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Abstract. We address the problem of learning representations from ob-
servations of a scene involving an agent and an external object the agent
interacts with. To this end, we propose a representation learning frame-
work extracting the location in physical space of both the agent and the
object from unstructured observations of arbitrary nature. Our frame-
work relies on the actions performed by the agent as the only source of
supervision, while assuming that the object is displaced by the agent via
unknown dynamics. We provide a theoretical foundation and formally
prove that an ideal learner is guaranteed to infer an isometric represen-
tation, disentangling the agent from the object and correctly extracting
their locations. We evaluate empirically our framework on a variety of
scenarios, showing that it outperforms vision-based approaches such as
a state-of-the-art keypoint extractor. We moreover demonstrate how the
extracted representations enable the agent to solve downstream tasks via
reinforcement learning in an efficient manner.
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1 Introduction

A fundamental aspect of intelligent behavior by part of an agent is building rich
and structured representations of the surrounding world [10]. Through struc-
ture, in fact, a representation potentially leads to semantic understanding, effi-
cient reasoning and generalization [17]. However, in a realistic scenario an agent
perceives observations of the world that are high-dimensional and unstructured
e.g., images. Therefore, the ultimate goal of inferring a representation consists of
extracting structure from the observed data [3]. This is challenging and in some
instances requires supervision or biases. For example, it is known that disentan-
gling factors of variation in data is mathematically impossible in a completely
unsupervised way [18]. In order to extract structure, it is therefore necessary to
design methods and paradigms relying on additional information and specific
assumptions.
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Fig. 1: Our framework enables to learn a representation φ recovering the geo-
metric and disentangled state of both an agent (zint, white) and an interactable
object (zext, brown) from unstructured observations o (e.g., images). The only
form of supervision comes from actions a, b performed by the agent, while the
transition of the object (question mark) in case of interaction is unknown. In
case of no interaction, the object stays invariant.

In the context of an agent interacting with the world, a fruitful source of in-
formation is provided by the actions performed and collected together with the
observations. Based on this, several recent works have explored the role of ac-
tions in representation learning and proposed methods to extract structure from
interaction [15, 22, 25]. The common principle underlying this line of research is
encouraging the representation to replicate the effect of actions in a structured
space – a property referred to as equivariance 3. In particular, it has been shown
in [20] that equivariance enables to extract the location of the agent in physical
space, resulting in a lossless and geometric representation. The question of how
to represent features of the world which are extrinsic to the agent (e.g., objects)
has been left open. Such features are dynamic since they change as a consequence
of interaction. They are thus challenging to capture in the representation but
are essential for understanding and reasoning by part of the agent.

In this work we consider the problem of learning representations of a scene
involving an agent and an external rigid object the agent interacts with (see Fig-
ure 1). We aim for a representation disentangling the agent from the object and
extracting the locations of both of them in physical space. In order words, we
aim for representations that are isometric w.r.t. to the geometry of the world. To
this end, we focus on a scenario where the object displaces only when it comes in
contact with the agent, which is realistic and practical. We make no additional
assumption on the complexity of the interaction: the object is allowed to displace
arbitrarily and its dynamics is unknown. Our assumption around the interaction
enables to separate the problem of representing the agent – whose actions are
known and available as a supervisory signal – from the problem of representing

3 Alternative terminologies from the literature are World Model [15] and Markov De-
cision Process Homomorphism [26].
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the object – whose displacement is unknown. Following this principle, we design
an optimization objective relying on actions as the only form of supervision.
This makes the framework general and in principle applicable to observations of
arbitrary nature. We moreover provide a formalization of the problem and theo-
retical grounding for the method. Our core theoretical result guarantees that the
representation inferred by an ideal learner recovers isometric representations as
desired. We complement the theoretical analysis with an empirical investigation.
Results show that our proposed representations outperform in quality of struc-
ture a state-of-the-art keypoint extractor and can be leveraged by the agent in
order to solve control tasks efficiently by reinforcement learning. In summary,
our contributions include:

– A representation learning framework extracting representations from obser-
vations of a scene involving an agent interacting with an object.

