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Abstract

Contrastive learning is an efficient approach to self-supervised representation learning.
Although recent studies have made progress in the theoretical understanding of contrastive
learning, the investigation of how to characterize the clusters of the learned representations is still
limited. In this paper, we aim to elucidate the characterization from theoretical perspectives. To
this end, we consider a kernel-based contrastive learning framework termed Kernel Contrastive
Learning (KCL), where kernel functions play an important role when applying our theoretical
results to other frameworks. We introduce a formulation of the similarity structure of learned
representations by utilizing a statistical dependency viewpoint. We investigate the theoretical
properties of the kernel-based contrastive loss via this formulation. We first prove that
the formulation characterizes the structure of representations learned with the kernel-based
contrastive learning framework. We show a new upper bound of the classification error of a
downstream task, which explains that our theory is consistent with the empirical success of
contrastive learning. We also establish a generalization error bound of KCL. Finally, we show
a guarantee for the generalization ability of KCL to the downstream classification task via a
surrogate bound.

1 Introduction

Recently, many studies on self-supervised representation learning have been paying much attention
to contrastive learning (Caron et al., 2020; Chen et al., 2020a,b; Dwibedi et al., 2021; HaoChen
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et al., 2021; Li et al., 2021). Through contrastive learning, encoder functions acquire how to encode
unlabeled data to good representations by utilizing some information of similarity behind the data,
where recent works (Chen et al., 2020a,b; Dwibedi et al., 2021) use several data augmentation
techniques to produce pairs of similar data. It is empirically shown by many works (Caron
et al., 2020; Chen et al., 2020a,b; Dwibedi et al., 2021; HaoChen et al., 2021) that contrastive
learning produces effective representations that are fully adaptable to downstream tasks, such as
classification and transfer learning.

Besides the practical development of contrastive learning, the theoretical understanding of
contrastive learning is essential to construct more efficient self-supervised learning algorithms. In
this paper, we tackle the following fundamental question of contrastive learning from the theoretical
side: How are the clusters of feature vectors output from an encoder model pretrained by contrastive
learning characterized?

Recently, several works have shed light on several theoretical perspectives on this problem to
study the generalization guarantees of contrastive learning to downstream classification tasks (Arora
et al., 2019; Dufumier et al., 2022; HaoChen and Ma, 2023; HaoChen et al., 2021; Huang et al.,
2023; Wang et al., 2022a; Zhao et al., 2023). One of the primary approaches of these works
is to introduce some similarity measures in the data. Arora et al. (2019) has introduced the
conditional independence assumption, which assumes that data x and its positive data x+ are
sampled independently according to the conditional probability distribution Dc, given the latent
class c drawn from the latent class distribution. Although the concepts of latent classes and
conditional independence assumption are often utilized to formulate semantic similarity of x and
x+ (Arora et al., 2019; Ash et al., 2022; Awasthi et al., 2022; Bao et al., 2022; Zou and Liu, 2023), it
is pointed out by several works (HaoChen et al., 2021; Wang et al., 2022a) that this assumption can
be violated in practice. Several works (HaoChen et al., 2021; Wang et al., 2022a) have introduced
different ideas about the similarity between data to alleviate this assumption. HaoChen et al. (2021)
have introduced the notion called population augmentation graph to provide a theoretical analysis
for Spectral Contrastive Learning (SCL) without the conditional independence assumption on x and
x+. Some works also focus on various graph structures (Dufumier et al., 2022; HaoChen and Ma,
2023; Wang et al., 2022a). Although these studies give interesting insights into contrastive learning,
the applicable scope of their analyses is limited to specific objective functions. Recently, several
works (Huang et al., 2023; Zhao et al., 2023) consider the setup where raw data in the same latent
class are aligned well in the sense that the augmented distance is small enough. Although their
theoretical guarantees can apply to multiple contrastive learning frameworks, their assumptions on
the function class of encoders are strong, and it needs to be elucidated whether their guarantees
can hold in practice. Therefore, the investigation of the above question from unified viewpoints
is ongoing, and more perspectives are required to understand the structure learned by contrastive
learning.

1.1 Contributions

In this paper, we aim to theoretically investigate the above question from a unified perspective by
introducing a formulation based on a statistical similarity between data. The main contributions
of this paper are summarized below:
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1. Since we aim to elucidate the mechanism of contrastive learning, we need to consider a
unified framework that can apply to others, not specific frameworks such as SimCLR (Chen
et al., 2020a) and SCL (HaoChen et al., 2021). Li et al. (2021) pointed out that kernel-
based self-supervised learning objectives are related to other contrastive losses, such as the
InfoNCE loss (Chen et al., 2020a; van den Oord et al., 2018). Therefore, via a kernel-based
contrastive learning framework, other frameworks can be investigated through the lens of
kernels. Motivated by this, we utilize the framework termed Kernel Contrastive Learning
(KCL) as a tool for achieving the goal. The loss of KCL, which is called kernel contrastive
loss, is a contrastive loss that has a simple and general form, where the similarity between two
feature vectors is measured by a reproducing kernel (Aronszajn, 1950; Berlinet and Thomas-
Agnan, 2004; Steinwart and Christmann, 2008) (Section 3). One of our contributions is
employing KCL to study the mechanism of contrastive learning from a new unified theoretical
perspective.

2. We introduce a new formulation of similarity between data (Section 4). Our formulation of
similarity begins with the following intuition: if raw or augmented data x and x′ belong to the
same class, then the similarity measured by some function should be higher than a threshold.
Following this, we introduce a formulation (Assumption 2) based on the similarity function
(2).

3. We present the theoretical analyses towards elucidating the above question (Section 5).
We first show that KCL can distinguish the clusters of representations according to this
formulation (Section 5.1). This result shows that our formulation is closely connected to the
mechanism of contrastive learning. Next, we establish a new upper bound for the classification
error of the downstream task (Section 5.2), which indicates that our formulation does not
contradict the practical efficiency of contrastive learning shown by a line of work (Chen
et al., 2020a,b; Dwibedi et al., 2021; HaoChen et al., 2021). Notably, our upper bound is
valid under more realistic assumptions on the encoder functions, compared to the previous
works (Huang et al., 2023; Zhao et al., 2023). We also establish the generalization error
bound for KCL (Section 5.3). Finally, applying our theoretical results, we show a guarantee
for the generalization of KCL to the downstream classification task via a surrogate bound
(Section 5.4).

1.2 Related Work

Contrastive learning methods have been investigated from the empirical side (Caron et al., 2020;
Chen et al., 2020a, 2021, 2020b). Chen et al. (2020a) propose a method called SimCLR, which
utilizes a variant of InfoNCE (Chen et al., 2020a; van den Oord et al., 2018). Several works have
recently improved contrastive methods from various viewpoints (Caron et al., 2020; Dwibedi et al.,
2021; Robinson et al., 2021a,b). Contrastive learning is often utilized in several fundamental tasks,
such as clustering (Van Gansbeke et al., 2020) and domain adaptation (Singh, 2021), and applied to
some domains such as vision (Chen et al., 2020a), natural language processing (Gao et al., 2021),
and speech (Jiang et al., 2021). Besides the contrastive methods, several works (Chen and He,
2021; Grill et al., 2020) also study non-contrastive methods. Investigation toward the theoretical
understanding of contrastive learning is also a growing focus. For instance, the generalization ability
of contrastive learning to the downstream classification task has been investigated from many kinds
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of settings (Arora et al., 2019; Bao et al., 2022; HaoChen and Ma, 2023; HaoChen et al., 2021; Huang
et al., 2023; Saunshi et al., 2022; Tosh et al., 2021b; Wang et al., 2022a; Zhao et al., 2023). Several
works investigate contrastive learning from various theoretical and empirical viewpoints to elucidate
its mechanism, such as the geometric properties of contrastive losses (Huang et al., 2023; Wang
and Isola, 2020), formulation of similarity between data (Arora et al., 2019; Dufumier et al., 2022;
HaoChen et al., 2021; Huang et al., 2023; von Kügelgen et al., 2021; Wang et al., 2022a; Zhao et al.,
2023), inductive bias (HaoChen and Ma, 2023; Saunshi et al., 2022), transferablity (HaoChen et al.,
2022; Shen et al., 2022; Zhao et al., 2023), feature suppression (Chen et al., 2021; Robinson et al.,
2021a), negative sampling methods (Chuang et al., 2020; Robinson et al., 2021b), and optimization
viewpoints (Tian, 2022; Wen and Li, 2021).

Several works (Dufumier et al., 2022; Johnson et al., 2023; Kiani et al., 2022; Li et al., 2021;
Tsai et al., 2022; Zhang et al., 2022) study the connection between contrastive learning and the
theory of kernels. Li et al. (2021) investigate some contrastive losses, such as InfoNCE, from a
kernel perspective. Zhang et al. (2022) show a relation between the kernel method and f -mutual
information and apply their theory to contrastive learning. Tsai et al. (2022) tackle the conditional
sampling problem using kernels as similarity measurements. Dufumier et al. (2022) consider
incorporating prior information in contrastive learning by using the theory of kernel functions.
Kiani et al. (2022) connect several self-supervised learning algorithms to kernel methods through
optimization problem viewpoints. Note that different from these works, our work employs kernel
functions to investigate a new unified perspective of contrastive learning via the statistical similarity.

Many previous works investigate various interpretations of self-supervised representation
learning objectives. For instance, the InfoMax principle (Poole et al., 2019; Tschannen et al.,
2020), spectral clustering (HaoChen et al., 2021) (see Ng et al. (2002) for spectral clustering),
and Hilbert-Schmidt Independence Criterion (HSIC) (Li et al., 2021) (see Gretton et al. (2005)
for HSIC). However, the investigation of contrastive learning from unified perspectives is worth
addressing to elucidate its mechanism, as recent works on self-supervised representation learning
tackle it from the various standpoints (Dubois et al., 2022; Huang et al., 2023; Johnson et al., 2023;
Kiani et al., 2022; Tian, 2022).

2 Preliminaries

2.1 Problem Setup

We give the standard setup of contrastive learning. Our setup closely follows that of HaoChen
et al. (2021), though we also introduce additional technically necessary settings to maintain the
mathematical rigorousness. Let X ⊂ Rp be a topological space consisting of raw data, and let
PX be a Borel probability measure on X. A line of work on contrastive learning (Chen et al.,
2020a,b; Dwibedi et al., 2021; HaoChen et al., 2021) uses data augmentation techniques to obtain
similar augmented data points. Hence, we define a set T of maps transforming a point x ∈ X
into Rp, where we assume that T includes the identity map on Rp. Then, let us define X =⋃
t∈T {t(x) : x ∈ X}. Every element t in T can be regarded as a map returning an augmented

data x = t(x) for a raw data point x ∈ X. Note that since the identity map belongs to T , X
is a subset of X. We endow X with some topology. Let νX be a σ-finite and non-negative Borel
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measure in X. Following the idea of HaoChen et al. (2021), we denote a(x|x) as the conditional
probability density function of x given x ∼ PX and define the weight function w : X × X → R as
w(x, x′) = Ex∼PX

[a(x|x)a(x′|x)] . From the definition, w is a joint probability density function on
X×X. Let us define the marginal w(·) of the weight function to be w(x) =

∫
w(x, x′)dνX(x′). The

marginal w(·) is also a probability density function on X, and the corresponding probability measure
is denoted by dPX(x) = w(x)dνX(x). Denote by Ex,x+ [·],Ex,x− [·] respectively, the expectation w.r.t.

the probability measure w(x, x′)dν⊗2
X (x, x′), w(x)w(x′)dν⊗2

X (x, x′) on X× X, where ν⊗2
X := νX ⊗ νX

is the product measure on X × X. To rigorously formulate our framework of contrastive learning,
we assume that the marginal w is positive on X. Indeed, a point x ∈ X satisfying w(x) = 0 is
not included in the support of a(·|x) for PX-almost surely x ∈ X, which means that such a point x
merely appears as augmented data.

