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Abstract. We propose a novel value approximation method, namely
“Eigensubspace Regularized Critic (ERC)” for deep reinforcement learn-
ing (RL). ERC is motivated by an analysis of the dynamics of Q-value
approximation error in the Temporal-Difference (TD) method, which
follows a path defined by the 1-eigensubspace of the transition kernel
associated with the Markov Decision Process (MDP). It reveals a funda-
mental property of TD learning that has remained unused in previous
deep RL approaches. In ERC, we propose a regularizer that guides the
approximation error tending towards the 1-eigensubspace, resulting in a
more efficient and stable path of value approximation. Moreover, we the-
oretically prove the convergence of the ERC method. Besides, theoretical
analysis and experiments demonstrate that ERC effectively reduces the
variance of value functions. Among 26 tasks in the DMControl bench-
mark, ERC outperforms state-of-the-art methods for 20. Besides, it shows
significant advantages in Q-value approximation and variance reduction.
Our code is available at https://sites.google.com/view/erc-ecml23/.

1 Introduction

In recent years, deep reinforcement learning (RL), which is built upon the basis
of the Markov decision process (MDP), has achieved remarkable success in a wide
range of sequential decision-making tasks [29], including board games [27], video
games [23, 35], and robotics manipulation [11]. Leveraging the rich structural
information in MDP, such as the Markov assumption [29], the stochasticity of
transition kernel [1], and low-rank MDP [2, 26, 33, 39], supports designing efficient
RL algorithms.

Motivated by the potential benefits of utilizing structural information to
design efficient RL algorithms [15, 19–21, 37], we investigate the dynamics of Q
value approximation induced by the Temporal-Difference (TD) method. The Q
value, commonly used to design DRL algorithms, is analyzed in the context of the
matrix form of the Bellman equation. We study continuous learning dynamics. We
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Fig. 1: Value approximation error (Q−Q∗) path for TD and our proposed ERC
algorithms. The approximation error of the TD method gradually approaches
the 1-eigensubspace (as defined in Remark 3) before ultimately converging to
the optimum. This path is referred to as the inherent path. ERC leverages
this inherent path by directly pushing the approximation error towards the
1-eigensubspace through Rpush (defined in Equation (9)), resulting in a more
efficient and stable learning process.

also examine the crucial role of the transition kernel of MDP in the dynamics of
the Bellman equation. We perform an eigenvalue decomposition of that dynamic
process, which reveals that for any MDP, the TD method induces an inherent
learning path of approximation error in the value approximation process.

Furthermore, as Figure 1 shows, the approximation error of the TD method
is optimized towards the 1-eigensubspace before ultimately converging to zero.
It is in direct contrast with the optimum that the Monte Carlo (MC) method
achieves [29]. Thus, such an inherent path is non-trivial. Such a path, which
corresponds to prior knowledge of MDP, has been neglected in designing DRL
algorithms [19–21, 37], despite its great potential. Our main idea is utilizing the
prior knowledge to improve the efficiency of value approximation by directly
guiding the approximation error towards the 1-eigensubspace, leading to a more
efficient and stable path. To that end, we propose a novel value approximation
method, Eigensubspace Regularized Critic (ERC), as shown in Figure 1. We also
establish the convergence of our proposal. Theoretical analysis and experiments
demonstrate that ERC effectively reduces the variance of value functions.

To evaluate the effectiveness of our proposed algorithm, ERC, we conduct
extensive experiments on the continuous control suite DMControl [32]. Our
empirical results demonstrate that ERC performs well in terms of approximation
error. Moreover, by examining the ERC variance reduction, we verify its superior
performance compared to the algorithms specifically designed for variance control
(e.g., TQC [17], REDQ [5]), as consistent with our theoretical analysis. All in
all, comparisons show that ERC outperforms the majority of the state-of-the-art
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methods (20 out of 26 tasks) while achieving a similar performance otherwise.
Specifically, on average, the ERC algorithm surpasses TQC, REDQ, SAC [11],
and TD3 [9] by 13%, 25.6%, 16.6%, and 27.9%, respectively.

The main contributions of this work include i) identifying the existence of
an inherent path of the approximation error for TD learning, ii) leveraging the
inherent path to introduce a more efficient and stable method, ERC, with a
convergence guarantee, and iii) demonstrating, through comparison with state-
of-the-art deep RL methods, the superiority of ERC in terms of performance,
variance, and approximation error.

2 Preliminaries

To formalize RL, one uses an MDP framework consisting of 6-tuple (S,A,R, P, γ, ρ0),
where S denotes a state space, A an action space, R : S × A → R a reward
function, P : S ×A → p(s) a transition kernel, γ ∈ [0, 1) a discount factor, and
ρ0 an initial state distribution.

Deep RL focuses on optimizing the policy through return, defined as Rt =∑T
i=t γ

i−tr(si, ai). The action value (Q) function, Qπ(s, a), represents the quality
of a specific action, a, in a state, s, for a given policy π. Formally, the Q function
is defined as

Qπ(s, a) = Eτ∼π,p[Rτ |s0 = s, a0 = a], (1)

where τ is a state-action sequence (s0, a0, s1, a1, s2, a2 · · · ) induced by a policy π
and P . The state value (V) function is V π(s) = Eτ∼π,p[Rτ |s0 = s]. A four-tuple
(st, at, rt, st+1) is referred to as a transition. The Q value can be recursively
computed by Bellman equation [29]

Qπ(s, a) = r(s, a) + γEs′,a′ [Qπ(s′, a′)], (2)

where s′ ∼ p(·|s, a) and a ∼ π(·|s). The process of using a function approxi-
mator (e.g. neural networks) to estimate Q or V values is referred to as value
approximation.

Bellman equation in matrix form. Let Qπ denote the vector of all Q value
with length |S| · |A|, and r as vectors of the same length. We overload notation
and let P refer to a matrix of dimension (|S| · |A|)× |S|, with entry Ps,a,s′ equal
to P (s′|s, a). We define Pπ to be the transition matrix on state-action pairs
induced by a stationary policy π

Pπ
s,a,s′,a′ := P (s′|s, a)π(a′|s′). (3)

Then, it is straightforward to verify

Qπ = r+ γPπQπ, (4)

where Pπ ∈ R|S|·|A|×|S|·|A|. The following famous eigenpair result holds.