– A theoretical result guaranteeing that the above learning framework, when
implemented by an ideal learner, infers an isometric representation for data
of arbitrary nature.

– An empirical investigation of the framework on a variety of environments
with comparisons to computer vision approaches (i.e., keypoint extraction)
and applications to a control task.

We provide Python code implementing our framework together with all the
experiments at the following public repository: https://github.com/reichlin/
GeomRepObj. The repository additionally includes the Appendix of the present
work.

2 Related Work

Equivariant Representation Learning. Several recent works have explored
the idea of incorporating interactions into representation learning. The common
principle is to infer a representation which is equivariant i.e., such that transitions
in observations are replicated as transitions in the latent space. One option is to
learn the latent transition end-to-end together with the representation [15,26,33].
This approach is however non-interpretable and the resulting representations are
not guaranteed to extract any structure. Alternatively, the latent transition can
be designed a priori. Linear and affine latent transitions have been considered
in [9], [22] and [25] while transitions defined by (the multiplication of) a Lie
group have been discussed in [20], [21]. As shown in [20], for static scenarios (i.e.,
with no interactive external objects) the resulting representations are structured
and completely recover the geometry of the underlying state of the agent. Our
framework adheres to this line of research by modelling the latent transitions
via the additive Lie group Rn. We however further extend the representation to
include external objects. Our framework thus applies to more general scenarios
and dynamics while still benefiting from the geometrical guarantees.

Keypoint Extraction. When observations are images, computer vision of-
fers a spectrum of classical approaches to extract geometric structure. In par-
ticular, extracting keypoints enables to identify any object appearing in the

https://github.com/reichlin/GeomRepObj
https://github.com/reichlin/GeomRepObj
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observed images. Popular keypoint extractors include classical non-parametric
methods [19], [2] as well as modern self-supervised learning approaches [16], [8].
However, keypoints from an image provide a representation based on the geom-
etry of the field of view or, equivalently, of the pixel plane. This means that the
intrinsic three-dimensional geometry of states of objects is not preserved since
the representation differs from it by an unknown projective transformation. In
specific situations such transformation can still be recovered by processing the
extracted keypoints. This is the case when images are in first person view w.r.t.
the observer: the keypoints can then be converted into three-dimensional land-
marks via methods such as bundle adjustment [31], [29]. Differently from com-
puter vision approaches, our framework is data-agnostic and does not rely on
specific priors tied to the nature of observations. It instead extracts representa-
tions based on the actions performed by the agent, which is possible due to the
dynamical assumptions described in Section 3.

Interactive Perception. The role of interaction in perception has been
extensively studied in cognitive sciences and neuroscience [7, 12, 23]. Inspired
by those, the field of interactive perception from robotics aims to enhance the
understanding of the world by part of an artificial system via interactions [5].
Applications include active control of cameras [1] and manipulators [32] in order
to improve the perception of objects [4, 13, 28]. Our work fits into the program
of interactive perception since we crucially rely on performed actions as a self-
supervisory signal to learn the representation. We show that the location of
objects can be extracted from actions alone, albeit in a particular dynamical
setting. Without interaction, this would require strong assumptions and knowl-
edge around the data and the environment as discussed in Section 2.

3 Formalism and Assumptions

In this section we introduce the relevant mathematical formalism together with
the assumptions necessary for our framework. We consider the following scenario:
an agent navigates in a Euclidean space and interacts in an unknown way with
an external object. This means that the space of states S is decomposed as

S = Sint × Sext (1)

where Sint is the space of states of the agent (internal states) and Sext is the
space of states of the object (external states). We identify both the agent and the
object with their location in the ambient space, meaning that Sint ⊆ Rn ⊇ Sext,
where n is the ambient dimension. The actions that the agent performs are
displacements of its state i.e., the space of actions consists of translations A =
Rn. In our formalism we thus abstract objects as material points for simplicity of
the theoretical analysis. The practical extension to volumetric objects together
with their orientation is discussed in Section 4.3 while the extension of agent’s
actions to arbitrary Lie groups is briefly discussed in Section 6.