Let f0 : X → Rd be an encoder model mapping augmented data to the feature space, and let
F0 be a class of functions consisting of such encoders. In practice, f0 is defined by a backbone
architecture (e.g., ResNet (He et al., 2016); see Chen et al. (2020a)), followed by the additional
multi-layer perceptrons called projection head (Chen et al., 2020a). We assume that F0 is uniformly
bounded, i.e., there exists a universal constant c ∈ R such that supf0∈F0

supx∈X ‖f0(x)‖2 ≤ c. For
instance, a function space of bias-free fully connected neural networks on a bounded domain, where
every neural network has the continuous activate function at each layer, satisfies this condition.
Since a feature vector output from the encoder model is normalized using the Euclidean norm
in many empirical studies (Chen et al., 2020a; Dwibedi et al., 2021) and several theoretical
studies (Wang and Isola, 2020; Wang et al., 2022a), we consider the function space of normalized
functions F = {f | ∃f0 ∈ F0, f(x) = f0(x)/‖f0(x)‖2 for ∀x ∈ X}. Here, to guarantee that every
f ∈ F is well-defined, suppose that m(F0) := inff∈F infx∈X ‖f0(x)‖2 > 0 holds.

Finally, we introduce several notations used throughout this paper. Let M ⊂ X be a measurable
set, then we write

E[f(x)|M] :=

∫
X
f(x)PX(dx|M) = PX(M)−1

∫
M
f(x)w(x)dνX(x).

We also use the notation E[f(x);M] :=
∫
M f(x)w(x)dνX(x). Denote by 1M(·), the indicator function

of a set M. We also use [n] := {1, · · · , n} for n ∈ N.

2.2 Reproducing Kernels

We provide several notations of reproducing kenrels (Aronszajn, 1950; Berlinet and Thomas-Agnan,
2004; Steinwart and Christmann, 2008). Let k : Sd−1 × Sd−1 → R be a real-valued, continuous,
symmetric, and positive-definite kernel, where Sd−1 denotes the unit hypersphere centered at the
origin 0 ∈ Rd, and the positive-definiteness means that for every {zi}ni=1 ⊂ Sd−1 and {ci}ni=1 ⊂ R,∑n

i,j=1 cicjk(zi, zj) ≥ 0 holds (Berlinet and Thomas-Agnan, 2004). Let Hk be the Reproducing
Kernel Hilbert Space (RKHS) with kernel k (Aronszajn, 1950), which satisfies φ(z) = 〈φ, k(·, z)〉Hk
for all φ ∈ Hk and z ∈ Sd−1. Denote h(z) = k(·, z) for z ∈ Sd−1, where such a map is often called
feature map (Steinwart and Christmann, 2008). Here, we impose the following condition.

Assumption 1. For the kernel function k, there exists some ρ-Lipschitz function ψ : [−1, 1]→ R
such that for every z, z′ ∈ Sd−1, k(z, z′) = ψ(z>z′) holds.
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Several popular kernels in machine learning such as the linear kernel, quadratic kernel, and
Gaussian kernel, satisfy Assumption 1. Note that the Lipschitz condition in Assumption 1 is
useful to derive the generalization error bound for the kernel contrastive loss (see Section 5.3),
and sometimes it can be removed when analyzing for a specific kernel. We use this assumption to
present general results. Here, we also use the following notion in this paper:

Proposition 1. Let M ⊂ X be a measurable set and f ∈ F . Define µM(f) := EPX [h(f(x))|M].
Then, µM(f) ∈ Hk.

The quantity µM(f) with a measurable subset M can be regarded as a variant of the kernel
mean embedding (Muandet et al., 2017). The proof of Proposition 1 is a slight modification of
Muandet et al. (2017); see Appendix A.

3 Kernel Contrastive Learning

In this section, we introduce a contrastive learning framework to analyze the mechanism of
contrastive learning. In representation learning, the InfoNCE loss (Chen et al., 2020a; van den
Oord et al., 2018) are widely used in application domains such as vision (Chen et al., 2020a, 2021;
Dwibedi et al., 2021). Following previous works (Bao et al., 2022; Chen et al., 2020a; van den Oord
et al., 2018), we define the InfoNCE loss as,

LNCE(f ; τ) = −E x,x+

{x−i }∼PX

[
log

ef(x)>f(x+)/τ

ef(x)>f(x+)/τ +
∑M

i=1 e
f(x)>f(x−i )/τ

]
,

where {x−i } are i.i.d. random variables, τ > 0, and M is the number of negative samples. Wang
and Isola (2020) introduce the asymptotic of the InfoNCE loss:

L∞-NCE(f ; τ) = −Ex,x+
[
f(x)>f(x+)

τ

]
+ Ex

[
logEx′

[
e
f(x)>f(x′)

τ

]]
.

According to the theoretical analysis of Wang and Isola (2020), they show that the first term
represents the alignment, i.e., the averaged closeness of feature vectors of the pair (x, x+), while
the second one indicates the uniformity, i.e., how far apart the feature vectors of negative
samples x, x′ are. Besides, Chen et al. (2021) report the efficiency of the generalized contrastive
losses, which have the additional weight hyperparameter. Meanwhile, since we aim to study
the mechanism of contrastive learning, a simple and general form of contrastive losses related
to other frameworks is required. Here, Li et al. (2021) find the connection between self-supervised
learning and kernels by showing that some HSIC criterion is proportional to the objective function
Ex,x+ [k(f(x), f(x+))] − Ex,x− [k(f(x), f(x−))] (for more detail, see Appendix F.2). Motivated by
this connection, we consider a contrastive learning objective where a kernel function measures the
similarity of the feature vectors of augmented data points. More precisely, for the kernel function
k introduced in Section 2.2, we define the kernel contrastive loss as,

LKCL(f ;λ) = −Ex,x+
[
k(f(x), f(x+))

]
+ λEx,x−

[
k(f(x), f(x−))

]
,

where the weight hyperparameter λ is inspired by Chen et al. (2021). Here, the kernel contrastive
loss LKCL is minimized during the pretraining stage of contrastive learning. Throughout this paper,
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the contrastive learning framework with the kernel contrastive loss is called Kernel Contrastive
Learning (KCL).

Next, we show the connections to other contrastive learning objectives. First, for the InfoNCE
loss, we consider the linear kernel contrastive loss LLinKCL(f ;λ) defined by selecting k(z, z′) = z>z′.
Note that LLinKCL and its empirical loss are also discussed in several works (Huang et al., 2023;
Wang and Liu, 2021). For LLinKCL(f ; 1), we have,

τ−1LLinKCL(f ; 1) ≤ LNCE(f ; τ) + logM−1. (1)

In Appendix F.3, we show a generalized inequality of (1) for the generalized loss (Chen et al., 2021).
Note that similar relations hold when LNCE is replaced with the asymptotic loss (Wang and Isola,
2020) or decoupled contrastive learning loss (Yeh et al., 2022); see Appendix F.3. Therefore, it is
possible to analyze the InfoNCE loss and its variants via LLinKCL(f ;λ).

The kernel contrastive loss is also related to other contrastive learning objectives. For instance,
the quadratic kernel contrastive loss with the quadratic kernel k(z, z′) = (z>z′)2 becomes a
lower bound of the spectral contrastive loss (HaoChen et al., 2021) up to an additive constant
(see Appendix F.3). Thus, theoretical analyses of the kernel contrastive loss can apply to other
contrastive learning objectives.

Note that we empirically demonstrate that the KCL frameworks with the Gaussian kernel
and quadratic kernel work, although simple; see Appendix H.1 for the experimental setup and
Appendix H.2 and H.3 for the results in the supplementary material. The experimental results also
motivate us to use KCL as a theoretical tool for studying contrastive learning.

4 A Formulation Based on Statistical Similarity

4.1 Key Ingredient: Similarity Function

To study the mechanism of contrastive learning, we introduce a notion of similarity between two
augmented data points, which is a key component in our analysis. Let us define,

sim(x, x′;λ) :=
w(x, x′)

w(x)w(x′)
− λ, (2)

where λ ≥ 0 is the weight parameter of LKCL, and w(x, x′) and w(x) have been introduced
in Section 2.1. Note that (2) is well-defined since w(x) > 0 holds for every x ∈ X. The
quantity sim(x, x′;λ) represents how much statistical dependency x and x′ have. The density
ratio w(x, x′)/(w(x)w(x′)) can be regarded as an instance of point-wise dependency introduced by
Tsai et al. (2020). The hyperparameter λ controls the degree of relevance between two augmented
data x, x′ via their (in-)dependency. For instance, with the fixed λ = 1, sim(x, x′; 1) is positive if
w(x, x′) > w(x)w(x′), i.e., x and x′ are correlated.

Here, we note that several theoretical works on representation learning (Johnson et al., 2023;
Tosh et al., 2021b; Wang et al., 2022b) use the density ratio to study the optimal representations
of several contrastive learning objectives. Tosh et al. (2021b) focus on the fact that the minimizer
of a logistic loss can be written in terms of the density ratio and utilize it to study landmark
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embedding (Tosh et al., 2021a). Johnson et al. (2023) connect the density ratio to the minimizers
of several contrastive learning objectives and investigate the quality of representations related to
the minimizers. In addition, Wang et al. (2022b) study the minimizer of the spectral contrastive
loss (HaoChen et al., 2021). Meanwhile, we emphasize that the purpose of using the density ratio
in (2) is not to study the optimal representation of KCL but to give a formulation based on the
statistical similarity between augmented data.

Remark 1. We can show that the kernel contrastive loss can be regarded as a relaxation of the
population-level Normalized Cut problem (Terada and Yamamoto, 2019), where the integral kernel
is defined with (2). Thus, (2) defines the similarity structure utilized by KCL. Detailed arguments
and comparison to related works (HaoChen et al., 2021; Tian, 2022) can be found in Appendix G.

4.2 Formulation and Example

We introduce the following formulation based on our problem setting.

Assumption 2. There exist some δ ∈ R, number of clusters K ∈ N, measurable subsets
M1, · · · ,MK ⊂ X, and a deterministic labeling function y : X → [K] such that the following
conditions hold:

(A)
⋃K
i=1 Mi = X holds.

(B) For every i ∈ [K], any points x, x′ ∈Mi satisfy sim(x, x′;λ) ≥ δ.

(C) For every x ∈ X and the set of indices Jx = {j ∈ [K] | x ∈ Mj}, y(x) ∈ Jx holds. Moreover,
each set {x ∈ X | y(x) = i} is measurable.

Assumption 2 does not require that M1, · · · ,MK are disjoint, which is a realistic setting, as Wang
et al. (2022a) show that clusters of augmented data can have inter-cluster connections depending
on the strength of data augmentation. The conditions (A) and (B) in Assumption 2 guarantee
that each subset Mi consists of augmented data that have high similarity. The condition (C)
enables to incorporate label information in our analysis. Note that several works on contrastive
learning (HaoChen and Ma, 2023; HaoChen et al., 2021; Saunshi et al., 2022) also employ
deterministic labeling functions.

These conditions are useful to analyze the theory of contrastive learning. To gain more intuition,
we provide a simple example that satisfies Assumption 2.

Example 1 (The proof can be found in Appendix F.1). Suppose that X consists of disjoint open
balls B1, · · · ,BK of the same radius in Rp, and X = X. Let a(x|x) = vol(B1)−1

∑K
i=1 1Bi×Bi(x, x),

and let pX(x) = (Kvol(B1))−1 be the probability density function of PX. Then, w(x) > 0 and
sim(x, x′;λ) = K1

⋃
i∈[K] Bi×Bi(x, x

′) − λ hold. Hence, for instance let λ = 1 and δ = K − 1, and

take Mi := Bi. Also, define y : X→ [K] as y(x) = i if x ∈ Bi for some i ∈ [K]. Then, Assumption 2
is satisfied in this setting.