Remark 1 (Eigenpair for stochastic matrix Pπ [22]). The spectral radius of Pπ

is 1. The eigenvector corresponding to 1 is e, where e is a column of all 1’s.
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3 Method

In this section, we start with the dynamics of Q value approximation induced
by the TD method. This analysis reveals that in the value approximation, the
approximation error has an inherent path. We leverage that path to design our
proposed practical algorithm, ERC. We also investigate the convergence property
of our method. All proofs are available in the appendix.

3.1 An Inherent Path of Value Approximation

Motivated by the potential benefits of using structural information to design
novel RL algorithms [14, 19–21, 37], we examine the dynamics of Q value induced
by the Bellman equation. Given Equation (4) in matrix form, the true Q function
of policy π can be directly solved.

Remark 2 (True Q value of a policy [1]). Given a transition matrix induced by
a policy π, as defined in Equation (3), the true Q function of policy π can be
directly solved by

Q∗ = (I − γPπ)
−1

r, (5)

where I is the identity matrix and Q∗ is the true Q function of policy π.

To simplify the notation, let X = (s, a). The one-step temporal difference
(TD) continuous learning dynamics follows as

∂tQt(x) = Eπ[rt + γQt(xt+1)|xt]−Qt(x). (6)

According to Equation (4), we have the matrix form

∂tQt = −(I − γPπ)Qt + r. (7)

Equation (7) is a differential equation that is directly solvable using Remark 2.

Lemma 1 (Dynamics of approximation error). Consider a continuous
sequence {Qt|t ≥ 0}, satisfy Equation (7) with initial condition Q0 at time step
t = 0, then

Qt −Q∗ = exp{−t(I − γPπ)}(Q0 −Q∗). (8)

From Lemma 1, Qt converges to Q∗, as t→∞. The approximation error, Qt−Q∗,
appears in Equation (8), which reveals the dynamics of approximation error is
related to the structure of transition kernel and policy π. Moreover, there is rich
structural information in Pπ, which inspires us to consider Equation (8) in a
more fine-grained way. To better understand the approximation error, following
Ghosh and Bellemare [10], Lyle et al. [20, 21], we make the following assumption.

Assumption 1 Pπ is a real-diagonalizable matrix with a strictly decreasing
eigenvalue sequence |λ1|, |λ2|, · · · , |λ|S|·|A||, and the corresponding eigenvector
H1, H2, · · · , H|S|·|A|.
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Remark 1 shows that λ1 = 1 because the Pπ is a stochastic matrix, and the
eigenvector corresponding to 1 is e. That inspires us to perform an eigenvalue
decomposition for Equation (8).

Theorem 1. If Assumption 1 holds, we have Qt−Q∗ = α1 exp{t(γλ1−1)}H1+∑|S|·|A|
i=2 αi exp{t(γλi − 1)}Hi = α1 exp{t(γλ1 − 1)}H1 + o

(
α1 exp{t(γλ1 − 1)}

)
,

where αi is a constant.

Theorem 1 states that the approximation error of the TD method can be decom-
posed into two components. One of the components is primarily influenced by
the 1-eigensubspace. Thus, the approximation error of the value function in the
TD method follows a path induced by the 1-eigensubspace, which is a result of
the stochasticity inherent in MDP.

Remark 3 (An inherent path of TD method). Given an MDP consisting of 6-tuple
(S,A,R, P, γ, ρ0), policy π, and a Banach space (Q, ∥ · ∥), there exists an inherent
path that the Bellman approximation error, i.e., Qt −Q∗, starts at the initial
point and then approaches the 1-eigensubspace before ultimately converging to
zero. The 1-eigensubspace, which is induced by Pπ, is defined as {c e}, where
c ∈ R and e is a column of all ones.
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Fig. 2: Path of TD method. There exists
an inherent path that approximation er-
ror approaches 1-eigensubspace before
converging to zero. The empirical fact is
consistent with our theoretical analysis
in Theorem 1.

What does a theoretically in-
herent path really look like in
practice? The aforementioned con-
tent discusses the inherent path of
approximation error. Does this occur
in the practical scene? To empirically
show the path of the approximation
error, we visualize the path of approx-
imation error given a fixed policy. The
results are given in Figure 2, where we
perform experiments on FrozenLake-v1
environment since the true Q value Q∗

of this environment can be evaluated
by the Monte Carlo Method. The ap-
proximation error of the TD method is
optimized toward the 1-eigensubspace
before ultimately converging to zero
rather than directly toward the opti-
mum. The inherent path in Figure 2
is consistent with Remark 3. Thus, such a path is non-trivial and motivates
us to improve the value approximation by guiding the approximation error to
1-eigensubspace, resulting in an efficient and robust path.

https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
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Fig. 3: Value function approximation process for various methods on FrozenLake-
v1 environment. (a) illustrates the distance between the approximation error and
the 1-eigensubspace for various methods, where ERC* denotes ERC utilizing
an oracle true Q value, Q∗, to push the approximation error towards the 1-
eigensubspace. The results demonstrate that the ERC method is closer to the
1-eigensubspace at the same time compared to the TD method. (b) represents
the absolute approximation error for various algorithms. The result illustrates
that the ERC method has a smaller approximation error at the same time than
the TD method. For both metrics, ERC is observed to outperform or be at least
as good as ERC* in later stages. The shaded area represents a standard deviation
over ten trials.

3.2 Using Eigensubspace Regularization to Improve Value
Approximation

The inherent path, which can be viewed as prior knowledge of MDP, has not
been utilized to design DRL algorithms in previous work [19–21, 37]. We improve
the value approximation by directly guiding the approximation error towards the
1-eigensubspace, leading to a more efficient and stable path.