Our first assumption is that the agent can reach any position from any other
via a sequence of actions. This translates in the following connectivity condition:
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Assumption 1. (Connectedness) The space Sint is connected and open.

When the agent performs an action a ∈ A the state s = (sint, sext) transitions
into a novel one denoted by a·s = (s′int, s

′
ext). Since the actions displace the agent,

the internal state gets translated as s′int = sint + a.4 However, the law governing
the transition of the object s′ext = T (s, a) is assumed to be unknown and can
be arbitrarily complex and stochastic. We stick to deterministic transitions for
simplicity of explanation. Crucially, the agent does not have access to the ground-
truth state s. Instead it perceives unstructured and potentially high-dimensional
observations o ∈ O (e.g., images) via an unknown emission map ω : S → O.
We assume that ω is injective so that actions induce deterministic transitions of
observations, which we denote as o′ = a·o. This assumption is equivalent to total
observability of the scenario and again simplifies the forthcoming discussions by
avoiding the need to model stochasticity in O.

The fundamental assumption of this work is that the dynamics of the external
object revolves around contact i.e., the object does not displace unless it is
touched by the agent. This is natural and often satisfied in practice. In order to
formalize it, note that when the agent in state sint performs an action a ∈ A we
can imagine it moving along the open segment ⌊sint, sint+a⌋ = {sint+ta}0<t<1.
Our assumption then translates into (see Figure 1 for a graphical depiction):

Assumption 2. (Interaction Occurs at Contact) For all agent states sint ∈ S
and actions a ∈ A it holds that s′ext = sext if and only if sext ̸∈ ⌊sint, sint + a⌋.

As such, the dynamics of the external object can be summarized as follows:

s′ext =

{
sext if sext ̸∈ ⌊sint, sint + a⌋,
T (s, a) otherwise.

(2)

Finally, we need to assume that interaction is possible for every state of the
object i.e., the latter has to be always reachable by the agent. This is formalized
via the following inclusion:

Assumption 3. (Reachability) It holds that Sext ⊆ Sint.

4 Method

4.1 Representations and Equivariance

We now outline the inference problem addressed in the present work. Given the
setting introduced in Section 3, the overall goal is to infer a representation of
observations φ : O → Z = Zint×Zext, where Zint = Zext = Rn. Ideally φ recovers
the underlying inaccessible state in S ⊆ Z and disentangles Sint from Sext. In
order to achieve this, our central idea is to split the problem of representing the

4 Whenever we write a · s we implicitly assume that the action is valid i.e., that
sint + a ∈ Sint.
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agent and the object. Since the actions of the agent are available, zint ∈ Zint

can be inferred geometrically by existing representation learning methods. The
representation of the object zext ∈ Zext can then be inferred based on the one of
the agent by exploiting the relation between the dynamics of the two (Equation
2). In order to represent the agent, we consider the fundamental concept of
(translational) equivariance:

Definition 1. The representation φ is said to be equivariant (on internal states)
if for all a ∈ A and o ∈ O it holds that z′int = zint + a where (zint, zext) = φ(o)
and (z′int, z

′
ext) = φ(a · o).

We remark that Definition 1 refers to internal states only, making our termi-
nology around equivariance unconventional. As observed in previous work [20],
equivariance guarantees a faithful representation of internal states. Indeed if φ
is equivariant then zint differs from sint by a constant vector. This means that
the representation of internal states is a translation of ground-truth ones and as
such is lossless (i.e., bijective) and isometrically recovers the geometry of Sint.

The above principle can be leveraged in order to learn a representation of
external states with the same benefits as the representation of internal ones.
Since the external object displaces only when it comes in contact with the agent
(Assumption 2), the intuition is that zext can be inferred by aligning it with
zint. The following theoretical result formalizes the possibility of learning such
representations and traces the foundation of our learning framework.