Here, theoretical formulations of similarity have been investigated by several works on
contrastive learning (Arora et al., 2019; Dufumier et al., 2022; HaoChen and Ma, 2023; HaoChen
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et al., 2021; Huang et al., 2023; Parulekar et al., 2023; von Kügelgen et al., 2021; Wang et al., 2022a;
Zhao et al., 2023). The basic notions introduced by these works are: latent classes of unlabeled
data and conditional independence assumption (Arora et al., 2019), graph structures of augmented
data (Dufumier et al., 2022; HaoChen and Ma, 2023; HaoChen et al., 2021; Wang et al., 2022a),
the decomposition of unlabled data into the content (i.e., invariant against data augmentation) and
style (i.e., changeable by data augmentation) variables (Parulekar et al., 2023; von Kügelgen et al.,
2021), and the geometric structure based on augmented distance and the concentration within class
subsets (Huang et al., 2023; Zhao et al., 2023). Meanwhile, our formulation in Assumption 2 uses
the similarity function (2), which differs from the previous works. Note that Assumption 2 has
some relation to Assumption 3 in HaoChen and Ma (2023); see Appendix F.4. Our formulation
gives deeper insights into contrastive learning, as shown in Section 5.

5 Theoretical Results

5.1 KCL as Representation Learning with Statistical Similarity

First, we connect the kernel contrastive loss to the formulation based on the similarity sim(x, x′;λ).
The following theorem indicates that KCL has two effects on the way of representation learning,
where the clusters M1, · · · ,MK involve to explain the mathematical relation.

Theorem 1. Suppose that Assumption 1 and 2 hold. Take δ ∈ R, K ∈ N, and M1, · · · ,MK such
that the conditions (A) and (B) in Assumption 2 are satisfied. Then, the following inequality
holds for every f ∈ F :

δ

2
· a(f) + λ · c(f) ≤ LKCL(f ;λ) +R(λ). (3)

where R(λ) is a function of λ, µi(f) = µMi(f), and

a(f) :=

K∑
i=1

Ex,x−
[
‖h(f(x))− h(f(x−))‖2Hk ;Mi ×Mi

]
,

c(f) :=
∑
i 6=j

PX(Mi)PX(Mj)〈µi(f), µj(f)〉Hk .

For the proof of Theorem 1, see Appendix B.2. Note that the key point of the proof is the
following usage of Assumption 2: for any x, x′ ∈ Mi, the inequality sim(x, x′;λ) ≥ δ implies the
relation w(x, x′) ≥ (λ + δ)w(x)w(x′). Here we briefly explain each symbol in Theorem 1. The
value a(f) quantifies the concentration within each cluster consisting of the representations of
augmented data in Mi. The quantity c(f) measures how far the subsets h(f(M1)), · · · , h(f(MK))
are, since 〈µi(f), µj(f)〉Hk =

∫
Mi

∫
Mj
k(f(x), f(x′))PX(dx|Mi)PX(dx′|Mj) holds (see Lemma 2 in

Appendix B.1). These quantities indicate that representation learning by KCL can distinguish the
subsets M1, · · · ,MK in the RKHS (see Figure 1 for illustration). The function R(λ) includes the
term that represents the hardness of the pretraining task in the space of augmented data X: if
the overlaps between two different subsets Mi and Mj expand, then R(λ) increases (the precise
definition is given in Appendix B.2).
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encoding

Figure 1: An illustration of Theorem 1. The clusters M1, · · · ,MK in the data space are mapped
into the RKHS, where each cluster in the RKHS shrinks or expands (via a(f)) while maintaining
the distance to other clusters (via c(f)).

A key point of Theorem 1 is that δ and λ can determine how learned representations distribute in
the RKHS. If δ > 0, then representations of augmented data in each Mi tend to align as controlling
the trade-off between a(f) and c(f). For δ ≤ 0, not just the means µ1(f), · · · , µK(f) but also
the representations tend to scatter. We remark that δ depends on the fixed weight λ due to the
condition (B) in Assumption 2. Intuitively, larger λ makes δ smaller and vice versa.

Here we should remark that under several assumptions, the equality holds in (3), as shown
below:

Corollary 1. Suppose that Assumption 1 and 2 hold. Take δ ∈ R, K ∈ N, and M1, · · · ,MK such
that the conditions (A) and (B) in Assumption 2 are satisfied. Suppose that M1, · · · ,MK are
disjoint, and for every pair (i, j) ∈ [K] × [K] such that i 6= j, every (x, x′) ∈ Mi ×Mj satisfies
w(x, x′) = 0. Suppose that for every i ∈ [K], it holds that sim(x, x′;λ) = δ for any x, x′ ∈ Mi.
Then, for every f ∈ F , the equality holds in (3), i.e.,

LKCL(f ;λ) =
δ

2
· a(f) + λ · c(f)−R(λ).

The proof of Corollary 1 can be found in Appendix B.3. The above corollary means that,
under these assumptions, the minimization of the kernel contrastive loss is equivalent to that of
the objective function (δ/2) · a(f) + λ · c(f). Note that Example 1 satisfies all the assumptions
enumerated in the statement. In summary, Theorem 1 and Corollary 1 imply that contrastive
learning by the KCL framework is characterized as representation learning with the similarity
structure of augmented data space X.

5.1.1 Comparison to Related Work

The quantity a(f) is closely related to the property called alignment (Wang and Isola, 2020) since
the representations of similar data are learned to be close in the RKHS. Also, the quantity c(f) has
some connection to divergence property (Huang et al., 2023) since it measures how far apart the
means µi(f) and µj(f) are. Although the relations between these properties and contrastive learning
have been pointed out by Huang et al. (2023); Wang and Isola (2020), we emphasize that our result
gives a new characterization of the learned clusters. Furthermore, this theorem also implies that
the trade-off between a(f) and c(f) is determined with the threshold δ and the hyperparameter λ.
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Therefore, Theorem 1 provides deeper insights into understanding the mechanism of contrastive
learning.

5.2 A New Upper Bound of the Classification Error

Next, we show how minimization of the kernel contrastive loss guarantees good performance
in the downstream classification task, according to our formulation of similarity. To this end,
we prove that the properties of contrastive learning shown in Theorem 1 yield the linearly
well-separable representations in the RKHS. First, we quantify the linear separability as follows:
following HaoChen et al. (2021); Saunshi et al. (2022), under Assumption 2, for a model f ∈ F , a
linear weight W : Hk → RK , and a bias β ∈ RK , we define the downstream classification error as,

LErr(f,W, β; y) := PX (gf,W,β(x) 6= y(x)) ,

where gf,W,β(x) := arg maxi∈[K]{〈Wi, h(f(x))〉Hk + βi} for Wi ∈ Hk and βi ∈ R. Note that we
let arg max and arg min break tie arbitrary as well as HaoChen et al. (2021). Note that in our
definition, after augmented data x ∈ X is encoded to f(x) ∈ Sd−1, f(x) is further mapped to
h(f(x)) in the RKHS, and then linear classification is performed using W and β.

To derive a generalization guarantee for KCL, we focus on the 1-Nearest Neighbor (NN) classifier
in the RKHS Hk as a technical tool, which is a generalization of the 1-NN classifiers utilized in
Huang et al. (2023); Robinson et al. (2021b).

Definition 1 (1-NN classifier in Hk). Suppose C1, · · · ,CK are subsets of X. For a model f : X→
Rd, the 1-NN classifier g1-NN : X→ [K] associated with the RKHS Hk is defined as

g1-NN(x) := arg mini∈[K]‖h(f(x))− µCi(f)‖Hk .

Huang et al. (2023) show that the 1-NN classifier they consider can be regarded as a mean
classifier (Arora et al., 2019; Wang et al., 2022a) (see Appendix E in Huang et al. (2023)). This
fact can also apply to our setup: indeed, under Assumption 1, g1-NN is equal to

gf,Wµ,βµ(x) = arg maxi∈[K] {〈Wµ,i, h(f(x))〉Hk − βµ,i} ,

where Wµ : Hk → RK is defined as Wµ(φ)i := 〈Wµ,i, φ〉Hk = 〈µCi(f), φ〉Hk for each coordinate
i ∈ [K], and βµ,i := (‖µCi(f)‖2Hk + ψ(1))/2 for i ∈ [K].

Before presenting the result, we need the following notion:

Definition 2 (Meaningful encoder). An encoder f ∈ F is said to be meaningful if mini 6=j ‖µi(f)−
µj(f)‖2Hk > 0 holds.

Note that a meaningful encoder f ∈ F avoids the complete collapse of feature vectors (Hua
et al., 2021; Jing et al., 2022), where many works on self-supervised representation learning (Chen
et al., 2020a; Chen and He, 2021; Grill et al., 2020; HaoChen et al., 2021; Li et al., 2021) introduce
various architectures and algorithms to prevent it. Now, the theoretical guarantee is presented:
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Theorem 2. Suppose that Assumption 1 and 2 hold. Take δ ∈ R, K ∈ N, M1, · · · ,MK , and y such
that the conditions (A), (B), and (C) in Assumption 2 are satisfied. Then, for each meaningful
encoder f ∈ F , we have

LErr(f,Wµ, βµ; y) ≤ 8(K − 1)

∆min(f) ·mini∈[K] PX(Mi)
a(f)

where ∆min(f) = mini 6=j ‖µi(f)− µj(f)‖2Hk .

The proof of Theorem 2 can be found in Appendix C. The upper bound in Theorem 2 becomes
smaller if the representations of any two points x, x′ belonging to Mi are closer for each i ∈ [K]
and the closest centers µi(f) and µj(f) of different subsets Mi and Mj become distant from each
other. Since ‖µi(f)− µj(f)‖2Hk = −2〈µi(f), µj(f)〉Hk + ‖µi(f)‖2Hk + ‖µj(f)‖2Hk , Theorem 1 and 2
indicate that during the optimization for the kernel contrastive loss, the quantities a(f) and c(f)
can contribute to making the learned representations linearly well-separable. Thus, our theory is
consistent with the empirical success of contrastive learning shown by a line of research (Chen et al.,
2020a,b; Dwibedi et al., 2021; HaoChen et al., 2021).

5.2.1 Comparison to Related Work

We discuss Theorem 2. 1) Several works (Huang et al., 2023; Robinson et al., 2021b) also show
that the classification loss or error is upper bounded by the quantity related to the alignment of
feature vectors within each cluster. However, their results do not address the following conjecture:
Does the distance between the centers of each cluster consisting of feature vectors affect the linear
separability? Theorem 2 indicates that the answer is yes via the quantity ∆min(f). Note that
Theorem 3.2 of Zhao et al. (2023) implies a similar answer, but their result is for the squared
loss and requires several strong assumptions on the encoder functions. Meanwhile, our Theorem 2
for the classification error requires the meaningfulness of encoder functions (Definition 2), which is
more practical than those of Zhao et al. (2023). 2) Furthermore, our result is different from previous
works (Huang et al., 2023; Robinson et al., 2021b; Zhao et al., 2023) in the problem setup. Indeed,
Robinson et al. (2021b) follow the setup of Arora et al. (2019), and Huang et al. (2023); Zhao et al.
(2023) formulate their setup by imposing the (σ, δ)-augmentation property to given latent class
subsets. Meanwhile, our formulation is mainly based on the statistical similarity (2). Furthermore,
we note that our Theorem 2 can be extended to the case that K ∈ N, M1, · · · ,MK ⊂ X, and y
are taken to satisfy the conditions (A) and (C) in Assumption 2 (see Theorem 5 in Appendix C),
implying that our result can apply to other problem setups of contrastive learning. Due to space
limitations, we present more detailed explanations in Appendix F.6 and F.7.