The true Q value, Q∗, is always unknown when designing DRL algorithms.
However, we can use a target Q as an approximate substitute for Q∗ for two
reasons. Firstly, from the perspective of value function optimization, the objective
of the Bellman equation optimization is to make the learned Q-value as close as
possible to Q∗. That is achievable by minimizing the distance between the learned
Q and the target Q. Instead of using Q∗ directly in learning, the target Q is used
to approximate Q∗ through a bootstrap approach. Similarly, we use target Q in
our ERC algorithm design. Secondly, in our experiments, we find that using target
Q to replace Q∗ produces an effect that approximates the effect produced by using
Q∗, as illustrated in Figure 3. We calculate the distance of the approximation
error to the 1-eigensubspace and approximation error during the optimization
of the value function, and we can see that: i) the ERC algorithm using target
Q instead of Q∗ allows the approximation error to reach the 1-eigensubspace

https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
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faster than the TD algorithm and the effect can be approximated to that of the
ERC using Q∗ (ERC* algorithm). And ii) for the approximation error, the ERC
algorithm obtains a relatively small approximation error compared to the TD
method. The approximation error of ERC is smaller than that of ERC* in the
later optimization stages. Therefore, it is reasonable to replace Q∗ with the target
Q in the practical design of the algorithm. Using target Q-value is a feasible
solution that allows us to achieve results similar or better to using Q∗, and it has
the advantage of being more easily implemented in practice. Thus, the Bellman
error is pushed to 1-eigensubspace in the ERC algorithm.

To push the Bellman error toward the 1-eigensubspace, it is essential to project
the error onto that subspace. Therefore, one must determine the projected point
in the 1-eigensubspace to the Bellman error.

Lemma 2. Consider a Banach space (B, ∥ · ∥) of dimension N, and let the
N-dimensional Bellman error at timestep t, represented by Bt, have coordinates
(B1, B2, · · · , BN ) in (B, ∥·∥). Within this Banach space, the projected point in the
1-eigensubspace, which is closest to Bt, is Zt whose coordinates are (zt, zt, · · · , zt),
where zt = 1

N

∑N
j=1 B

t
i .

The Bellman error can be pushed towards 1-eigensubspace at each timestep
with the help of Lemma 2. To accomplish this, we minimize the regularization
term

Rpush(θ) =
1

N

N∑
i=1

∥Bi − Z∥22, (9)

where Bi represents the Bellman error at the i-dimension and Z = 1
N

∑N
j=1 Bi(θ).

By combining Equation (9) with policy evaluation loss LPE, the Eigensubspace
Regularized Critic (ERC) algorithm is defined as

LERC(θ) = LPE(θ) + βRpush(θ), (10)

where LPE(θ) is a policy evaluation phase loss such as

LPE(θ) =
[
Q(s, a; θ)−

(
r(s, a) + γEs′,a′

[
Q(s′, a′; θ′)

])]2
,

and β is a hyper-parameter that controls the degree to which the Bellman error
is pushed toward the 1-eigensubspace. ERC enhances the value approximation
by pushing the Bellman error to 1-eigensubspace, leading to a more stable and
efficient value approximation path. To evaluate the effectiveness of ERC, a case
study is conducted on the FrozenLake environment. The distance between the
approximation error and the 1-eigensubspace, as well as the absolute approxima-
tion error, are used as metrics to compare the performance of ERC with that
of the TD method and that of ERC* (ERC utilizing oracle Q∗). The results in
Figure 3 demonstrate that ERC is superior to the TD method, and is either
superior to or at least as effective as ERC*.

The theoretical benefit of the ERC method can be understood by examining
Equation (9). Minimizing Rpush explicitly reduces the variance of the Bellman
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error. This reduction in variance leads to two benefits: minimizing the variance of
the Q-value and minimizing the variance of the target Q-value. That is observable
by rewriting Equation (9) as

Rpush(θ) =E
(
(Q− BQ)− E[Q− BQ]

)2

=E[(Q− E[Q])2]︸ ︷︷ ︸
variance of Q

+E[(BQ− EBQ)2]︸ ︷︷ ︸
variance of BQ

−

2E(Q− E[Q])(BQ− EBQ)︸ ︷︷ ︸
covariance between Q and BQ

,

(11)

where B is a bellman backup operator and BQ is a target Q. These facts
highlight the benefits of the ERC algorithm, as it leads to a more stable and
efficient Q value approximation.

Algorithm 1: ERC (based on SAC [11])
Initialize actor network π, and critic network Q with random parameters;
Initialize target networks and replay buffer D;
Initialize β, total steps T , and t = 0;
Reset the environment and receive the initial state s;
while t < T do

Select action w.r.t. its policy π and receive reward r, new state s′;
Store transition tuple (s, a, r, s′) to D;
Sample N transitions (s, a, r, s′) from D;
Compute R̂push by Equations (9) and (16);
Update critic by minimizing Equation (13);
Update actor by minimizing Equation (14);
Update α by minimizing Equation (15);
Update target networks;
t← t+ 1, s← s′;

end

3.3 Theoretical Analysis

We are also interested in examining the convergence property of ERC. To do
this, we first obtain the new Q value after one step of updating in tabular form.

Lemma 3. Given the ERC update rules in Equation (10), ERC updates the
value function in tabular form in the following way

Qt+1 = (1− αt(1 + β))Qt + αt(1 + β)BQt − αtβCt, (12)

where BQt(st, at) = rt + γEst+1,at+1
Qt(st+1, at+1), Ct = 2NG(E[BQt−Qt]), and

NG means stopping gradient.
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To establish the convergence guarantee of ERC, we use an auxiliary lemma
from stochastic approximation [28] and the results in Haarnoja et al. [11]. Theo-
rem 2 states the convergence guarantee formally.

Theorem 2 (Convergence of 1-Eigensubspace Regularized Value Ap-
proximation). Consider the Bellman backup operator B and a mapping
Q : S × A → R, and Qk is updated with Equation (12). Then the sequence
{Qk}∞k=0 will converge to 1-eigensubspace regularized optimal Q value of π as
k →∞.