Theorem 4. Suppose that the representation φ : O → Z satisfies:

1. φ is equivariant (Definition 1),
2. φ is injective,
3. for all o ∈ O and a ∈ A it holds that either z′ext = zext or zext ∈ ⌊zint, zint+a⌋

where (zint, zext) = φ(o) and (z′int, z
′
ext) = φ(a · o).

Then φ ◦ ω is a translation i.e., there is a constant vector h ∈ Rn such that for
all s ∈ S it holds that φ(ω(s)) = s+ h. In particular, φ ◦ ω is an isometry w.r.t.
the Euclidean metric on both S and Z.

We refer to the Appendix for a proof. Theorem 4 states that if the conditions
1. − 3. are satisfied (together with the assumptions stated in Section 3) then
the representation recovers the inaccessible state up to a translation and thus
isometrically preserves the geometry of the environment. All the conditions from
Theorem 4 refer to properties of φ depending on observations and the effect of
actions on them, which are accessible in practice. The goal of the forthcoming
section is to describe how these conditions can be enforced on φ by optimizing
a system of losses.

4.2 Learning the Representation

In this section we describe a viable implementation of a representation learning
framework adhering to the conditions of Theorem 4. We model the representation
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learner φ = (φint, φext) as two parameterized functions φint : O → Zint, φext :
O → Zext e.g., two deep neural network models. In order to train the models,
we assume that the dataset D consists of transitions observed by the agent in
the form of D = {(o, a, o′ = a · o)} ⊆ O × A × O. Such data can be collected
by the agent autonomously exploring its environment and randomly interacting
with the external object. This implies that the only form of supervision required
consists of the actions performed by the agent together with their effect on the
observations.

First, we propose to enforce equivariance, condition 1 from Theorem 4, by
minimizing the loss:

Lint(o, a, o
′) = d(z′int, zint + a) (3)

where d is a measure of similarity on Zint = Rn and the notation is in accordance
with Definition 1. Typically d is chosen as the squared Euclidean distance as
described in previous work [15,22].

Next, we focus on the representation of the external object. As stated before,
the dataset consists of transitions either with or without interaction. When an
interaction occurs, zext should belong to the segment ⌊zint, zint + a⌋. When it
doesn’t, the representation should be invariant i.e., zext = z′ext. These two cases
are outlined in condition 2 of Theorem 4 and can be enforced via the following
losses:

L−(o, a, o
′) = d(zext, z

′
ext) L+(o, a, o

′) = d(zext, ⌊zint, zint + a⌋). (4)

The distance involved in L+ represents a point-to-set metric and is typically
set as d(z, E) = infx∈E d(z, x). The latter has a simple explicit expression in the
case E is a segment.

log dW(w,w′)

Fig. 2: Histograms of the log-distances in W. Colors indicate whether interaction
occurs (orange) or not (blue). The dotted line represents the threshold from
Otsu’s algorithm.

However, the data contains no information on whether interaction occurs
or not. It is, therefore, necessary to design a procedure determining when to
optimize L+ and L−. To this end, we propose to train a parallel model φcont :
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O → W with latent contrastive representation W (potentially different from Z).
This is trained to attract w = φcont(o) to w′ = φcont(o

′) while forcing injectivity
of φ (condition 2 from Theorem 4). To this end, we stick to the popular InfoNCE
loss from contrastive learning literature [6]:

Lcont(o, o
′) = dW(w,w′) + logEo′′

[
e−dW(w′,w′′)−d(z′

int,z
′′
int)

]
(5)

where o′′ is marginalized fromD. The second summand of Equation 5 encour-
ages the joint encodings (zint, w) to spread apart and thus encourages φ to be
injective. Since subsequent observations where interaction does not occur share
the same external state, these will lie closer in W than the ones where interac-
tion does not occur. This enables to exploit distances in W in order to choose
whether to optimize L− or L+. We propose to partition (the given batch of) the
dataset in two disjoint classes D = C− ⊔C+ by applying a natural thresholding
algorithm to the quantities dW(w,w′). This can be achieved via one-dimensional
2-means clustering, which is equivalent to Otsu’s algorithm [24] (see Figure 2 for
an illustration). We then optimize:

Lext(o, a, o
′) =

{
L−(o, a, o

′) if (o, a, o′) ∈ C−,

L+(o, a, o
′) if (o, a, o′) ∈ C+.