5.3 A Generalization Error Bound for KCL

Since in practice we minimize the empirical kernel contrastive loss, we derive a generalization error
bound for KCL. The empirical loss is defined as follows: denote dP+(x, x′) = w(x, x′)dν⊗2

X (x, x′).
Let (X1, X

′
1), · · · , (Xn, X

′
n) be pairs of random variables drawn independently from P+, where Xi

and X ′j are assumed to be independent for each pair of distinct indices i, j ∈ [n]. Following the
standard setup that a pair of two augmented samples is obtained by randomly transforming the
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same raw sample, which is considered in many empirical works (Chen et al., 2020a,b; Dwibedi
et al., 2021), for each i ∈ [n], we consider the case that Xi, X

′
i are not necessarily independent. The

empirical kernel contrastive loss is defined as,

L̂KCL(f ;λ) = − 1

n

n∑
i=1

k(f(Xi), f(X ′i)) +
λ

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j)). (4)

In the statement below, denote Q = {f(·)>f(·) : X × X → R | f ∈ F}. Define the
Rademacher complexity (Mohri et al., 2018) as, R+

n (Q) := EP+,σ1:n [supq∈Q n
−1
∑n

i=1 σiq(Xi, X
′
i)],

where σ1, · · · , σn are independent random variables taking±1 with probability one half for each. We
also define the Rademacher compexltiy R−n/2(Q; s∗) with the optimal choice s∗ from the symmetric
group Sn of degree n:

R−n/2(Q; s∗) := max
s∈Sn

E X,X′
σ1:(n/2)

sup
q∈Q

2

n

n/2∑
i=1

σiq(Xs(2i−1), X
′
s(2i))

 .
Note that R−n/2(Q; s∗) is related to the average of ”sums-of-i.i.d.” blocks technique for U -statistics

explained in Clémençon et al. (2008); for more detail, see also Remark 3 in Appendix D.4. The
generalization error bound for KCL is presented below:

Theorem 3. Suppose that Assumption 1 holds, and n is even. Furthermore, suppose that the
minimizer f̂ ∈ F of L̂KCL(f ;λ) exists. Then, with probability at least 1− 2ε where ε > 0, we have

LKCL(f̂ ;λ) ≤ LKCL(f ;λ) + 2 ·Gen(n, λ, ε),

where Rn(Q) := R+
n (Q) + λR−n/2(Q; s∗), and

Gen(n, λ, ε) = O

(
Rn(Q) + (1 + λ)

√
log(2/ε)

n

)
.

Remark 2. In Appendix D.2, we show that under some conditions, Gen(n, λ, ε) ↓ 0 holds as
n→∞.

The proof of Theorem 3 can be found in Appendix D.1. Since Xi, X
′
i are not necessarily

independent for each i ∈ [n], the standard techniques (e.g., Theorem 3.3 in Mohri et al. (2018)) are
not applicable in the proof. We instead utilize the results by Zhang et al. (2019) to overcome this
difficulty, which is different from the previous bounds for contrastive learning (Arora et al., 2019;
Ash et al., 2022; HaoChen et al., 2021; Lei et al., 2023; Nozawa et al., 2020; Wang et al., 2022b;
Zhang et al., 2022; Zou and Liu, 2023) (see Appendix F.5 for more detail). Here, if Rn(Q) ↓ 0 as
n→∞, then by using our result, we can prove the consistency of the empirical contrastive loss to
the population one for each f ∈ F .

5.4 Application of the Theoretical Results: A New Surrogate Bound

Recent works (Arora et al., 2019; Ash et al., 2022; Awasthi et al., 2022; Bao et al., 2022; Dufumier
et al., 2022; HaoChen et al., 2021; Nozawa et al., 2020; Nozawa and Sato, 2021; Saunshi et al., 2022;
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Tosh et al., 2021b; Wang et al., 2022a; Zou and Liu, 2023) show that some contrastive learning
objectives can be regarded as surrogate losses of the supervised loss or error in downstream tasks.
Here, Arora et al. (2019) show that, a contrastive loss LCL surrogates a supervised loss or error
LSup: for every f ∈ F , Lsup(W ◦ f) . LCL(f) + α holds for some α ∈ R and matrix W . This type
of inequality is also called surrogate bound (Bao et al., 2022). Arora et al. (2019) show that the
inequality guarantees that Lsup(W ∗ ◦ f̂) . LCL(f) + α holds with high probability, where f̂ is a
minimizer of the empirical loss for LCL, W ∗ is the optimal weight, and α is some term. Motivated
by these works, we show a surrogate bound for KCL.

Theorem 4. Suppose that Assumption 1 and 2 hold, n is even, and there exists a minimizer f̂
of L̂KCL(f ;λ) such that f̂ is meaningful. Take δ ∈ R, K ∈ N, M1, · · · ,MK , and y such that the
conditions (A), (B), and (C) in Assumption 2 are satisfied. Then, for any f ∈ F and ε > 0, with
probability at least 1− 2ε,

LErr(f̂ ,W
∗, β∗; y) . LKCL(f ;λ) + (1− δ

2
)a(f̂)− λc(f̂) +R(λ) + 2Gen(n, λ, ε),

where LErr(f̂ ,W
∗, β∗; y) = infW,β LErr(f̂ ,W, β; y), and . omits the coefficient 8(K − 1)/(∆min(f̂) ·

mini∈[K]PX(Mi)).

The proof of Theorem 4 can be found in Appendix E. This theorem indicates that minimization
of the kernel contrastive loss in F can reduce the infimum of the classification error with high
probability. Note that since larger λ can make δ smaller due to the relation in condition (B) of
Assumption 2, larger λ may result in enlarging (1−δ/2)a(f̂)−λc(f̂) and loosening the upper bound
if a(f̂) > 0 and c(f̂) < 0. We empirically find that the KCL framework with larger λ degrades its
performance in the downstream classification task; see Appendix H.4.

5.4.1 Comparison to Related Work

Several works also establish the surrogate bounds for some contrastive learning objectives (Arora
et al., 2019; Ash et al., 2022; Awasthi et al., 2022; Bao et al., 2022; Dufumier et al., 2022; HaoChen
et al., 2021; Nozawa et al., 2020; Nozawa and Sato, 2021; Saunshi et al., 2022; Tosh et al., 2021b;
Wang et al., 2022a; Zou and Liu, 2023). The main differences between the previous works and
Theorem 4 are summarized in three points: 1) Theorem 4 indicates that the kernel contrastive loss
is a surrogate loss of the classification error, while the previous works deal with other contrastive
learning objectives. 2) Recent works (Bao et al., 2022; Wang et al., 2022a) prove that the InfoNCE
loss is a surrogate loss of the cross-entropy loss. However, since the theory of classification
calibration losses (see e.g., Zhang (2004)) indicates that the relation between the classification
loss and the cross-entropy loss is complicated under the multi-class setting, the relation between
the InfoNCE loss and the classification error is non-trivial from the previous results. On the other
hand, combining Theorem 4 and (1), we can show that the InfoNCE loss is also a surrogate loss
of the classification error. Note that Theorem 4 can apply to other contrastive learning objectives.
3) The bound in Theorem 4 is established by introducing the formulation presented in Section 4.
Especially our bound includes the geometric quantity δ and hyperparameter λ.
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6 Conclusion and Discussion

In this paper, we studied the characterization of the structure of the representations learned by
contrastive learning. By employing Kernel Contrastive Learning (KCL) as a unified framework, we
showed that the formulation based on statistical similarity characterizes the clusters of learned
representations and guarantees that the kernel contrastive loss minimization can yield good
performance in the downstream classification task. As a limitation of this paper, we point out
that in practice, it is challenging to compute the true sim(x, x′;λ) and δ for datasets. However,
we believe that our theory promotes future theoretical and empirical research to investigate the
practical success of contrastive learning via the sets of augmented data defined by sim(x, x′;λ)
and δ. Note that as recent works (Tsai et al., 2021, 2020) tackle the estimation of the point-wise
dependency by using neural networks, the estimation problem is an important future work. As a
future work, it is worth studying how the selection of kernels affects the quality of representations
via our theory. The investigation of transfer learning perspectives of KCL is also an interesting
future work, as recent works (HaoChen et al., 2022; Shen et al., 2022; Zhao et al., 2023) also address
the problem for some contrastive learning frameworks.

Ethical Statement

Since this paper mainly studies theoretical analysis of contrastive learning, it will not be thought
that there is a direct negative social impact. However, revealing detailed properties of contrastive
learning could promote an opportunity to misuse the knowledge. We point out that such wrong
usage is not straightforward with the proposed method, as the application is not discussed much
in the paper.
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A Proof in Section 2.2

First we prove Proposition 1.

Proof of Proposition 1. The proof of the claim closely follows the proof of Lemma 3.1 in Muandet
et al. (2017) (see also Smola et al. (2007)), which shows that if EP [

√
k(x, x)] < +∞ where x ∼ P ,

then EP [k(·, x)] ∈ Hk. For the sake of completeness, we provide the proof of Proposition 1 by
modifying the proof of Muandet et al. (2017) slightly.

Let M be a measurable set in X. Define µM(f) := E[h(f(x))|M]. Our goal is to show that
µM(f) ∈ Hk holds. To this end, for φ ∈ Hk, we compute

|E [φ(f(x))|M]| = |E [〈φ, k(·, f(x))〉Hk |M]|
≤ E [|〈φ, k(·, f(x))〉Hk | |M]

≤ E [‖φ‖Hk‖k(·, f(x))‖Hk |M] (Cauchy-Schwarz ineq.)

= ‖φ‖HkE
[√

k(f(x), f(x))|M
]
.

Since supz,z′∈Sd−1 k(z, z′) < ∞ holds, we have E[
√
k(f(x), f(x))|M] < +∞. Hence, the map φ 7→

E[φ(f(x))|M] is a bounded linear functional on Hk, and thus from Riesz’s representation theorem,
there exists some ξ ∈ Hk such that E[φ(f(x))|M] = 〈ξ, φ〉Hk . However, let φ = k(·, z), then ξ(z) =
〈ξ, k(·, z)〉Hk = E[k(f(x), z)|M]. This implies ξ = E[k(f(x), ·)|M] ∈ Hk. Since k is symmetric, we
have µM(f) = E[k(·, f(x))|M] ∈ Hk.

B Proofs in Section 5.1

B.1 Useful Lemmas for the Proof of Theorem 1

Before showing Theorem 1, we give several basic and useful lemmas that are used in the proof of
the theorem. Since the definition of µM(f), where M is a measurable subset of X and f ∈ F , is
slightly different from the kernel mean embedding of the usual form (Berlinet and Thomas-Agnan,
2004; Muandet et al., 2017) due to the existence of the encoder function f , we provide the proof
for each lemma for the sake of completeness.

Lemma 1. Let {ej} be an orthonormal basis of Hk, and let M be a measurable set. Let f ∈ F .
Then, the following identity holds for each j:∫

M
〈h(f(x)), ej〉HkPX(dx|M) = 〈µM(f), ej〉Hk .
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Proof. We calculate,

〈µM(f), ej〉Hk =

〈∫
M
h(f(x))PX(dx|M), ej

〉
Hk

=

〈∫
M

∑
j′

〈h(f(x)), ej′〉Hkej′PX(dx|M), ej

〉
Hk

=

〈∑
j′

ej′

∫
M
〈h(f(x)), ej′〉HkPX(dx|M), ej

〉
Hk

=

∫
M
〈h(f(x)), ej〉HkPX(dx|M),

where in the third line, we use the Dominated Convergence Theorem for the Bochner integral (e.g.,
see Theorem 1.1.8 in Arendt et al. (2011)). Hence, we obtain the claim.