3.4 Practical Algorithm

The proposed ERC algorithm, which utilizes the structural information in MDP
to improve value approximation, can be formulated as a practical algorithm. We
combine the ERC with Soft Actor Critic (SAC) algorithm [11]. For the value
approximation, ERC optimizes

JQ
ERC(θ) =E(s,a)∼D

[1
2

(
Q(s, a; θ)−

(
r(s, a) + γEs′∼P [V (s′; θ′)]

))2]
+ βRpush,

(13)
where V (s; θ′) = Ea∼π(·|s;ϕ)[Q(s, a; θ′)− α log π(a|s;ϕ)]. For policy improvement,
ERC optimizes

Jπ
ERC(ϕ) = Es∼D[Ea∼π(·|s,ϕ)[α log(π(a | s;ϕ))−Q(s, a; θ)]]. (14)

Besides, we also use the automated entropy trick. The temperature α is
learned by minimizing

Jα
ERC(α) = Ea∼π∗ [−α log π∗(a|s;α, ϕ)− αH], (15)

where H is a pre-selected target entropy. To help better stabilize the value
approximation of ERC, we design a truncation mechanism for Rpush

R̂push = max
{
min

{
βRpush,Rmax

}
,Rmin

}
. (16)

The practical algorithm is summarized in Algorithm 1.

4 Experiments

In this section, we thoroughly evaluate the performance of ERC by comparing it
to a few baseline methods. Furthermore, we examine the value approximation
error and the variance of the value function to gain a deeper understanding of
ERC. Additionally, we analyze the individual contributions of each component of
ERC to gain insight into its effectiveness.
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Fig. 4: Performance curves for OpenAI gym continuous control tasks on Deep-
Mind Control suite. The proposed algorithm, ERC, is observed to significantly
outperform the other tested algorithms. The shaded region represents half of
the standard deviation of the average evaluation over 10 seeds. The curves are
smoothed with a moving average window of size ten.

4.1 Evaluation Setting

Baselines. We conduct a comparative study of the proposed ERC algorithm
with several well-established baselines in the literature. Specifically, we select TD3
[9] and SAC as our primary baselines as they are commonly used and perform
well in various tasks. Additionally, we compare our method with REDQ [5] and
TQC [17], which employ different techniques to improve value approximation
and reduce the variance of the value function. To ensure a fair comparison, we
use the authors’ implementation of TD3 and REDQ available on Github, and
the public implementation of SAC provided in PyTorch [38], which is also the
basis of our ERC implementation. Besides, we use the implementation of TQC
available in the stable baselines 3 library and use the default hyper-parameters
as suggested by the authors.

Environments. The experimental suite is the state-based DMControl suite [32],
which is for physics-based simulation, utilizing the MuJoCo physics engine [31].
We chose the DMControl suite as it offers a diverse range of environments to
benchmark the capabilities of RL algorithms. We facilitate the interactions be-
tween the algorithm and environment using Gym [4]. We evaluate each algorithm
over one million timesteps and obtain the average return of the algorithm every
10k timesteps over ten episodes.

Setup. The magnitude of the regularization effectiveness of ERC is controlled
by a hyper-parameter, β, which is 5e−3. Additionally, Rmax and Rmin are 1e−2
and 0, respectively, for all experiments. The remaining hyper-parameters are
consistent with the suggestions provided by Haarnoja et al. [11]. To ensure the
validity and reproducibility of the experiments, unless otherwise specified, we eval-

https://github.com/sfujim/TD3
https://github.com/watchernyu/REDQ
https://sb3-contrib.readthedocs.io/en/master/modules/tqc.html
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Table 1: Average Return after 1M timesteps of training on DMC. ERC demon-
strates state-of-the-art performance on the majority (20 out of 26) tasks. If
not, ERC is still observed to be comparable in performance. Additionally, ERC
outperforms its backbone algorithm, SAC, on all tasks by a large margin. Specif-
ically, the ERC algorithm outperforms TQC, REDQ, SAC, and TD3 by 13%,
25.6%, 16.6%, and 27.9%, respectively. The best score is marked with colorbox.
± corresponds to a standard deviation over ten trials.
Domain Task ERC TQC REDQ SAC TD3

