part of popular biomedical ontolo-
gies. These expressive axioms enrich an ontology and play
an essential role in the performance of downstream applica-
tions [Pan et al., 2019]. Our objective is to determine the
relation label between two entities by tracing the correspond-
ing multi-hop triplet path that contains these axioms, starting
from the first entity in the graph and continuing up to a speci-
fied distance until we reach the second entity. Note that when
multiple paths are available between two entities, we have
taken into account all the paths that are available which con-
sist of unique keywords Consider the sentence, A 73-year-old
woman presented with fever and cough 2 weeks after com-
pleting the third cycle of fludarabine for chronic lymphocytic
leukemia. Here, correct relation label is adverse effect. From
the ontology, we get following sub-graph enriched with ax-
ioms.

Fludaraline
causativeAgentOf−−−−−−−−→ Fludaraline Adverse Reaction

Fludaraline Adverse Reaction⊑∃hasFinding.Finding
Cough⊑Finding

From the above relations, one can see that Fludaraline
and Fludaraline Adverse Reaction (FADR) has a relation
causativeAgentOf. Moreover, there exists a hasFinding re-
lation between FADR and Finding. Therefore, with ontol-
ogy reasoning, we can interpret that Fludaraline has an ax-
iom path consisting of causativeAgentOf, hasSomeFinding,
which is closest to the relation label adverseEffect. Similarly,
consider another sentence, concentrations were significantly
related to the degree of apocrine differentiation of the tumour
and, in a subset of the cancers, capacity to release gcdfp-15
was positively correlated with incidence of progestogen and
androgen receptors. The labeled relation for this sentence is
has nichdParentOf

Tumor
qualifierBy−−−−−→Diagnostic Imaging

Diagnostic Imaging
allowedQualifier−−−−−−−−→Neoplasms

Neoplasms ⊑ ∃parent.Post-Traumatic Cancer
Post-Traumatic Cancer ⊑ Cancer

For the above case, the derived path is qualifierBy, al-
lowedQualifier, subClass and there exist some parent and
subClass.

3.2 Encoding module
Entity pairs are encoded by concatenating the position em-
bedding with the word embedding in the sentence (Equa-

tion 1), represented as En(ss,ot ) where st is the word em-
bedding and ps,ot is the position embedding at word position
t relative to the entity pair position (s, o). Similarly, sym-
bolic path information from the Symbolic Module (SK) is
encoded by concatenating path (pathi

0) and axiom path de-
tails (axiom_pathi

0) where i represents the number of hops
reaching destination.

En(ss,ot ) = [st; p
s,o
t ] (1)

En(SKs,o) = [
∑

pathi
0;
∑

axiom_pathi
0]

s,o (2)

The entity pairs representation and path information, after
encoding with BioBERT are forwarded to a multi layer per-
ceptron with non linear activation σ (Equation 3 and 4). We
concatenate them as a shown in Equation 5. Since our dataset
are from biomedical domain, we have used BioBERT for en-
coding.

An
s,o = MLPn(BioBERT (En(ss,o0 ), En(ss,o1 ), .., En(sl−1s,o))

(3)
SPn

s,o = MLPn(BioBERT (En(SKs,o))) (4)

Mn
s,o = SP (n)

s,o +A(n)
s,o (5)

3.3 Graph Neural Network
Propagation module
In this module, we propagate information among graph nodes
using equation 6, where given the representation of layer n ,
representation of layer n+ 1 is calculated. Here n represents
the index, B represents neighbors of vo, and σ is the nonlinear
activation function.

hn+1
s =

∑
vo∈B(vo)

σ(M (n)
s,o h

(n)
o ) (6)

Classification module
In the classification module, embeddings of entity pair are the
input. Now, ReOnto performs element wise multiplication
on input and then passed into multi layer perceptron using
equation 7. Here · represent element wise multiplication.