Lemma 2. Let M,M′ be measurable subsets of X. Let f ∈ F . Then, we have∫
M

∫
M′
〈h(f(x)), h(f(x′))〉HkPX(dx|M)PX(dx′|M′) = 〈µM(f), µM′(f)〉Hk .

Proof. Let {ej} be an orthonormal basis of Hk. Then we have,∫
M

∫
M′
〈h(f(x)), h(f(x′))〉HkPX(dx|M)PX(dx′|M′)

=

∫
M

∫
M′

〈∑
j

〈h(f(x)), ej〉Hkej ,
∑
j

〈h(f(x′)), ej〉Hkej

〉
Hk

PX(dx|M)PX(dx′|M′)

=

∫
M

∫
M′

∑
j

〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉HkPX(dx|M)PX(dx′|M′)

=
∑
j

∫
M

∫
M′
〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉HkPX(dx|M)PX(dx′|M′) (5)

=
∑
j

(∫
M
〈h(f(x)), ej〉HkPX(dx|M)

)(∫
M′
〈h(f(x′)), ej〉HkPX(dx′|M′)

)
=
∑
j

〈µM(f), ej〉Hk〈µM′(f), ej〉Hk (Lemma 1)

=

〈∑
j

〈µM(f), ej〉Hkej ,
∑
j

〈µM′(f), ej〉Hkej

〉
Hk

= 〈µM(f), µM′(f)〉Hk ,

where in (5) we use the Dominated Convergence Theorem. Hence we obtain the claim.
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B.2 Proof of Theorem 1

The following notation is used in the proof of Theorem 1.

Definition 3. Denote Mk = supz,z′∈Sd−1 ‖k(·, z)− k(·, z′)‖2Hk . We define,

R(λ) :=
Mk

2

∑
i 6=j

P+((Mi ∩Mj)× (Mi ∩Mj)) + λψ(1)
K∑
i=1

PX(Mi) (1− PX(Mi)) + (1− λ)ψ(1),

where dP+(x, x′) = w(x, x′)dν⊗2
X (x, x′).

Note that under Assumption 1, k(z) := k(z, z) = ψ(z>z) = ψ(1) is a constant function on Sd−1.
We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. It is convenient to analyze the following form instead of the kernel contrastive
loss:

L̃KCL(f ;λ) := Ex,x+
[
‖h(f(x))− h(f(x+))‖2Hk

]︸ ︷︷ ︸
the positive term

−λEx,x−
[
‖h(f(x))− h(f(x−))‖2Hk

]︸ ︷︷ ︸
the negative term

. (6)

Note that, L̃KCL(f ;λ) = 2(1− λ)ψ(1) + 2LKCL(f ;λ) holds since f(x) ∈ Sd−1 for all x ∈ X. For the
positive term of L̃KCL(f), we can evaluate that,

Ex,x+
[
‖h(f(x))− h(f(x+))‖2Hk

]
≥
∫
⋃K
i=1 Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x, x′)dνX(x)dνX(x′) (7)

≥
K∑
i=1

∫
Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x, x′)dνX(x)dνX(x′)

−
∑
j 6=i

∫
(Mi∩Mj)×(Mi∩Mj)

‖h(f(x))− h(f(x′))‖2Hkw(x, x′)dνX(x)dνX(x′) (8)

≥
K∑
i=1

∫
Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x, x′)dνX(x)dνX(x′)−Mk

∑
j 6=i

P+((Mi ∩Mj)× (Mi ∩Mj))


(9)

where in the second inequality we use the fact that

Q(
K⋃
i=1

Mi ×Mi) ≥
K∑
i=1

Q(Mi ×Mi)−
∑
i 6=j

Q((Mi ×Mi) ∩ (Mj ×Mj)),
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for any probability measure Q in X × X, and in the last inequality we use the definition Mk =
supz,z′∈Sd−1 ‖k(·, z)− k(·, z′)‖2Hk . The first term of the above lower bound can be bounded as

K∑
i=1

∫
Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x, x′)dνX(x)dνX(x′)

≥
K∑
i=1

∫
Mi×Mi

‖h(f(x))− h(f(x′))‖2Hk · (λ+ δ)w(x)w(x′)dνX(x)dνX(x′), (10)

where we utilize the definition of Mi for each i ∈ {1, · · · ,K}; recall that due to the condition (B)
in Assumption 2, for every x, x′ ∈Mi we have sim(x, x′;λ) ≥ δ.

On the other hand, for the negative term we can compute as follows:

− Ex,x−
[
‖h(f(x))− h(f(x−))‖2Hk

]
= −

∫
⋃K
i=1 Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

−
∫
X×X\(

⋃K
i=1 Mi×Mi)

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

≥ −
K∑
i=1

∫
Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

−
∫
X×X\(

⋃K
i=1 Mi×Mi)

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′), (11)

where the last inequality is due to the union bound. For the second term in the right hand side of
the inequality above, we have

−
∫
X×X\(

⋃K
i=1 Mi×Mi)

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

≥ −
∑
i 6=j

∫
Mi×Mj

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

−
∫
X×X\(

⋃K
i,j=1 Mi×Mj)

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′) (12)

≥ −
∑
i 6=j

∫
Mi×Mj

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)−MkP
⊗2
X

X× X \

 K⋃
i,j=1

Mi ×Mj

 .

(13)

Here, the second term of (13) vanishes since Assumption 2 implies X× X =
⋃K
i,j=1 Mi ×Mj . The
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first term of (13) is further lower bounded as,

−
∑
i 6=j

∫
Mi×Mj

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

≥ 2
∑
i 6=j

{
− sup
z∈Sd−1

k(z, z)PX(Mi)PX(Mj)

+

∫
Mi×Mj

〈h(f(x)), h(f(x′))〉Hkw(x)w(x′)dνX(x)dνX(x′)

}
(14)

= 2
∑
i 6=j

{
− sup
z∈Sd−1

k(z, z)PX(Mi)PX(Mj) + PX(Mi)PX(Mj)〈µi(f), µj(f)〉Hk

}
(Lemma 2)

= −2 sup
z∈Sd−1

k(z, z)

K∑
i=1

PX(Mi) (1− PX(Mi)) + 2c(f).

Thus for the negative term we obtain the inequality,

− Ex,x−
[
‖h(f(x))− h(f(x−))‖2Hk

]
≥ −

K∑
i=1

∫
Mi×Mi

‖h(f(x))− h(f(x′))‖2Hkw(x)w(x′)dνX(x)dνX(x′)

+ 2c(f)− 2 sup
z∈Sd−1

k(z, z)
K∑
i=1

PX(Mi) (1− PX(Mi)) . (15)

Combining (6),(9),(10), and (15), we have

LKCL(f ;λ) + (1− λ)ψ(1)

≥ δ

2

K∑
i=1

Ex,x−
[
‖h(f(x))− h(f(x−))‖2Hk ;Mi ×Mi

]
+ λc(f)

− Mk

2

∑
i 6=j

P+((Mi ∩Mj)× (Mi ∩Mj))− λψ(1)
K∑
i=1

PX(Mi) (1− PX(Mi)) . (16)

Therefore, we complete the proof.

B.3 Proof of Corollary 1

Proof of Corollary 1. The proof of Corollary 1 is completed by checking whether the equality holds
in each inequality that appears in the proof of Theorem 1. We list the detail of the checks below:

(7): Since w(x, x′) = 0 for any (x, x′) ∈ Mi × Mj (i 6= j), we have
∫
Mi×Mj

‖h(f(x)) −
h(f(x′))‖2Hkw(x, x′)dνX(x)dνX(x′) = 0. Here, we have the decomposition X×X = (

⋃K
i=1 Mi)×

(
⋃K
j=1 Mj) =

⋃K
i,j=1 Mi ×Mj , where (Mi ×Mj) ∩ (Mi′ ×Mj′) = ∅ for any (i, j, i′, j′) such
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that i 6= i′ or j 6= j′, from the assumption that M1, · · · ,MK are disjoint. Hence, using the
additivity of a probability measure yields the equality.

(8): Since Mi ∩Mj = ∅ for i, j ∈ [K] such that i 6= j, the first term in the right-hand-side of (8)
is equal to the first term in the left-hand-side of (8). On the other hand, the second term in
the right-hand-side of (8) is equal to 0. Hence, the equality holds.

(9): Since the second term of the right-hand-side of (9) is 0 under the assumption that Mi∩Mj = ∅
for i, j (i 6= j), the equality holds.

(10): The equality holds from the assumption that for any x, x′ ∈ Mi (i ∈ [K]), sim(x, x′;λ) = δ
holds. Indeed, this assumption implies that w(x, x′) = (λ+ δ)w(x)w(x′) for any x, x′ ∈Mi.

(11): Since M1 ×M1, · · · ,MK ×MK are disjoint, the equality holds.

(12): Since
⋃K
i,j=1 Mi ×Mj = X × X, the second term of the right-hand-side of (12) is equal to 0.

Thus, the equality holds.

(13): The equality holds due to the same reason as (12) above.

(14): Since ‖h(f(x))‖2Hk = k(f(x), f(x)) = ψ(f(x)>f(x)) = ψ(1) for any x ∈ X and f ∈ F , the
equality holds.

(15): Since (15) is the combination of (11), (12), (13), and (14), the equality in (15) holds in this
case.

(16): Since (16) is obtained by combining (9), (10), and (15), the equality holds.

Therefore, we obtain the result.

C Proof in Section 5.2

We present the proof of a generalized version of Theorem 2. The generalized theorem is presented
below.

Theorem 5 (The generalization of Theorem 2). Suppose that Assumption 1 and 2 hold. Take
K ∈ N and M1, · · · ,MK such that the condition (A) in Assumption 2 is satisfied. Let M̃1, · · · M̃K

be a disjoint partition of X satisfying M̃i ⊂ Mi for each i ∈ [K]. Define ỹ : X → [K] as ỹ(x) = i
for every x ∈ M̃i. Then, for each meaningful encoder f ∈ F , we have

LErr(f,Wµ, βµ; ỹ) ≤ 8(K − 1)

∆min(f) ·mini∈[K] PX(Mi)
a(f)

where ∆min(f) = mini 6=j ‖µi(f)− µj(f)‖2Hk .

Proof of Theorem 5. From the definition, we have M̃i ⊂ Mi and M̃i ∩ M̃j = ∅ for all the pairs of
distinct indices i, j ∈ [K]. Let us recall the definition of LErr(f,Wµ, βµ; ỹ):

Lerr(f,Wµ, βµ; ỹ) = PX
(
gf,Wµ,βµ(x) 6= ỹ(x)

)
.
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Here recall that we let arg max, arg min also breaks tie arbitrary. For instance, if there are
distinct integers i1, · · · , ij ∈ [K] such that gf,Wµ,βµ(x) = {i1, · · · , ij}, then we define gf,Wµ,βµ(x) =
ỹ(x) if ỹ(x) ∈ {i1, · · · , ij}, and gf,Wµ,βµ(x) = i1 if ỹ(x) /∈ {i1, · · · , ij}. The event A :=

{x | gf,Wµ,βµ(x) 6= ỹ(x)} = {x | gf,Wµ,βµ(x) 6= ỹ(x)} ∩
⋃K
i=1 M̃i ⊂ X is a subset of the event

D :=
⋃K
i=1

⋃
j 6=i{x | ‖h(f(x))− µi(f)‖Hk ≥ ‖h(f(x))− µj(f)‖Hk} ∩ M̃i, since

x ∈ A

⇐⇒ arg mini∈[K]‖h(f(x))− µi(f)‖Hk 6= ỹ(x) and x ∈
K⋃
i=1

M̃i (def. of gf,Wµ,βµ and g1-NN)

⇐⇒ x ∈
⋃

j 6=ỹ(x)

{x′ | ‖h(f(x′))− µỹ(x)(hf )‖Hk ≥ ‖h(f(x′))− µj(f)‖Hk}

and x ∈
K⋃
i=1

M̃i

⇐⇒ x ∈
⋃

j 6=ỹ(x)

{x′ | ‖h(f(x′))− µỹ(x)(hf )‖Hk ≥ ‖h(f(x′))− µj(f)‖Hk} ∩ M̃ỹ(x)

=⇒ x ∈
K⋃
i=1

⋃
j 6=i
{x′ | ‖h(f(x′))− µi(f)‖Hk ≥ ‖h(f(x′))− µj(f)‖Hk} ∩ M̃i = D.