Acrobot Swingup 151.0 ± 36.8 136.3 ± 51.9 31.1 ± 41.1 26.9 ± 47.7 5.3 ± 4.7
BallInCup Catch 979.7 ± 1.3 981.6 ± 2.3 978.8 ± 3.7 980.3 ± 3.4 978.9 ± 3.6
Cartpole Balance 998.8 ± 1.2 989.2 ± 25.8 984.0 ± 6.0 997.7 ± 1.5 997.9 ± 2.1
Cartpole BalanceSparse 998.6 ± 4.5 899.9 ± 268.6 872.1 ± 262.7 997.6 ± 5.7 1000.0 ± 0.0
Cartpole Swingup 867.8 ± 4.7 874.3 ± 5.8 828.1 ± 17.2 865.1 ± 1.6 867.2 ± 7.5
Cartpole SwingupSparse 544.5 ± 356.9 797.6 ± 32.1 385.5 ± 374.7 234.4 ± 358.4 157.5 ± 314.9
Cheetah Run 903.3 ± 5.9 853.8 ± 80.0 614.2 ± 58.2 873.4 ± 21.5 811.3 ± 102.2
Finger Spin 988.1 ± 0.6 982.0 ± 9.1 940.1 ± 33.5 966.3 ± 27.1 947.6 ± 52.1
Finger TurnEasy 981.1 ± 5.4 247.4 ± 133.6 962.6 ± 34.3 920.0 ± 91.8 856.5 ± 109.3
Finger TurnHard 964.8 ± 27.5 299.2 ± 266.6 927.3 ± 99.8 874.1 ± 100.1 690.2 ± 167.6
Fish Upright 936.0 ± 12.1 917.1 ± 25.6 799.6 ± 113.8 898.6 ± 50.4 873.6 ± 66.7
Fish Swim 496.8 ± 61.6 526.6 ± 113.5 159.3 ± 100.1 342.4 ± 134.5 251.3 ± 107.7
Hopper Stand 943.9 ± 8.9 941.6 ± 11.4 393.5 ± 225.8 597.8 ± 308.8 538.7 ± 256.2
Hopper Hop 405.0 ± 91.1 221.8 ± 68.8 56.8 ± 36.2 117.4 ± 82.2 47.8 ± 46.2
Humanoid Stand 804.5 ± 39.1 494.9 ± 145.5 407.2 ± 336.8 549.6 ± 201.0 110.6 ± 206.8
Humanoid Walk 507.0 ± 37.0 376.4 ± 182.5 245.0 ± 222.6 248.4 ± 220.8 39.3 ± 101.9
Humanoid Run 145.9 ± 10.1 115.6 ± 18.6 70.8 ± 57.0 83.4 ± 56.0 18.1 ± 33.9
Pendulum Swingup 846.6 ± 14.1 834.0 ± 30.1 382.6 ± 297.0 226.2 ± 228.9 338.0 ± 232.0
PointMass Easy 882.3 ± 18.2 793.7 ± 147.6 880.9 ± 16.7 889.9 ± 33.1 838.8 ± 158.5
Reacher Easy 986.9 ± 2.3 964.5 ± 39.5 970.9 ± 24.4 983.5 ± 4.2 983.4 ± 3.7
Reacher Hard 981.8 ± 1.7 971.8 ± 5.2 964.1 ± 24.0 958.6 ± 40.9 938.2 ± 63.0
Swimmer Swimmer6 422.0 ± 133.2 356.4 ± 107.5 215.8 ± 119.0 359.3 ± 130.9 289.2 ± 133.6
Swimmer Swimmer15 295.8 ± 113.7 222.8 ± 128.6 178.6 ± 116.6 264.6 ± 136.9 236.7 ± 150.1
Walker Stand 989.6 ± 1.7 986.3 ± 4.5 974.0 ± 12.6 986.8 ± 2.7 983.4 ± 4.2
Walker Walk 974.9 ± 1.6 971.9 ± 4.8 957.3 ± 10.6 973.5 ± 4.4 966.3 ± 10.4
Walker Run 805.1 ± 19.4 770.5 ± 31.0 590.9 ± 51.6 773.0 ± 32.9 712.1 ± 65.6

Average Scores 761.6 674.1 606.6 653.4 595.3

uate each tested algorithm over ten fixed random seeds. For more implementation
details, please refer to the appendix.

4.2 Performance Evaluation

Figure 4 shows the learning curves from scratch. Table 1 depicts the average
performance after 1M timesteps training. The results demonstrate the following
points: i) ERC outperforms the other tested algorithms in a majority (20 out of
26) of the environments. Specifically, it outperforms TQC, REDQ, SAC, and TD3
by 13%, 25.6%, 16.6%, and 27.9%, respectively; ii) ERC substantially improves
upon its skeleton algorithm, SAC, by the addition of the Rpush regularization
term; iii) Additionally, although ERC does not employ complex techniques to
eliminate estimation bias, it still substantially outperforms TQC and REDQ
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in most environments. Note that both REDQ and TQC leverage an ensemble
mechanism to obtain a more accurate and unbiased Q estimation. ERC does
not leverage any ensemble critic, distributional value functions, or high UTD
ratio, yet it still outperforms them. The results above highlight the potential of
utilizing structural information of MDP to improve DRL.

4.3 Variance and Approximation Error

We select four distinct environments ‘acrobot-swing’, ‘humanoid-stand’, ‘finger-
turn_easy’, and ‘fish-swim’. This selection is made because ERC has been
demonstrated to perform well in the first two environments, while its performance
is not as strong in the latter two. Thus, by evaluating ERC across these four
environments, a comprehensive assessment of ERC can be obtained.
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Fig. 5: Approximation error curves. The results demonstrate that the approxi-
mation error of ERC is empirically minimal when compared to other algorithms
(such as TQC and REDQ) that are specifically designed to obtain accurate
unbiased value estimation.
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Fig. 6: Index of dispersion curves. The results demonstrate that ERC effectively
controls the variance. Furthermore, the variance of ERC is observed to be minimal
on the selected tasks, even in situations where the performance of ERC is not as
good as TQC and REDQ.

Approximation Error. ERC aims to push the Bellman error to 1-eigensubspace
to obtain an efficient and stable value approximation as discussed in Section 3.2.
Thus we study the approximation error of ERC on the DMControl suite. We
obtain the true value Q∗ using the Monte Carlo method and compare it to the
estimated Q. We normalize the approximation error by the estimation value to
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Table 2: Average Return after 1M timesteps training on DMControl suite. β =
5e− 3-trunc means the truncation mechanism is used in the evaluation.
1M Steps Scores β =1e-4 β =5e-4 β =1e-3 β =5e-3 β =5e-3-trunc β =1e-2 β =5e-2 SAC

Acrobot, Swingup 151.2 ± 70.0 152.7 ± 43.4 91.4 ± 54.3 151.9 ± 69.3 151.0 ± 36.8 129.9 ± 58.7 114.7 ± 31.4 26.9 ± 47.7
Humanoid, Stand 418.2 ± 255.3 755.8 ± 88.3 692.1 ± 200.2 699.0 ± 129.3 804.5 ± 39.1 742.4 ± 130.8 550.0 ± 217.2 549.6 ± 201.0
Finger, TurnEasy 940.4 ± 49.5 919.8 ± 80.5 959.2 ± 37.3 979.4 ± 5.5 981.1 ± 5.4 979.9 ± 5.3 959.7 ± 43.7 920.0 ± 91.8
Fish, Swim 448.5 ± 102.8 436.9 ± 71.4 468.3 ± 130.5 390.0 ± 65.8 496.8 ± 61.6 414.4 ± 55.0 434.9 ± 61.4 342.4 ± 134.5

eliminate the differences in scale, and the absolute value of the approximation
error is used in each sample to eliminate inaccuracies caused by offsetting positive
and negative errors. The results, presented in Figure 5, indicate that ERC exhibits
minimal approximation error compared to other methods that obtain accurate
and unbiased value estimates.