(6)

In summary, the total loss minimized by the models (φint, φext, φcont) w.r.t.
the respective parameters is (see the pseudocode included in the Appendix):

L = E(o,a,o′)∼D[Lint(o, a, o
′) + Lext(o, a, o

′) + Lcont(o, o
′)]. (7)

4.3 Incorporating Volumes of Objects

So far we have abstracted the external object as a point in Euclidean space.
However, the object typically manifests with a body and thus occupies a volume.
Interaction and consequent displacement (Assumption 3) occur when the agent
comes in contact with the boundary of the object’s body. The representation
thus needs to take volumetric features into account in order to faithfully extract
the geometry of states.

In order to incorporate volumetric objects into our framework we propose to
rely on stochastic outputs i.e., to design zext as a probability density over Zext

representing (a fuzzy approximation of) the body of the object. More concretely,
the output of φext consists of (parameters of) a Gaussian distribution whose co-
variance matrix represents the inertia ellipsoid of the object i.e., the ellipsoidal
approximation of its shape. By diagonalizing the covariance matrix via an or-
thonormal frame, the orientation of the object can be extracted in the form of a
rotation matrix in SO(n). The losses of our model are naturally adapted to the
stochastic setting as follows. The distance d appearing in Equation 4 is replaced
with Kullback-Leibler divergence. The latter has an explicit simple expression
for Gaussian densities which allows to compute L− directly. In order to compute
L+ we rely on a Monte Carlo approximation, meaning that we sample a point
uniformly from the interval and set L+ as the negative log-likelihood of the point
w.r.t. the density defining zext.
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5 Experiments

We empirically investigate the performance of our framework in correctly iden-
tifying the position of an agent and of an interactive object. The overall goal
of the experimental evaluation is to show that our representation is capable of
extracting the geometry of states without relying on any prior knowledge of ob-
servations e.g., depth information. All the scenarios are normalized so that states
lie in the unit cube. Observations are RGB images of resolution 100× 100 in all
the cases considered. We implement each of φint, φext and φcont as a ResNet-
18 [11] and train them for 100 epochs via the Adam optimizer with learning rate
0.001 and batch-size 128. We compare our framework with two baselines:

– Transporter Network [16]: a vision-based state-of-the-art unsupervised key-
point extractor. The approach heavily relies on image manipulation in order
to infer regions of the pixel plane that are persistent between pairs of im-
ages. We train the model in order to extract two (normalized) keypoints
representing zint and zext respectively.

– Variational AutoEncoder (VAE) [14, 27]: a popular representation learner
with a standard Gaussian prior on its latent space. We impose the prior on
Zext only, while φint is still trained via the equivariance loss (Equation 3). The
decoder takes the joint latent space Z in input. We set dim(Zext) = 32. This
makes the representations disentangled, so that zint and zext are well-defined.
The resulting representation of the object is generic and is not designed to
extract any specific structure from observations.

In order to evaluate the preservation of geometry we rely on the following
evaluation metric Ltest. Given a trained representation φ : O → Z and a test set
Dtest of observations with known ground-truth states, we define:

Ltest = Eo∼Dtest [ d(zint − zext, sint − sext) ] (8)

where d is the squared Euclidean distance. Since both our framework and (the
encoder of) VAE have stochastic outputs (see Section 4.3), we set zext as the
mean of the corresponding Gaussian distribution. Equation 8 measures the qual-
ity of preservation of the relative position between the agent and the object by
part of the representation. When Ltest = 0, φ is an isometry (w.r.t. the Euclidean
metric) and thus recovers the geometry of states. The translational invariance of
Ltest makes the comparison agnostic to any reference frame eventually inferred
by the given learner.