MLP (vs, vo) = [h(1)
vs ·h(1)

vo ]
T ; [h(2)

vs ·h(2)
vo ]

T ; ...; [h(K)
vs ·h(K)

vo ]T

(7)

Aggregator module
Path information (pathi

0; axiom_pathi
0)∈SKs,o from Sym-

bolic Module is separately encoded using BioBERT1 model,
which is pretrained on biomedical text corpora. At first, we
perform encoding of path information and total relation label
Ri

1 where i is the total number of potential relations (refer
Equation 8 and 9). Then, we evaluate the semantic similar-
ity between path information and complete labeled relation
list. We get the relation label with the maximum similarity
score and add it as a weighted bias as given in Equation 10.
An important observation to make is that the weights gener-
ated by the GNN undergo modification by incorporating the
knowledge of the Symbolic Module. This step is crucial as it

1https://www.sbert.net/



Table 1: Ontologies used for Symbolic Knowledge

Ontology Classes Properties Maximum depth

DINTO [Bona et al., 2019] 28,178 12 2
OAE [He et al., 2014] 10,589 123 17

NDF-RT [Winnenburg et al., 2015] 36,202 90 9
MEDLINE [Yang, 2003] 2,254 12 2

NCIt [Kumar and Smith, 2005] 177,762 97 21

involves combining the symbolic and sub-symbolic compo-
nents. We employ the softmax function to obtain probabili-
ties and compute the cross entropy loss (refer Equations 11
and 12), where S denotes whole corpus and n are total entity
pairs such that s ̸= o. It is worth noting that if no path ex-
ists between two entities, the bias score is set to 0, and loss is
computed accordingly.

Renc = enc(Ri
1) (8)

Penc = enc(SKs,o) (9)

biasedscorer = max(cosSim(Renc, Penc)) (10)

P (vs, vo) = softmax((MLP (vs, vo) + biasedscorer)
(11)

L =

S∑
t=0

n∑
s,o=0

(logP (vs, vo))t (12)

4 Experimental Setup
We conduct our evaluation in response to following research
questions.

RQ1: What is the effectiveness of ReOnto that combines
symbolic knowledge with a neural model in solving biomed-
ical relation extraction task?

RQ2: How does knowledge encoded in different ontolo-
gies impact performance of ReOnto?

Datasets. Our initial biomedical dataset is BioRel [Xing
et al., 2020], which includes a total of 533,560 sentences,
69,513 entities, and 125 relations. The second dataset we use
is the Adverse Drug Effect (ADE) dataset [Gurulingappa et
al., 2012]. We treat the RE problem in this dataset as binary
classification, where sentences are categorized as either pos-
itive adverse-related or negative adverse-related. Positive ad-
verse relations are established when drug and reaction entities
are associated in the given context, while negative relations
involve drugs that are not accountable for a specific reac-
tion. The ADE dataset comprises 6,821 labeled adverse sen-
tences and 16,695 labeled negative adverse sentences, with
a total of 5,063 entities. We consider two types of relations
in this dataset: adverse-related and not adverse-related. The
first entity is viewed as the drug, while the second entity is
retrieved using named entity recognition. Table 1 provides
details of the public ontologies utilized for constructing sym-
bolic knowledge.

Baseline Models for comparison. We used several com-
petitive baselines: 1) Multi-instance models such as [Nguyen
and Grishman, 2015; Zeng et al., 2014; Zeng et al., 2015], 2)
Sentential RE models such as [Bastos et al., 2022; Zhu et al.,

Hyper-parameters Value

learning rate 0.001
batch size 50

dropout ratio 0.5
hidden state size 256

non linear activation relu

Table 2: Hyper parameter seetings

2019; Sorokin and Gurevych, 2017]. For Recon [Bastos et al.,
2022], we used its EAC variant for fair comparison. Please
note, we adapted these models to biomedical domain by re-
training and inducing biomedical context needed for these
models such as entity descriptions and types. 3) Biomed-
ical relation extraction works such as [Huynh et al., 2016;
Rawat et al., 2022; Haq et al., 2022; Schlichtkrull et al., 2017;
Xing et al., 2020]. For biomedical RE works, values are ob-
tained from original papers, and for other works (sentential
and multi-instance), if code is available, we executed them
on both datasets.