Variance Reduction. Above analysis shows that ERC reduces the value
function variance. To investigate this claim in Section 3.2, we empirically analyze
the variance of ERC. To eliminate the effect of the size of the value function
on the variance, we use index of dispersion [16], which can be considered as a
variance normalized by its mean, to evaluate the variance of algorithms. Our
results, presented in Figure 6, indicate that i) the variance of the value function of
ERC is the lowest or equally low as other methods (TQC, and REDQ) specifically
designed for variance reduction. And ii) ERC effectively controls variance even
in environments where its performance is not as strong as other methods such
as TQC and REDQ. These findings provide strong evidence for the theoretical
claim that ERC reduces variance of the value function.

4.4 Ablation

The component introduced by ERC, as outlined in Equation (10), is sole Rpush,
in which β regulates the efficiency of pushing the Bellman error towards the
1-eigensubspace. Therefore, investigating the selection of β can aid in compre-
hending the impact of hyper-parameter on ERC. We vary β and eliminate the
truncation mechanism outlined in Equation (16). Experiments are conducted on
the same four environments as described in Section 4.3. The results, presented
in Table 2, indicate the following: i) the value of β influences the empirical
performance of the ERC, yet ERC with various β values consistently outperforms
its skeleton algorithm, SAC, in most settings. That demonstrates the effectiveness
of our proposed value approximation method; ii) Truncating parameters can
improve the performance of ERC on specific tasks (Humanoid-Stand, Fish-Swim);
iii) Carefully tuning both the hyper-parameter β and the truncation mechanism
ensures optimal performance.

5 Related Work

5.1 Value Function Approximation

Mnih et al. [23] utilizes neural networks (NN) to approximate value function by
TD learning [30, 36]. Combined with NN, several derivative value approximation
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methods [3, 6, 7, 23] exist. Some [3, 6, 7, 17] use a distributional view to
obtain a better value function. Some reduce bias and variance of value function
approximation [5, 9, 12, 13, 18, 34]. Others [8, 11, 24] develop more robust value
function approximation methods. ERC utilizes structural information from MDP
to improve value approximation, which distinguishes it from previous work.

5.2 Using Structural Information of MDPs

Recent work [2, 26, 33, 39] focus on the property of low-rank MDP. They study
learning an optimal policy assuming a low-rank MDP given the optimal represen-
tation. Nevertheless, such a setting is not practical as the optimal representation
is computationally intractable. Ren et al. [25] proposed a practical algorithm
under low-rank MDP assumption, which, different from ERC, involves estimating
the dynamics of MDP. Some other work [1, 19, 21] discuss the architecture of
MDP from a matrix decomposition perspective. Lyle et al. [21] establishes a
connection between the spectral decomposition of the transition operator and the
representations of V function induced by a variety of auxiliary tasks. ERC differs
from Lyle et al. [21] in the following aspects: i) We analyze the dynamics of the
Q approximation error, which is more commonly studied in DRL literature; ii)
We consider the learning process of Q function, whereas Lyle et al. [21] considers
the dynamics of representations.

6 Conclusion

In this work, we examine the eigensubspace of the TD dynamics and its potential
use in improving value approximation in DRL. We begin by analyzing the
matrix form of the Bellman equation and subsequently derive the dynamics of
the approximation error through the solution of a differential equation. This
solution depends on the transition kernel of the MDP, which motivates us
to perform eigenvalue decomposition, resulting in the inherent path of value
approximation in TD. To the best of our knowledge, this inherent path has not
been leveraged to design DRL algorithms in previous work. Our insight is to
improve value approximation by directing the approximation error towards the 1-
eigensubspace, resulting in a more efficient and stable path. Thus, we propose the
ERC algorithm with a theoretical convergence guarantee. Theoretical analysis and
experiments demonstrate ERC results in a variance reduction, which validates our
insight. Extensive experiments on the DMControl suite demonstrate that ERC
outperforms state-of-the-art algorithms in the majority of tasks. The limitation is
that ERC is evaluated on the DMControl suite. Verifying the effectiveness of ERC
on other suites is left for future work. Our contributions represent a significant
step forward in leveraging the rich inherent structure of MDP to improve value
approximation and ultimately enhance performance in RL.
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A Notations

Table 3: Notations used in this work.
Symbol Description

S State space
A Action space
R Reward function
Rt Return Rt =

∑T
i=t γ

i−tr(si, ai)
r A reward
P Transition kernel (or transition probability), P : S ×A → p(s)
γ Discount factor, γ ∈ [0, 1)
D Replay buffer
ρ0 Initial state distribution
p(s) A state distribution
Qπ(s, a) Action value function
τ Trajectory, a sequence of state and action
π Policy
V π(s) State value function given policy π
α Temperature for MaxEnt RL [11]
H Pre-selected target entropy.
θ neural network parameters for value function
ϕ neural network parameters for policy function

Pπ
s,a,s′,a′ Transition matrix, Pπ

s,a,s′,a′ := P (s′|s, a)π(a′|s′).
Vπ Vector of all V value with length |S|
Qπ Vector of all Q value with length |S| · |A|
r Vector of all reward with length |S| · |A|
e A column of all ones
I Identity matrix
(λi, Hi) Eigenpair
(B, ∥ · ∥) A Banach space equipped with a norm ∥ · ∥
β Hyper-parameter for ERC, controlling trend to 1-eigensubspace

B Theoretical Derivations

In this section, theorems and lemmas in the main text are restated, and are given
the related proof.

B.1 An Inherent Path of Value Approximation

Lemma 4 (Dynamics of approximation error). Consider a continuous
sequence {Qt|t ≥ 0}, satisfy Equation (7) with initial condition Q0 at time step
t = 0, then

Qt −Q∗ = exp{−t(I − γPπ)}(Q0 −Q∗). (17)
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Proof. This ordinary differential equation can be solved directly with the help of
Remark 2. □

Theorem 3. Assumption 1 holds, then Qt − Q∗ = α1 exp{t(γλ1 − 1}H1 +∑|S|·|A|
i=2 αi exp{t(γλi − 1)}Hi = α1 exp{t(γλ1 − 1}H1 + o

(
α1 exp{t(γλ1 − 1}

)
Proof. We have

Q0 −Q∗ =
∑
i

αiHi, (18)

where αi is some constants. Note that Qt is in the column space of Pπ and {Hi}
can is a basis of Pπ.