5.1 Sprites

For the first experiment we procedurally generate images of two sprites (the
agent and the object) moving on a black background (see Figure 3, top-left).
Between images, the agent (red figure) moves according to a known action. If
the agent comes in contact with the object (green diamond) during the execution
of the action (see Assumption 2) the object is randomly displaced on the next
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Ours Transporter Ours Transporter Ours Transporter

Fig. 3: Top: Visualization of the dataset from the Sprites experiment. On the
left, an example of a datapoint (o, a, o′) ∈ D. On the right, an example of an
observation from the second version of the dataset where a dynamic background
is added as a visual distractor. Bottom: Comparison of zint, zext (gray dots,
with the ellipse representing the learned std) extracted via our model and the
Transporter network on the three versions of the Sprites dataset: vanilla version
(left), with dynamic background (middle) and with anisotropic object (right).

image. In other words, the object’s transition function T (s, a) is stochastic with
a uniform distribution. Such a completely stochastic dynamics highlights the
independence of the displacement of the agent w.r.t. the one of the object. We
generate the following two additional versions of the dataset:

– A version with dynamic background. Images are now overlaid on top of a
nine-times larger second image (blue squares in Figure 3, top-right). The
field of view and thus the background moves together with the agent. The
background behaves as a visual distractor and makes it challenging to extract
structure (e.g., keypoints) via computer vision.

– A version with anisotropic object. The latter is now a rectangle with one
significantly longer side. Besides translating, the object rotates as well when
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interaction occurs. The goal here is showcasing the ability of our model in
inferring the orientation of the object as described in Section 4.3.
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Fig. 4: Log-scale plots of the evaluation metric (Equation 8) as the training
progresses for the Sprite experiment. The curves display mean and std (for 10
experimental runs). Left: vanilla version of the dataset. Right: version with a
dynamic background.

Figure 4 displays the analytic comparison of the performances between our
model and the baselines in terms of the evaluation metric (Equation 8). The plot
is in log-scale for visualization purposes. Moreover, Figure 3 (bottom) reports
a qualitative comparison between our model and the Transporter network. As
can be seen, for the simpler version of the experiment (plot on the left) both our
model and the Transporter network successfully achieve low error and recover the
geometry of both the agent and the object. Note that the Transporter network
converges slowly and with high variance (Figure 4, left). This is probably due
to the presence of a decoder in its architecture. Our framework instead involves
losses designed directly in the latent space, avoiding an additional model to de-
code observations. As expected, VAE achieves significantly worse performances
because of the lack of structure in its representation. As can be seen from Figure
3 (bottom-right), when the object is anisotropic our model correctly infers its
orientation by encoding it into the covariance of the learned Gaussian distribu-
tion. The Transporter network instead places a keypoint on the barycenter of
the object and is therefore unable to recover the orientation.

For the more challenging version of the experiment with dynamic background,
the transporter is not able to extract the expected keypoints. As can be seen
from Figure 3 (bottom-middle), the distracting background causes the model to
focus on regions of the image not corresponding to the agent and the object. This
is reflected by a significantly higher error (and variance) w.r.t. our framework
(Figure 4, right). The latter still infers the correct representation and preserves
geometry. This empirically confirms that our model is robust to visual distractors
since it does not rely on any data-specific feature or structure.



12 A. Reichlin, G. L. Marchetti et al.

5.2 Soccer

For the second experiment we test our framework on an environment consisting
of an agent on a soccer field colliding with a ball (see Figure 5, left). The scene is
generated and rendered via the Unity engine. The physics of the ball is simulated
realistically: in case of contact, rolling takes gravity and friction into account.
Note that even though the scene is generated via three-dimensional rendering,
the (inaccessible) state space is still two-dimensional since the agent navigates
on the field. We generate two datasets of 10000 triples (o, a, o′ = a · o) with
observations of different nature. The first one consists of views in third-person
perspective from a fixed external camera. In the second one, observations are
four views in first-person perspective from four cameras attached on top of the
agent and pointing in the 4 cardinal directions. We refer to Figure 5 (left) for
a visualization of the two types of observations. In Figure 5 (right), we report
visualizations of the learned representations. The extracted representation of our
proposed method depends solely on the geometry of the problem at hand rather
than the nature of the observation. The learned representation is thus identical
when learned from the third-person dataset or the first-person one, as shown in
5 (right).