Hyper-parameters and Metrics. Table 2 outlines the
best parameter setting. We employ GloVe embedding of di-
mension 50 for initialization. Since the datasets are from
the biomedical domain for evaluating semantic similarity, we
have used BioBERT model2. The size of position embedding
is also kept at 50. We have used the open-source ontology
(.owl) from BioPortal to extract the paths using the SPARQL
query. We have followed [Zhu et al., 2019] for experiment
settings. We evaluated the accuracy (precision) and F1 score
for both datasets.

Table 3: Biomedical Relation Extraction Results. ReOnto outper-
forms baselines on both datasets. We’ve left precision column blank
for baselines that does not report it.

Dataset Model Accuracy(in%) F1 scores

ADE
CNN [Nguyen and Grishman, 2015] 68 0.71

PCNN [Zeng et al., 2015] 76.9 0.73
ContextAware [Sorokin and Gurevych, 2017] 93 0.93

RGCN [Schlichtkrull et al., 2017] 86 0.83
GPGNN [Zhu et al., 2019] 92.1 0.90
CRNN [Huynh et al., 2016] - 0.87

CNN-Embedding [Rawat et al., 2022] - 0.89
SparkNLP [Haq et al., 2022] - 0.85

T5 [Raffel et al., 2020] 92 0.86
RECON [Bastos et al., 2021] 93.5 0.92

ReOnto (Ours) 97 0.96

Dataset Model Accuracy(in%) F1 scores

BioRel
CNN [Nguyen and Grishman, 2015] 48 0.47

PCNN [Zeng et al., 2015] 64.6 0.57
RGCN [Schlichtkrull et al., 2017] 72 0.78

GPGNN [Zhu et al., 2019] 85 0.84
CNN+ATT [Xing et al., 2020] - 0.72

PCNN+AVG [Xing et al., 2020] - 0.76
RNN+AVG [Xing et al., 2020] - 0.74

ContextAware [Sorokin and Gurevych, 2017] 89 0.87
T5 [Raffel et al., 2020] 88 0.86

RECON [Bastos et al., 2021] 89.6 0.86
ReOnto (Ours) 92 0.90

2https://www.sbert.net/



5 Results
ReOnto outperforms all the baseline models on both datasets
(From Table 3). These results indicate that our model could
successfully conduct reasoning with a neuro-symbolic graph
on the fully connected graph and combine it with the under-
lying deep learning model (GNN in our case). Observed re-
sults successfully answer RQ1. Methods such as [Bastos et
al., 2021; Sorokin and Gurevych, 2017] use contexts such
as entity types and descriptions. Similarly, RECON and T5
include additional explicit information of long entity descrip-
tions, its type that allows offline learning of entity context.
However, in a real-world setting of the biomedical domain, it
is viable that such context may not be present for each entity.
In contrast, our model discards the necessity of available en-
tity context and learns purely using reasoning over connected
entity graphs. Furthermore, multi-instance baselines try to
learn relations using previous occurrences of entities in the
document. In both cases, missing reasoning to capture long-
range dependencies of entities hampers their performance.
One possible reason for CNN and PCNN not performing well
is that the biomedical sentence is complex and direct adher-
ence to relation is impossible in this type of text. We can also
notice that the context-aware model is performing better than
multi-instance on these datasets because entity contexts are
helping up to an extent. Presently, we have added context in-
formation(symbolic knowledge) via ontology into the model.
If enough context details are given our model can work on
generalised datasets as well. Figure 4 presents plots a, b, c,
d, which depict the training and validation F1 scores on both
datasets, while plots e, f show the loss graph. Our observa-
tions indicate that ReOnto delivers consistent performance on
these graphs within the considered timeframe.