Recall Lemma 1, we have

Qt −Q∗ = exp{−t(I − γPπ)}(Q0 −Q∗)

= exp{−t(I − γPπ)}
∑
i

αiHi

=
∑
i

αi exp{−t(I − γPπ)}Hi

=
∑
i

αi exp{−t(1− γλi)}Hi

= α1 exp{t(γλ1 − 1)}H1 +
∑
i=2

αi exp{t(γλi − 1)}Hi

= α1 exp{t(γ − 1)}H1 + o
(
α1 exp{t(γ − 1}

)
.

(19)

The fourth equation holds because exp{−t(I−γPπ)} is also diagonalizable under
the same basis {Hi}, with the eigenvalue exp{t(γλi− 1)}, i ∈ {1, 2, · · · , |S| · |A|}.
□

Lemma 5. Consider a Banach space (B, ∥ · ∥) of dimension N, and let the N-
dimensional Bellman error at timestep t, represented by Bt, have coordinates
(B1, B2, · · · , BN ) in (B, ∥·∥). Within this Banach space, the projected point in the
1-eigensubspace, which is closest to Bt, is Zt whose coordinates are (zt, zt, · · · , zt)
where zt = 1

N

∑N
j=1 B

t
i .

Proof. Assume Z is in 1-eigensubspace whose coordinates are (zt, zt, · · · , zt)
with dimension N. The distance from Zt to N t is

∑N
i (Bt

i − zt)2. To find the
coordinates of Zt, we can build the following optimization problem:

min
z

N∑
i

(Bt
i − zt)2, (20)

which is a convex optimization problem. The solution is zt = 1
N

∑N
j=1 B

t
i .

□
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B.2 Theoretical Analysis

Lemma 6. Given the ERC update rules in Equation (10), ERC updates the
value function in tabular form in the following way

Qt+1 = (1− αt(1 + β))Qt + αt(1 + β)BQt − αtβCt, (21)

where BQt(st, at) = rt + γEst+1,at+1Qt(st+1, at+1), Ct = 2NG(E[BQt−Qt]), and
NG means stopping gradient.

Proof. For Rpush, we have

Rpush = Es,a

(
(Q− NG(BQ))− NG(E[Q− BQ])

)2

= Es,a((Q− NG(BQ)))2 − 2E[NG(BQ)−Q]NG(E[BQ−Q]) + (NG(E[Q− BQ]))2

= LPE − 2E[NG(BQ)−Q]NG(E[BQ−Q]) + (NG(E[BQ−Q]))2

= LPE − CtE[NG(BQ)−Q] + (NG(E[Q− BQ]))2︸ ︷︷ ︸
No contribution to gradient

,

(22)
where Ct = 2NG(E[BQt −Qt]).

Now we consider the gradient of ERC w.r.t. Q.

∇QLERC = ∇QLPE +∇QβRpush

= (1 + β)∇QLPE − βCt∇QE[NG(BQ)−Q]

= (1 + β)(Q− BQ) + βCt.

(23)

Thus we have the following update rule

Qt+1 = Qt − αt∇Qt
LERC

= Qt − αt(1 + β)(Qt − BQt)− αtβCt

= (1− αt(1 + β))Qt + αt(1 + β)BQt − αtβCt.

(24)

Theorem 4 (Convergence of 1-Eigensubspace Regularized Value Ap-
proximation). Consider the Bellman backup operator B and a mapping
Q : S × A → R, and Qk is updated with Equation (21). Then the sequence
{Qk}∞k=0 will converge to 1-eigensubspace regularized optimal Q value of π as
k →∞.

Proof. According to Lemma 6, the update rule of ERC can be rewritten as

Qk+1 ← (1− αt(1 + β))Qk + αt(1 + β)
(
BQk − β

1 + β
Ck

)
← (1− αt(1 + β))Qk + αt(1 + β)

(
r(s, a) + γEs′,a′Qt(s

′, a′)− β

1 + β
Ck

)
← (1− αt(1 + β))Qk + αt(1 + β)

(
r(s, a) +

β

1 + β
Es,a[Q

k − BQk]

+ γEs′,a′Qk(s′, a′)
)

(25)
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From Equation (25), the update target in ERC is r(s, a) + γEs′,a′Qt(s
′, a′) −

β
1+βC

k. Define the 1-eigensubspace regularized reward as rerc(st, at) := r(s, a) +
β

1+βEs,a[Q
k − BπQk], and the update rule of ERC can be further rewritten as

Q(s, a)← rerc(s, a) + γE[Q(s′, a′)], (26)

and apply the standard convergence results for policy evaluation [28, 29], which
concludes the proof. □

B.3 ERC*

In the text, ERC*, which leverages optimal Q∗ to push approximation error to
1-eigensubspace, is compared to ERC and TD in Figure 3. We give a detailed
description of the ERC* in this section. Following Lemma 3, the update rule of
ERC* can be given as

Qt+1 = (1− αt(1 + β))Qt + αtT Qt + αtβ(Q
∗ + E(Qt −Q∗)). (27)

The procedure of the proof is the same as in Lemma 3.

C Additional Details Regarding Experiments

In this section, we provide a detailed description of the experimental procedures
and configurations used to generate the tables and figures presented in the main
text.

Implementations. To ensure the validity and reproducibility of the experi-
ments, we have fixed all random seeds, including but not limited to those used in
PyTorch, Numpy, Gym, Random, and CUDA packages, across all experiments.
For random seeds, unless otherwise specified, we evaluate each tested algorithm
over 10 fixed random seeds. For more implementation details, please refer to our
code.