Define Lij := {c(µj(f) − µi(f)) | c ∈ R} ⊂ Hk for every i, j ∈ [K], i 6= j. Since each Lij
is a closed subspace of Hk, for every z ∈ Hk there exists some z1 ∈ Lij and z2 ∈ L⊥ij (where

L⊥ij is the orthogonal complement space of Lij) such that z admits the unique decomposition
z = z1 + z2. Here define the projection π̃ij : Hk → Lij as π̃ij(z) = z1, and define the shifted
projection πij as πij : Hk → Hk, πij(z) := π̃ij(z− µi(f)) + µi(f). From the definition, we have that
‖πij(z)− µi(f)‖Hk ≤ ‖z − µi(f)‖Hk and ‖πij(z)− µj(f)‖Hk ≤ ‖z − µj(f)‖Hk .

Hereafter, we use the abbreviation ∆ij := ∆ij(f) = ‖µi(f) − µj(f)‖2Hk for the sake of
convenience. Using πij , i, j ∈ [K], i 6= j, the event D can be decomposed into,

D =

D ∩

 K⋃
i=1

⋃
j 6=i

{
x | ‖πij(h(f(x)))− µj(f)‖Hk ≤

1

2
∆

1
2
ij

}
∩ M̃i


︸ ︷︷ ︸

= D1

∪

D ∩

 K⋃
i=1

⋃
j 6=i

{
x | ‖πij(h(f(x)))− µj(f)‖Hk ≤

1

2
∆

1
2
ij

}
∩ M̃i

c
︸ ︷︷ ︸

= D2

.
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For D1, we have

PX(D1)

≤ PX

 K⋃
i=1

⋃
j 6=i

{
x | ‖πij(h(f(x)))− µj(f)‖Hk ≤

1

2
∆

1
2
ij

}
∩ M̃i


≤

K∑
i=1

∑
j 6=i

PX

({
x | ‖πij(h(f(x)))− µj(f)‖Hk ≤

1

2
∆

1
2
ij

}
∩ M̃i

)
(the union bound)

≤
K∑
i=1

∑
j 6=i

PX

({
x | − ‖πij(h(f(x)))− µi(f)‖Hk + ‖µi(f)− µj(f)‖Hk ≤

1

2
∆

1
2
ij

}
∩ M̃i

)
(triangle ineq.)

=

K∑
i=1

∑
j 6=i

PX

({
x | ‖πij(h(f(x)))− µi(f)‖Hk ≥

1

2
∆

1
2
ij

}
∩ M̃i

)

≤
K∑
i=1

∑
j 6=i

4

∆ij
E
[
‖πij(h(f(x)))− µi(f)‖2Hk ; M̃i

]
(Markov’s ineq.)

≤
K∑
i=1

∑
j 6=i

4

∆ij
E
[
‖h(f(x))− µi(f)‖2Hk ; M̃i

]
(def. of πij)

≤
K∑
i=1

∑
j 6=i

4

∆ij
E
[
‖h(f(x))− µi(f)‖2Hk ;Mi

]
. (def. of M̃i)

For D2, we note that we can rewrite as,

PX(D2)

= PX

D ∩

 K⋃
i=1

⋃
j 6=i

{
x | ‖πij(h(f(x)))− µj(f)‖Hk ≤

1

2
∆

1
2
ij

}
∩ M̃i

c
= PX

 K⋃
i=1

⋃
j 6=i
{x | ‖h(f(x))− µi(f)‖2 ≥ ‖h(f(x))− µj(f)‖2} ∩ M̃i

 ∩
 K⋂
i=1

⋂
j 6=i

{
x | ‖πij(h(f(x)))− µj(f)‖Hk >

1

2
∆

1
2
ij

}
∪ M̃c

i


= PX

 K⋃
i=1

⋃
j 6=i

K⋂
i′=1

⋂
j′ 6=i′

(
{x | ‖h(f(x))− µi(f)‖2 ≥ ‖h(f(x))− µj(f)‖2} ∩ M̃i∩

({
x | ‖πi′j′(h(f(x)))− µj′(hf )‖Hk >

1

2
∆

1
2
i′j′

}
∪ M̃c

i′

)))
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By using above, we have

PX(D2)

≤ PX

 K⋃
i=1

⋃
j 6=i

({x | ‖h(f(x))− µi(f)‖Hk ≥ ‖h(f(x))− µj(f)‖Hk

and ‖πij(h(f(x)))− µj(f)‖Hk >
1

2
∆

1
2
ij} ∩ M̃i)

)
(17)

≤ PX

 K⋃
i=1

⋃
j 6=i

(
{x | ‖h(f(x))− µi(f)‖Hk ≥

1

2
∆

1
2
ij} ∩ M̃i

) (def. of πij)

≤
K∑
i=1

∑
j 6=i

PX

(
{x | ‖h(f(x))− µi(f)‖Hk ≥

1

2
∆

1
2
ij} ∩ M̃i

)
(the union bound)

≤
K∑
i=1

∑
j 6=i

4

∆ij
E
[
‖πij(h(f(x)))− µi(f)‖2Hk ; M̃i

]
(Markov’s ineq.)

≤
K∑
i=1

∑
j 6=i

4

∆ij
E
[
‖h(f(x))− µi(f)‖2Hk ; M̃i

]
(def. of πij)

≤
K∑
i=1

∑
j 6=i

4

∆ij
E
[
‖h(f(x))− µi(f)‖2Hk ;Mi

]
. (def. of M̃i)

Here, let us show (17). First let us fix i, j ∈ [K], where i 6= j. For i′, j′ ∈ [K] satisfying i′ 6= j′, we
consider the following two cases.

• If i′ = i and j′ = j, then M̃i ∩ M̃c
i = ∅, which implies

{x | ‖h(f(x))− µi(f)‖2 ≥ ‖h(f(x))− µj(f)‖2} ∩ M̃i ∩
({

x | ‖πi′j′(h(f(x)))− µj′(hf )‖Hk >
1

2
∆

1
2
i′j′

}
∪ M̃c

i′

)
=

{
x | ‖h(f(x))− µi(f)‖Hk ≥ ‖h(f(x))− µj(f)‖Hk and ‖πij(h(f(x)))− µj(f)‖Hk >

1

2
∆

1
2
ij

}
∩ M̃i.

• if i′ 6= i or j′ 6= j, then

{x | ‖h(f(x))− µi(f)‖2 ≥ ‖h(f(x))− µj(f)‖2} ∩ M̃i ∩
({

x | ‖πi′j′(h(f(x)))− µj′(hf )‖Hk >
1

2
∆

1
2
i′j′

}
∪ M̃c

i′

)
⊂ M̃i.
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Thus,

K⋂
i′=1

⋂
j′ 6=i′

(
{x | ‖h(f(x))− µi(f)‖2 ≥ ‖h(f(x))− µj(f)‖2}

∩M̃i ∩
({

x | ‖πi′j′(h(f(x)))− µj′(hf )‖Hk >
1

2
∆

1
2
i′j′

}
∪ M̃c

i′

))
⊂ {x | ‖h(f(x))− µi(f)‖Hk ≥ ‖h(f(x))− µj(f)‖Hk and ‖πij(h(f(x)))− µj(f)‖Hk >

1

2
∆

1
2
ij} ∩ M̃i.

By combining all the results, we obtain

PX(A) ≤ PX(D)

≤ PX(D1) + PX(D2)

≤
K∑
i=1

∑
j 6=i

8

∆ij
E
[
‖h(f(x))− µi(f)‖2Hk ;Mi

]
≤ 8(K − 1)

∆min(f)

K∑
i=1

E[‖h(f(x))− µi(f)‖2Hk ;Mi]

≤ 8(K − 1)

∆min(f)

K∑
i=1

1

PX(Mi)
Ex,x− [‖h(f(x))− h(f(x−))‖2Hk ;Mi ×Mi] (Jensen’s inequality)

≤ 8(K − 1)

∆min(f) ·mini∈[K] PX(Mi)
a(f),

and we complete the proof.

Proof of Theorem 2. From the definition of y, it is guaranteed that the sets {x ∈ X | y(x) = i} for
i = 1, · · · ,K are disjoint and satisfy the relation {x ∈ X | y(x) = i} ⊆ Mi for every i ∈ [K]. Thus,
Theorem 5 can apply to this case, and we obtain the result.

D Proofs in Section 5.3

D.1 Proof of Theorem 3

First, we prove Theorem 3. Before that, we present the following theorem, which is a part of the
proof of Theorem 3.

Theorem 6. Let (X1, X
′
1), · · · , (Xn, X

′
n) be random variables introduced in Section 5.3. Suppose

that Assumption 1 holds, and suppose that n is even. Then, with probability at least 1 − ε, the
following inequality holds:

sup
f∈F

− 1

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j)) + EX,X−
[
k(f(X), f(X−))

] ≤ 2ρR−n/2(Q; s∗) +

√
10b2 log (1/ε)

n
,
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where we define R−n/2(Q; s∗) with the symmetric group Sn of degree n:

R−n/2(Q; s∗) := max
s∈Sn

E X,X′
σ1:(n/2)

sup
f∈F

2

n

n/2∑
i=1

σif(Xs(2i−1))
>f(X ′s(2i))

 .
We remark that in Theorem 6, we need to deal with more delicate technical matters compared

to the typical generalization error bounds (e.g., Theorem 3.3 of Mohri et al. (2018)), since in our
setup X1, X

′
1, · · · , Xn, X

′
n are not necessarily independent to each other. We give the proof of

Theorem 6 in Appendix D.4.

Now, we can show Theorem 3.

Proof of Theorem 3. First observe that,

sup
f∈F

(
−L̂KCL(f ;λ) + LKCL(f ;λ)

)
= sup

f∈F

 1

n

n∑
i=1

k(f(Xi), f(X
′
i))−

λ

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j))

− EX,X+

[
k(f(X), f(X+))

]
+ λEX,X−

[
k(f(X), f(X−))

])

≤ sup
f∈F

(
1

n

n∑
i=1

k(f(Xi), f(X
′
i))− EX,X+

[
k(f(X), f(X+))

])
︸ ︷︷ ︸

(i)

+ λ sup
f∈F

− 1

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j)) + EX,X−
[
k(f(X), f(X−))

]
︸ ︷︷ ︸

(ii)

.

Let us define the function space K := {k(f(·), f(·)) : X×X→ R | f ∈ F}. Then K is uniformly
bounded with constant b = supz,z∈Sd−1 |k(z, z′)|. Here we note that b < +∞ holds since k is

continuous and Sd−1 is compact; see Section 2.1. From the ULLNs (Theorem 3.3 in Mohri et al.
(2018)), with probability at least 1− ε/2, we have

(i) ≤ 2R+
n (K) +

√
2b2 log (2/ε)

n
.