6 Ablation study
6.1 Effectiveness of number of ontologies
To better understand the contribution of each ontology on Re-
Onto’s performance, we conducted an ablation study. Table 4
presents a summary of our findings, which indicate a signif-
icant decrease in performance when considering individual
ontologies. This validates our approach of merging knowl-
edge from multiple ontologies to create symbolic knowledge.

For the ADE dataset, we have a lesser entity coverage of
22% using DRON ontology. However, we found that the per-
formance significantly improves when we increase the entity
coverage by incorporating the OAE and DINTO ontologies.
This increase in entity coverage results in corresponding im-
provements in F1 scores. Similarly, for the BioRel dataset,
we tested with MEDLINE ontology with entity coverage of
42% and then NCIt ontology with coverage of 34%, leading
to corresponding improvements in F1 scores. Results also
provide conclusive evidence that ReOnto’s performance de-
pends on the coverage of entities aligned with the dataset and
combining encoded knowledge has positive impact on overall
performance (answering RQ2).

6.2 Effectiveness of number of hops
We separately study the effect of the number of hops on the
performance of ReOnto. Figure 5 shows the impact of the

Table 4: Effect of ontology on F1 scores

Dataset Ontology Entity coverage(approx.) F1 scores

ADE
DRON [Bona et al., 2019] 22% 0.92

OAE [He et al., 2014] 34% 0.93
DINTO [Herrero-Zazo et al., 2015] 41% 0.95

BioRel
MEDLINE [Yang, 2003] 42% 0.88

NCIt [Kumar and Smith, 2005] 34% 0.84

number of hops on the model. Increasing hops initially im-
prove F1 scores until reaching a plateau. This is because
additional hops don’t provide new relevant information. Ta-
ble 6 summarizes the extracted hops from the MEDLINE on-
tology, supporting our observation. Interestingly, increasing
hops leads to redundant information that doesn’t contribute
to performance. To maintain context and meaningful connec-
tions, we preserved multi-hop information up to five hops in
our experiment. Furthermore, Table 5 illustrates the relation-
ship between ontology size, parsing time, and the number of
hops, indicating an increase in time as hops increase.

Table 5: Time taken to parse ontology and evaluate respective path.
Parsing time increase w.r.t size of ontology

Ontology Size (in KB) Time taken (in seconds)
Parsing Direct hop One hop Two hop Axiom path1 Axiom path2

OAE 9286 6.75 0.11 2.73 7.47 2.19 5.92
NDFRT 69387 123.11 1.21 0.003 7.629 44.79 103.36
DINTO 1,10,865 137.4 1.6 3.8 8.54 5.67 11.32

MEDLINE 6975 2.19 0.002 0.0023 0.003 3.118 6.09
NCI 5,71,434 758.9 1034.5 1294.5 3454.1 2485 5569

Table 6: Derived path obtained by connecting “protein" and “dietary
protein" entity

Hops Path
path1 classifies
path2 mapped from dietary proteins, classifies
path3 classifies proteins, classifies dietary proteins, classifies
path4 classifies proteins, classifies dietary proteins, mapped from dietary proteins, classifies
path5 classifies proteins, classifies dietary proteins, related to carbs, related to dietary proteins,

classifies
path6 classifies Proteins, classifies dietary proteins, mapped from dietary proteins, related to carbs,

related to dietary proteins, classifies
path7 classifies Proteins, classifies dietary proteins, mapped from dietary proteins, related to carbs,

related to dietary proteins classifies dietary proteins

7 Case study
Table 7 shows qualitative results that compare the ReOnto
model with the baseline models. We report a few results
showing ReOnto can surmise the relationship with reasoning.
ReOnto retrieved the relevant derived path from the ontology
in the first case. ReOnto implicitly learns from the facts and
captures the derived path to provide the correct relation label,
even if it is not explicitly mentioned as isPrimaryAnatomic-
SiteOfDisease.