Comparison with REDQ and TQC. Both REDQ and TQC leverage
an ensemble mechanism to obtain a more accurate and unbiased Q estimation.
Specifically, REDQ uses 10 critics and the UTD ratio is 20, i.e., REDQ performs
gradient updates twenty times for every interaction with the environment. As
for TQC, it uses 5 distributional critics. However, ERC does not leverage any
ensemble critic, distributional value functions, or high UTD ratio, yet it still
outperforms them.

Figure 3. The experiments are conducted on FrozenLake-v1 environment.
The true Q values are computed through the Monte Carlo method. The shaded
area represents a standard deviation over trials. In the case of no additional
description, the shaded areas carried in all subsequent figures indicate a standard
deviation over ten random seeds. The environment used in the experiment has
16 states and 4 actions. The learning rate is 0.01. The discounted factor is 0.9. A
fixed β value of 0.3 is used for both ERC and ERC*.

https://sites.google.com/view/erc-ecml23/
https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
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Figure 4. The performance curves for OpenAI gym continuous control tasks
on the DeepMind Control suite. The shaded region represents a 50% standard
deviation of the average evaluation over 10 seeds. and the curves are smoothed
with a moving average window of size 10. The evaluation of each algorithm is
conducted over a period of 1 million timesteps, with the average return of the
algorithm being evaluated every 10k timesteps over ten episodes.

Figure 6. The shaded region in these figures also represents a 50% standard
deviation of the average evaluation over 10 seeds and the curves are smoothed
with a moving average window of size 10. The evaluation of each algorithm is
conducted over a period of 1 million timesteps, with the index of dispersion of
the algorithm being evaluated every 10k timesteps over ten episodes. For a better
visualization effect, the y-axis is clipped to [−1, 5].

Figure 5. The experimental settings are consistent with those of Figure 6.
Table 1. Average Return after 1M timesteps training on DMControl suite. ±

indicates a standard deviation over ten trials. The DMControl suite benchmarks
contain 28 tasks, and our evaluation of the algorithms was conducted on 26 tasks,
with the tasks ‘acrobot-swingup_sparse’ and ‘manipulator-bring_ball’ excluded
due to the inability of all tested DRL algorithms to produce meaningful results
on these challenging tasks.

Table 2. The experimental settings are consistent with those of Table 1.

D Additional Experimental Results

In this section, we present additional experimental results.

D.1 The Inherent Path in Practice

Section 3.1 discusses the inherent path of approximation error. Does this occur
in the practical scene? To empirically show the path of the approximation error,
we visualize the path of approximation error given a fixed policy. The results are
given in Figure 7, where we perform experiments on FrozenLake-v1 environment
since the true value Q∗ can be evaluated by the MC Method. For comparison, we
also visualize the path of value function learning by the Monte Carlo method. The
approximation error of the TD method is optimized toward the 1-eigensubspace
before ultimately converging to zero rather than directly toward the optimum
that the Monte Carlo (MC) method acts. The inherent path in Figure 7a is
consistent with Theorem 1. Thus, such a path is non-trivial and motivates us to
improve the value approximation by guiding the Bellman error to 1-eigensubspace,
resulting in an efficient and robust path.

D.2 Value Approximation on Additional Environment

In the text, we show the value approximation process for various algorithms
in Figure 3 on FrozenLake-v1 environment. Now We offer the Value function
approximation process for multiple methods on CliffWalking-v0 environment in
Figure 8.

https://github.com/openai/gym/blob/master/gym/envs/toy_text/frozen_lake.py
https://www.gymlibrary.dev/environments/toy_text/cliff_walking/
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(a) Path of TD method
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(b) Path of MC method

Fig. 7: Value approximation path for TD and MC methods. (a) illustrates that
there exists an inherent path that approximation error approaches 1-eigensubspace
before converging to zero. The empirical fact is consistent with our theoretical
analysis in Theorem 1. (b) demonstrates the path of the Value approximation
error for the MC method. The value function approaches the true value with the
shortest path because the MC method obtains the unbiased true value of the
objective by a large number of samples.

D.3 Additional Figures

Due to space limitations, we present only selective figures in the text. In this
section, we give the remaining figures for the 26 tasks.

Figure 9 presents the learning curves from scratch. Figure 10 shows approxi-
mation error curves. Figure 11 is index of dispersion curves. We note that TQC
has the best approximation error on ‘cartpole-swingup_sparse’ task. This is
because TQC outperforms the other algorithms substantially on this task as well.
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Fig. 8: Value function approximation process for various methods on CliffWalking-
v0 environment. (a) illustrates the distance between the approximation error and
the 1-eigensubspace for various methods, where ERC* denotes ERC utilizing an
oracle Q∗ to push the approximation error towards the 1-eigensubspace. The
results demonstrate that the ERC method is closer to the 1-eigensubspace at
the same time compared to the TD method. Besides, the ERC* is closer to
1-eigensubspace because it leverages oracle true Q∗. (b) represents the absolute
approximation error for various algorithms. The result illustrates that the ERC
method has a smaller approximation error at the same time than the TD method.
ERC is close to ERC* in this metric, which means that although ERC* is more
efficient near the 1-eigensubspace, the performance of the ERC method is also
almost the same as ERC* in terms of the approximation error metric that we
really care about. The shaded area represents a standard deviation over ten trials.

https://www.gymlibrary.dev/environments/toy_text/cliff_walking/
https://www.gymlibrary.dev/environments/toy_text/cliff_walking/
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Fig. 9: Performance curves for OpenAI gym continuous control tasks on Deep-
Mind Control suite. The proposed algorithm, ERC, is observed to significantly
outperform the other tested algorithms. The shaded region represents half of
the standard deviation of the average evaluation over 10 seeds. The curves are
smoothed with a moving average window of size ten.
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Fig. 10: Approximation error curves. The results demonstrate that the approxi-
mation error of ERC is empirically minimal when compared to other algorithms
(such as TQC and REDQ) that are specifically designed to obtain accurate
unbiased value estimation.
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Fig. 11: Index of dispersion curves. The results demonstrate that ERC effectively
controls the variance. Furthermore, the variance of ERC is observed to be minimal
on the selected tasks, even in situations where the performance of ERC is not as
good as TQC and REDQ
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