Since k is represented by k(x, x′) = ψ(x>x′) for some ρ-Lipshitz function ψ from Assumption 1,
by applying Talagrand’s lemma (Lemma 26.9 in Shalev-Shwartz and Ben-David (2014)) we have
R+
n (K) ≤ ρR+

n (Q). Hence, with probability at least 1− ε/2, we have

(i) ≤ 2ρR+
n (Q) +

√
2b2 log (2/ε)

n
.
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For (ii), from Theorem 6, with probability at least 1− ε/2 we have

(ii) ≤ 2ρR−n/2(Q; s∗) +

√
10b2 log (2/ε)

n
.

Therefore, with probability at least 1− ε we have,

sup
f∈F

(
−L̂KCL(f ;λ) + LKCL(f ;λ)

)
≤ 2ρRn(Q) +

√
2b2 log (2/ε)

n
+ λ

√
10b2 log (2/ε)

n
, (18)

where Rn(Q) := R+
n (Q) + λR−n/2(Q; s∗).

Note that in the same way as the proof of the above probability bound, we have the following
inequality: with probability at least 1− ε,

sup
f∈F

(
L̂KCL(f ;λ)− LKCL(f ;λ)

)
≤ 2ρRn(Q) +

√
2b2 log (2/ε)

n
+ λ

√
10b2 log (2/ε)

n
. (19)

Hence, let f̂ be the minimizer of L̂KCL(f ;λ), then from (18) and (19), with probability at least
1− 2ε we have

LKCL(f̂ ;λ) ≤ LKCL(f ;λ) + 4ρRn(Q) + 2

√
2b2 log (2/ε)

n
+ 2λ

√
10b2 log (2/ε)

n
,

where we note that L̂KCL(f̂ ;λ) ≤ L̂KCL(f ;λ) from the definition of f̂ . Therefore, we complete the
proof.

D.2 An Upper Bound of the Rademacher Complexity

In this section for the sake of simplicity, we consider the case in which for every f ∈ F , there exists
the unique function f0 ∈ F0 such that f(x) = f0(x)/‖f0(x)‖2 for every x ∈ X. First let us recall
the definition of a sub-Gaussian process:

Definition 4 (Quoted from Definition 5.16 in Wainwright (2019)). A collection of zero-mean
random variables {Xθ, θ ∈ T} is a sub-Gaussian process with respect to a metric ρX on T if

E
[
eλ(Xθ−Xθ̃)

]
≤ e

λ2ρ2X (θ,θ̃)

2 for all θ, θ̃ ∈ T, and λ ∈ R.

We next upper bound the Rademacher complexity via the chaining technique (Theorem 5.22
in Wainwright (2019)).

Proposition 2. Suppose n is even. For Rn(Q), we have the upper bound,

Rn(Q) ≤ 64(1 +
√

2λ)

m(F0)
√
n

∫ Cd

0

√
logC(u;F0, ‖ · ‖∞)du,

where ‖f0‖∞ := supx∈X ‖f0(x)‖2 for f0 ∈ F0, m(F0) is defined in Section 2.1, C is a constant
independent of d, n, λ, and C(u;F0, ‖·‖∞) is the u-covering number of (F0, ‖·‖∞) (for the definition
of covering number, see e.g., Definition 5.1 in Wainwright (2019)).
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Proof of Proposition 2. In this proof, we follow the proof idea of Tu et al. (2019) (see Lemma 5
in Tu et al. (2019)). Since our setup is different from Tu et al. (2019), we need to modify the proof
and add several new techniques. Define

Zf0 :=
m(F0)

2
√
n

n∑
i=1

σiq(f0(Xi), f0(X ′i)),

where σ1, · · · , σn are Rademacher random variables that are independent to each other and to each
(Xi, X

′
i), i ∈ [n], f0 ∈ F0, (X1, X1), · · · , (Xn, X

′
n) are the random vectors defined in Section 5.3,

and

q(z, z′) =
z>z′

‖z‖2 · ‖z′‖2
z, z′ ∈ Sd−1.

Also, let us recall the assumption for F0 introduced in Section 2.1: for every f ∈ F , there exists
the unique function f0 ∈ F0 such that f(x) = f0(x)/‖f0(x)‖2 for every x ∈ X. We show that
{Zf0}f0∈F0 is a sub-Gaussian process as follows: note that, for every f1,0, f2,0 ∈ F0,

m(F0)

2
√
n

∣∣σi(q(f1,0(Xi), f1,0(X ′i))− q(f2,0(Xi), f2,0(X ′i)))
∣∣

≤ m(F0)

2
√
n

∣∣∣f1(Xi)
>f1(X ′i)− f2(Xi)

>f2(X ′i)
∣∣∣ (def. of σi)

≤ m(F0)

2
√
n

(∣∣∣f1(Xi)
>f1(X ′i)− f1(Xi)

>f2(X ′i)
∣∣∣+
∣∣∣f1(Xi)

>f2(X ′i)− f2(Xi)
>f2(X ′i)

∣∣∣)
(triangle ineq.)

≤ m(F0)

2
√
n

(
‖f1(Xi)‖2‖f1(X ′i)− f2(X ′i)‖2 + ‖f1(Xi)− f2(Xi)‖2‖f2(X ′i)‖2

)
(Cauchy-Schwarz ineq.)

≤ m(F0)

2
√
n

(
‖f1(X ′i)− f2(X ′i)‖2 + ‖f1(Xi)− f2(Xi)‖2

)
(def. of f1, f2)

≤ m(F0)√
n

sup
x∈X
‖f1(x)− f2(x)‖2

=
m(F0)√

n
sup
x∈X

∥∥∥∥ f1,0(x)

‖f1,0(x)‖2
− f2,0(x)

‖f2,0(x)‖2

∥∥∥∥
2

(the uniqueness of f1,0, f2,0)

≤ 1√
n
‖f1,0 − f2,0‖∞. (def. of m(F0))

Hence, we have

EX1:n,X′1:n,σ1:n

[
exp

(
t(Zf1,0 − Zf2,0)

)]
≤ exp

(
t2

2n
‖f1,0 − f2,0‖2∞

)n
= exp

(
t2

2
‖f1,0 − f2,0‖2∞

)
.

This indicates that {Zf0}f∈F0 is a sub-Gaussian process with the norm ‖ · ‖∞. Here note that
supf1,0,f2,0∈F0

‖f1,0 − f2,0‖∞ ≤ C
√
d for some constant C ∈ R that is independent of d, since F0 is

uniformly bounded. By using the chaining theorem (Theorem 5.22 in Wainwright (2019)), we have

R+
n (Q) ≤ 64

m(F0)
√
n

∫ C
√
d

0

√
logC(u;F0, ‖ · ‖∞)du.
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For R−n/2(Q), in a similar way we obtain,

R−n/2(Q) ≤ 64
√

2

m(F0)
√
n

∫ C
√
d

0

√
logC(u;F0, ‖ · ‖∞)du.

Thus, we have

Rn(Q) ≤ 64(1 +
√

2λ)

m(F0)
√
n

∫ C
√
d

0

√
logC(u;F0, ‖ · ‖∞)du,

and complete the proof.

The integral in the above upper bound is often called Dudley entropy integral (Wainwright,
2019). Proposition 2 makes it easier to derive a generalization bound via chaining, since it is
enough to evaluate the Dudley entropy integral for the function space F0 instead of the space of
critic functions Q.

Here, denote by D(F0, ‖ · ‖∞), the Dudley entropy integral w.r.t. (F0, ‖ · ‖∞), i.e.,

D(F0, ‖ · ‖∞) =

∫ C
√
d

0

√
logC(u;F0, ‖ · ‖∞)du.

It is shown by Tu et al. (2019) that if F0 is a function space of feedforward (deep) neural networks,
where each neural networks have weight matrices whose norms are bounded by some universal
constant, and Lipschitz activation functions that vanish at the origin, then D(F0, ‖ · ‖∞) < +∞
holds. Based on this fact, we introduce:

Assumption 3. The Dudley entropy integral D(F0, ‖ · ‖∞) is finite, and Rn(Q) ≤ O((1 + λ)/
√
n)

holds.

Consequently, we obtain the generalization error bound.

Corollary 2. Suppose that Assumption 1, 3 hold, and n is even. Then, with probability at least
1− ε where ε > 0, we have

LKCL(f ;λ) ≤ L̂KCL(f ;λ) +O

(1 + λ)
(

1 +
√

log (2/ε)
)

√
n

 .

Proof. Due to Theorem 3 and Assumption 3.

D.3 Useful Results on McDiarmid’s Inequality for Dependent Random Vari-
ables

Before showing Theorem 6, we need to prepare several definitions and an existing result. The
following three definitions are quoted from Zhang et al. (2019).

Definition 5 (Dependency Graph, quoted from Definition 3.1 in Zhang et al. (2019)). An
undirected graph G is called a dependency graph of a random vector X = (X1, · · · , Xn) if
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1. V (G) = [n]

2. if I, J ⊂ [n] are non-adjacent in G, then {Xi}i∈I and {Xj}j∈J are independent.

Definition 6 (Forest Approximation, quoted from Definition 3.4 in Zhang et al. (2019)). Given a
graph G, a forest F , and a mapping φ : V (G) → V (F ), if φ(u) = φ(v) or 〈φ(u), φ(v)〉 ∈ E(F ) for
any 〈u, v〉 ∈ E(G), we say that (φ, F ) is a forest approximation of G. Let Φ(G) denote the set of
forest approximations of G.

Definition 7 (Forest Complexity, quoted from Definition 3.5 in Zhang et al. (2019)). Given a
graph G and any forest approximation (φ, F ) ∈ Φ(G) with F consisting of trees {Ti}i∈[k], let

λ(φ,F ) =
∑

〈u,v〉∈E(F )

(
|φ−1(u)|+ |φ−1(v)|

)2
+

k∑
i=1

min
u∈V (Ti)

|φ−1(u)|2.

We call

Λ(G) = min
(φ,F )∈Φ(G)

λ(φ,F )

the forest complexity of the graph G.

Zhang et al. (2019) have shown the following result, which is an extension of McDiarmid’s
inequality (McDiarmid, 1989) for dependent random variables.

Theorem 7 (Quoted from Theorem 3.6 in Zhang et al. (2019)). Suppose that f : Ω → R is a
c-Lipschitz function and G is a dependency graph of a random vector X that takes values in Ω.
For any t > 0, the following inequality holds:

Pr(f(X)−E[f(X)] ≥ t) ≤ exp

(
− 2t2

Λ(G)‖c‖2∞

)
.

Note that, in the above theorem f : Ω → R is said to be c-Lipschitz if |f(x) − f(x′)| ≤∑p
i=1 ci1{xi 6=x′i} for every x,x′ ∈ Ω, where Ω ⊂ Rp for some p ∈ N.

D.4 Proof of Theorem 6

We show Theorem 6 by utilizing the contents in Appendix D.3. Recall the definition of the random
variables introduced in Section 5.3: (X1, X

′
1), · · · , (Xn, X

′
n) are pairs of random variables sampled

independently according to the joint probability distribution with density w(x, x′), where Xi and
X ′j are independent for each pair of distinct indices i, j ∈ [K]. From the definition, the following
claim holds.

Lemma 3. Let Gn be a dependency graph that is defined with a random vector
(X1, X

′
1, · · · , Xn, X

′
n), where the edges in Gn are defined as follows: for any i, j ∈ [n], Xi and

Xj are not connected, and Xi and X ′j are connected by an edge if and only if i = j. Then, we have
Λ(Gn) ≤ 5n.
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Proof. Let φ : Gn → Gn be the identity map. From the definition, Gn can be decomposed into
trees {Ti}i∈[n] where V (Ti) = {Xi, X

′
i} for each i ∈ [n]. Let F be the forest consisting of the trees

{Ti}i∈[n]. Then, we have λ(φ,F ) = 5n, which implies Λ(Gn) ≤ λ(φ,F ) ≤ 5n.