CUI:C0262950
preferredLabel−−−−−−−→Bone

Bone⊑ ∃anatomicSiteOfDisease.Rickets
Rickets CUI−−→CUI:C0035579
Bone

semanticType−−−−−−→Anatomic Structure

In the second case, ReOnto produces the following path by
utilizing the expressive axiom of the ontology. ReOnto cap-



Figure 4: For the ADE dataset, Figures a) and b) show the training and validation F1 scores with baseline, respectively. Figure e) illustrates
the cross-entropy loss for the iteration. For the BioRel dataset, Figures c) and d) show the training and validation F1 scores with baseline,
respectively. Figure f) illustrates the cross-entropy loss concerning the iteration. ReOnto exhibits consistent and stable performance on both
datasets, as indicated by the plotted F1 scores and loss.

Table 7: Sample sentences and predictions of various models. ReOnto using reasoning is able to predict the relations which are not explicitly
observable from the sentence itself and requires long-range entity interactions.

Sentence Relation GPGNN Context
Aware

ReOnto

Both compounds are equally potent in the stimulation of
intestinal calcium transport , bone(C0262950) calcium
mobilization , in the elevation of serum phosphorus , and
in the healing of rickets(C0035579) in the rat

is primary
anatomic
site of
disease

may be
associated
disease of
disease

may be
finding of
disease

is primary
anatomic
site of
disease

The ventricular effective refractory period, as well
as the vt cycle length(C0042514), increased after
propranolol(C0033497) and was further prolonged after
the addition of a type i agent

may be
treated by

may diag-
nose

may treat may be
treated by

dsip and clip [acth(18-39)] immunoreactive(ir) neurons
and fibers were examined in the human(C0086418) hy-
pophysis and pituitary stalk using immunmohistofluores-
cence and peroxidase(C4522012) antiperoxidase meth-
ods

is organ-
ism source
of gene
product

nichd par-
ent of

organism
has gene

is organ-
ism source
of gene
product

Figure 5: Effectiveness of hops on performance

tures the long-range dependencies between entities and pro-
vides the correct relation label.

CUI:C0042514
preferredLabel−−−−−−−→Ventricular Tachycardia

Ventricular Tachycardia≡Techycardia
Techycardia⊑ ∃mayBeTreatedBy.Propranolol
Propranolol CUI−−→ CUI:C0033497

In the last case study, several paths are derived from the on-
tology for the Human entity. It can be observed that ReOnto
derives and asserts the dependency path between Human and
Peroxidase, and concludes that the target relation label isOr-
ganismSourceOfGeneProduct applies, as compared to other
baseline models. Such complex ontology reasoning provides
long-range interactions between entities, which is inherently
not possible in baseline models.



CUI:C0086418
preferredLabel−−−−−−−→Human

∃Human⊑geneProductHasOrganismSource.Myeloperoxidase

Myeloperoxidase
hasDisposition−−−−−−−→Peroxidase(disposition)

Peroxidase(disposition)
preferredName−−−−−−−→Peroxidase

Peroxidase CUI−−→ CUI:C4522012

8 Conclusion and Future Work
We proposed a novel neuro-symbolic approach ReOnto that
leverages path-based reasoning, including expressive axiom
path with GNN. We apply our model to complex biomedi-
cal text and compare the approach with baselines. With em-
pirical results, there are three key takeaways. Firstly, ex-
isting baseline models with any form of context only cap-
ture short-range dependencies of entities. In contrast, our
model uses long-range entity dependencies derived from on-
tology reasoning to outperform all baselines on both biomed-
ical datasets. Code is available at https://github.com/kracr/
reonto-relation-extraction.

ReOnto provides effective reasoning on given text and en-
tity pair, which can tackle the challenges of biomedical text.
It also considers expressive axioms of ontology to reason on
RE. The aggregation of these axioms outperformed the base-
lines. As a next step, we can consider using background
knowlege on unsupervised data. An ontology reasoner can
be used to infer more paths and perhaps these additional ax-
ioms can improve the performance further.
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