Figure 6 (left) displays the comparison of the performances between our
model and the baselines in terms of the evaluation metric (Equation 8). The
Transporter network is trained on observations in third person and as can be
seen, correctly extracts the keypoints on the pixel plane. As discussed in Sec-
tion 2, such a plane differs from Sint by an unknown projective (and thus non-
isometric) transformation. This means that despite the successful keypoint ex-
traction, the geometry of the state space is not preserved, which is reflected by
the high error on the plot. This is a general limitation of vision-based approaches:
they are unable to recover the intrinsic geometry due to perspective in the case
of a three-dimensional scene. Differently from that, our framework extracts an
isometric representation and achieves low error independently from the type of
observations.

5.3 Control Task

In our last experiment we showcase the benefits of our representations in solv-
ing downstream control tasks. The motivation is that a geometric and low-
dimensional representation improves efficiency and generalization compared to
solving the task directly from observations. To this end we design a control task
for the Soccer environment consisting in kicking the ball into the goal. The re-
ward is given by the negative distance between the (barycenter of the) ball and
the (barycenter of the) goal. Observations are views in third person perspective.
In each episode the agent and the ball are initially placed in a random location
while the ball is placed in the center. The maximum episode length is 20 steps.

We train a number of models via the popular reinforcement learning method
Proximal Policy Optimization (PPO; [30]). One model (End-to-End) receives
raw observations as inputs. The others operate on pre-trained representations
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Z given by the Transporter network, the VAE and our method respectively. All
the models implement a comparable architecture for a fair comparison.

Ours

(Third P.)

Ours

(First P.) Transporter

F
ir
st

P
e
rs
o
n

T
h
ir
d

P
e
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o
n

Fig. 5: Left: an example of the two types of observations (third and first person
respectively) from the Soccer experiment. Right: visual comparison of zint, zext
(red dots) extracted via our model (from third-person view and first-person view)
and the Transporter network. For our model, we overlap the representation to a
view of the scene from the top instead of the original observation.

Figure 6 (right) displays the reward gained on test episodic runs as the train-
ing by reinforcement learning progresses. As can be seen, our geometric repre-
sentation enables to solve the task more efficiently than both the competing
representations (Transporter and VAE) and the end-to-end model. Note that
the Transporter not only does not preserve the geometry of the state space, but
has the additional disadvantage that the keypoint corresponding to the agent
and the object can get swapped in the output of φ. This causes indeterminacy
in the representation and has a negative impact on solving the task. Due to this,
the Transporter performs similarly to the end-to-end model and is outperformed
by the generic and non-geometric representation given by the VAE. In conclu-
sion, the results show that a downstream learner can significantly benefit from
geometric representations of observations in order to solve downstream control
tasks.
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Fig. 6: Left: log-scale plot of the evaluation metric as the training progresses
for the Soccer experiment. Observations are in third person. Right: plot of the
reward gained via reinforcement learning on top of different representations.

6 Conclusions and Future Work

In this work we proposed a novel framework for learning representations of both
an agent and an object the agent interacts with. We designed a system of losses
based on a theoretical principle that guarantees isometric representations in-
dependently from the nature of observations and relying on supervision from
performed actions alone. We empirically investigated our framework on multiple
scenarios showcasing advantages over computer vision approaches.

Throughout the work we assumed that the agent interacts with a single
object. An interesting line of future investigation is extending the framework to
take multiple objects into account. In the stochastic context (see Section 4.3) an
option is to model zext via multi-modal densities, with each mode corresponding
to an object. As an additional line for future investigation, our framework can
be extended to actions beyond translations in Euclidean space. Lie groups other
than Rn often arise in practice. For example, if the agent is able to rotate its
body then (a factor of) the space of actions has to contain the group of rotations
SO(n), n = 2, 3. Thus, a framework where actions (and consequently states) are
represented in general Lie groups defines a useful and interesting extension.
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7 Appendix

7.1 Proofs of Theoretical Results

Theorem 5. Suppose that the representation φ : O → Z satisfies:

1. φ is equivariant (Definition 1),
2. φ is injective,
3. for all o ∈ O and a ∈ A it holds that z′ext ̸= zext if and only if zext ∈

⌊zint, zint + a⌋ where (zint, zext) = φ(o) and (z′int, z
′
ext) = φ(a · o).

Then φ ◦ ω is a translation i.e., there is a constant vector h ∈ Rn such that for
all s ∈ S it holds that φ(ω(s)) = s+ h. In particular, φ is an isometry w.r.t. the
Euclidean metric on both S and Z.

Fig. 7: Graphical depiction of the proof of Theorem 4.

Proof. Pick an arbitrary state s0 ∈ S together with its represented internal state
z0int and set h = z0int − s0int. For any state s, consider the action a = sint − s0int.
Equivariance then implies that zint = z0int + a = sint + h. This shows that the
claim holds for internal states.

To prove that the same happens for external states, suppose by contradiction
that there is a state s such that zext ̸= sext+h. Consider any path during which
the agent interacts with the object without passing through zext. Formally, this
means considering a sequence of actions a1, · · · , ar such that (see Figure 7, left):

– zext and sext + h do not belong to ⌊zint + a1 + · · ·+ ai−1, zint + a1 + · · ·+ ai⌋
for every i = 1, · · · , r − 1,

– zext does not belong to ⌊zint+a1+ · · ·+ar−1, zint+a1+ · · ·+ar⌋ but sext+h
does.

The existence of such a path follows from Assumptions 1 and 3. After interac-
tion the state becomes s′ = ar · (ar−1 · · · (a1 · s)) with s′ext ̸= sext because of
Assumption 2. One can then consider a path back to the initial agent’s position
zint i.e., another sequence of actions ar+1, · · · , aR such that (see Figure 7, right):

– s′ext + h and zext do not belong to ⌊zint + a1 + · · ·+ ai−1, zint + a1 + · · ·+ ai⌋
for every i = r + 1, · · · , R,
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– a1 + · · ·+ aR = 0.

All the conditions imply together that the representation of the object remains
equal to zext during the execution of the actions a1, · · · , aR. Since the actions sum
to 0, the representation of the agent does not change as well. But then φ(ω(s)) =
φ(ω(sint, s

′
ext)) while sext ̸= s′ext, contraddicting injectivity. We conclude that

zext = sext + h and thus z = s+ h as desired.

7.2 Pseudocode for Loss Computation

Algorithm 1 Loss Computation

Input: Batch B ⊆ D, models φint, φext, φcont

Output: Loss L
L = 0
for all (o, a, o′) ∈ B do

Compute zint = φint(o), zext = φext(o), z′int = φint(o
′), z′ext = φext(o

′), w =
φcont(o), w

′ = φcont(o
′)

end for
Compute the classes C−, C+ via Otsu’s algorithm based on {dW(w,w′)}
for all (o, a, o′) ∈ B do

Compute Lint(o, a, o
′) via Equation 3

Compute A = {dW(w′, w′′), d(z′int, z
′′
int)} for o′′ marginalized from B

Based on A compute Lcont(o, o
′) via Equation 5

if dW(w,w′) ∈ C− then
Compute Lext(o, a, o

′) = L−(o, a, o
′) via Equation 4 (left)

else
Compute Lext(o, a, o

′) = L+(o, a, o
′) via Equation 4 (right)

end if
L← L+ Lint + Lext + Lcont

end for


	Learning Geometric Representations of Objects via Interaction