Proof of Theorem 6. The goal of this proof is to upper bound the following quantity with high
probability:

sup
f∈F

− 1

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j)) + EX,X−
[
k(f(Xi), f(X−))

] .

However, as explained before, the standard argument (see e.g., Theorem 3.3 in Mohri et al. (2018))
cannot apply to this case since k(f(Xi), f(X ′j)), i, j ∈ [n], i 6= j are not necessarily independent to
each other from our problem setup. We instead utilize the McDiarmid’s inequality for dependent
random variables, which is shown by Zhang et al. (2019), to avoid this problem. Our proof below
is mainly based on Theorem 3.3 in Mohri et al. (2018), but it includes some modification due to
the application of the results by Zhang et al. (2019). Let X̃1, X̃

′
1, · · · , X̃n, X̃

′
n be i.i.d. random

variables to the original random variables X1, X
′
1. · · · , Xn, X

′
n. Define the measurable function

F (f) := F (f)(x1, x
′
1, · · · , xn, x′n) on X2n as

F (f) :=
1

n(n− 1)

∑
i 6=j

k(f(xi), f(x′j))− EX,X−
[
k(f(X), f(X−))

]
.

For simplicity, denote

F (f)x` :=
1

n(n− 1)

∑
j:j 6=`

k(f(x̃`), f(x′j)) +
∑
i,j:i 6=j
i 6=`

k(f(xi), f(x′j))

− EX,X−
[
k(f(X), f(X−))

]
.

In a similar way, we also use the notation F (f)x′` . Let j ∈ [n]. Then, for every f ∈ F , we have

F (f)− sup
f∈F

F (f)Xj ≤ F (f)− F (f)Xj ≤
∣∣F (f)− F (f)Xj

∣∣
≤

∣∣∣∣∣∣ 1

n(n− 1)

∑
i∈[n],i 6=j

(
k(f(Xj), f(X ′i))− k(f(X̃j), f(X ′i))

)∣∣∣∣∣∣
≤ 1

n(n− 1)
· 2(n− 1)b =

2b

n
,

where b := supz,z′∈Sd−1 |k(z, z′)|. Hence, supf∈F F (f) − supf∈F F (f)Xj ≤ 2b
n . By applying the

same argument several times, supf∈F F (f) satisfies the assumption of Theorem 7. Therefore, from
Theorem 7 (i.e., Theorem 3.6 in Zhang et al. (2019)) and Lemma 3, with probability at least 1− ε
we have

sup
f∈F

F (f) ≤ E

[
sup
f∈F

F (f)

]
+

√
10b2 log (1/ε)

n
. (20)
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Let σ1:n/2 := (σ1, · · · , σn/2) be a random vector that consists of a Rademacher random variable

(i.e., a random variable taking ± 1 with probability 1/2 each) for each entry, and let X̃1:n, X̃
′
1:n be

i.i.d. copies of the random vectors X1:n, X
′
1:n, respectively. Denote m = n/2 ∈ N. Then,

E

[
sup
f∈F

F (f)

]

= E

sup
f∈F

 1

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j))− EX,X−
[
k(f(X), f(X−))

]
= E

sup
f∈F

 1

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j))− E
X̃1:n,X̃′1:n

 1

n(n− 1)

∑
i 6=j

k(f(X̃i), f(X̃ ′j))


= E

[
sup
f∈F

(
1

n!m

∑
s∈Sn

(
m∑
i=1

k(f(Xs(2i−1)), f(X ′s(2i)))− E
X̃′1:n,X̃

′
1:n

[
m∑
i=1

k(f(X̃s(2i−1)), f(X̃ ′s(2i)))

]))]
(21)

≤ 1

n!

∑
s∈Sn

E

[
sup
f∈F

(
1

m

m∑
i=1

k(f(Xs(2i−1)), f(X ′s(2i)))− E
X̃1:n,X̃′1:n

[
1

m

m∑
i=1

k(f(X̃s(2i−1)), f(X̃ ′s(2i)))

])]

≤ 1

n!

∑
s∈Sn

EX1:n,X′1:n
X̃1:n,X̃′1:n

[
sup
f∈F

(
1

m

m∑
i=1

(
k(f(Xs(2i−1)), f(X ′s(2i)))− k(f(X̃s(2i−1)), f(X̃ ′s(2i)))

))]

=
1

n!

∑
s∈Sn

EX1:n,X′1:n
X̃1:n,X̃′1:n
σ1:m

[
sup
f∈F

(
1

m

m∑
i=1

σi

(
k(f(Xs(2i−1)), f(X ′s(2i)))− k(f(X̃s(2i−1)), f(X̃ ′s(2i)))

))]

(22)

≤ 2

n!

∑
s∈Sn

EX1:n,X′1:n
σ1:m

[
sup
f∈F

1

m

m∑
i=1

σik(f(Xs(2i−1)), f(X ′s(2i)))

]

≤ 2ρ

n!

∑
s∈Sn

EX1:n,X′1:n
σ1:m

[
sup
f∈F

1

m

m∑
i=1

σif(Xs(2i−1))
>f(X ′s(2i))

]
(23)

≤ 2ρmax
s∈Sn

EX1:n,X′1:n
σ1:m

[
sup
f∈F

1

m

m∑
i=1

σif(Xs(2i−1))
>f(X ′s(2i))

]
= 2ρR−m(Q; s∗),

where in (21) we define Sn as the symmetric group of degree n (see Remark 3 for the relation to the
average of ”sums-of-i.i.d.” blocks technique for U -statistics which is explained in Clémençon et al.
(2008)). Besides in (22), for every s ∈ Sn the random vectors (Xs(2i−1), Xs(2i)), (X̃s(2i−1), X̃s(2i))
for i = 1, · · · ,m are independent and identically distributed, which implies that the standard
symmetrization argument (Theorem 4.10 of Wainwright (2019)) is applicable. Finally, in (23),
under Assumption 1, we apply Talagrand’s lemma (Lemma 26.9 in Shalev-Shwartz and Ben-David
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(2014)). Therefore, we obtain with probability at least 1− ε,

sup
f∈F

F (f) ≤ 2ρR−n/2(Q; s∗) +

√
10b2 log (1/ε)

n
.

Thus, we obtain the claim.

Remark 3. In (21) of the proof of Theorem 6, we use the identity,

1

n(n− 1)

∑
i 6=j

k(f(Xi), f(X ′j)) =
1

n!m

∑
s∈Sn

m∑
i=1

k(f(Xs(2i−1), f(X ′s(2i))).

We notice that the above identity is closely related to the average of ”sum-of-i.i.d.” blocks
technique explained in Appendix A of Clémençon et al. (2008). As well as the technique presented
in Clémençon et al. (2008), in (21) of our paper we also decompose the sum

∑
i 6=j k(f(Xi), f(X ′j))

into the sums of the i.i.d. random variables. However, we remark that the definition of the sum∑
i 6=j k(f(Xi), f(X ′j)) is different from that presented in Clémençon et al. (2008): indeed, in our

case, the random variables f(X1), f(X ′1), · · · , f(Xn), f(X ′n) are not necessarily independent of each
other. To address this problem, we decompose our sum in (21) as follows: for 2n random variables
X1, X

′
1, · · · , Xn, X

′
n, we create the tuples (Xs(1), X

′
s(2), · · · , Xs(n−1), X

′
s(n)) where s ∈ Sn, then sum

up all the components {
∑n

i=1 k(f(Xs(2i−1)), f(X ′s(2i)))}s∈Sn.

E Proof in Section 5.4

Proof of Theorem 4. First applying Theorem 2 to the empirical loss minimizer f̂ , we have

LErr(f̂ ,Wµ, βµ; y) ≤ 8(K − 1)

∆min(f̂) ·mini∈[K] PX(Mi)
a(f̂). (24)

Using Theorem 1, we have the inequality,

a(f̂) ≤ LKCL(f̂ ;λ) + (1− δ

2
)a(f̂)− λc(f̂) +R(λ). (25)

Combining (24) and (25), we obtain

LErr(f̂ ,Wµ, βµ; y) ≤ 8(K − 1)

∆min(f̂) ·mini∈[K] PX(Mi)

(
LKCL(f̂ ;λ) + (1− δ

2
)a(f̂)− λc(f̂) +R(λ)

)
.

(26)

Here, using the standard technique for upper bounding the optimal classification loss or error (Arora
et al., 2019; Ash et al., 2022), the classification error LErr(f̂ ,Wµ, βµ; y) is lower bounded as

LErr(f̂ ,W
∗β∗; y) = inf

W,β
LErr(f̂ ,W, β; y) ≤ LErr(f̂ ,Wµ, βµ; y). (27)
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From (26) and (27),

LErr(f̂ ,W
∗, β∗; y) ≤ 8(K − 1)

∆min(f̂) ·mini∈[K] PX(Mi)

(
LKCL(f̂ ;λ) + (1− δ

2
)a(f̂)− λc(f̂) +R(λ)

)
.

(28)

Applying Theorem 3 to (28), we obtain: with probability at least 1− 2ε,

LErr(f̂ ,Wµ, βµ; y) . LKCL(f ;λ) + (1− δ

2
)a(f̂)− λc(f̂) +R(λ) + 2Gen(n, λ, ε),

where . omits the coefficient 8(K−1)

∆min(f̂)·mini∈[K] PX(Mi)
. Therefore, we obtain the result.

F Additional Information, Results, and Discussion

F.1 Examples Satisfying Assumption 2

F.1.1 Proofs in Example 1

We show the several claims that appear in Example 1 as a proposition.

Proposition 3. Let r > 0, K ∈ N, and v1, · · · , vK ∈ Rp. For each i ∈ [K], let Bi ⊂ Rp be the
open ball of radius r centered at a point vi. Suppose B1, · · · ,BK are disjoint to each other. Define
X =

⋃K
i=1 Bi, X = X, and the conditional probability a(x|x) = vol(B1)−1

∑K
i=1 1Bi×Bi(x, x), where

vol(B1) be the volume of Bi in Rp. Let pX(x) := (Kvol(B1))−1 be a probability density function of
PX. Define y : X→ [K] as y(x) = i if x ∈ Bi. Then, we have the following properties:

1. w(x) > 0 for every x ∈ X.

2. sim(x, x′;λ) = K1
⋃
i∈[K] Bi×Bi(x, x

′)− λ for every x, x′ ∈ X.

3. Let δ ∈ (−λ,K − λ]. Then, δ, K, B1, · · · ,BK , and y satisfy Assumption 2.

Proof. We first show the claim 1. From the definition of w(x), for every x ∈ B1 we have

w(x) =

∫
X
a(x|x)pX(x)dx =

∫
B1

1

K (vol(B1))2dx =
1

Kvol(B1)
.

Similarly, for each i ∈ [K] we obtain w(x) = (Kvol(B1))−1 for every x ∈ Bi. Since X = X =
⋃K
i=1 Bi,

we have that w(x) > 0 for every x ∈ X.

Next, let us show the claim 2. From the claim 1, the function sim(x, x′;λ) is well-defined. To
compute sim(x, x′;λ), we need to know the function w(x, x′). The computation of w(x, x′) is done
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as follows:

w(x, x′) =

∫
X
a(x|x)a(x′|x)pX(x)dx

=

{∫
Bi

1
K(vol(B1))3

dx if x, x′ ∈ Bi for some i ∈ [K]

0 if x ∈ Bi and x′ ∈ Bj for some i 6= j

=

{
1

K(vol(B1))2
if x, x′ ∈ Bi for some i ∈ [K]

0 if x ∈ Bi and x′ ∈ Bj for some i 6= j.

Hence, it is obvious that the claim 2 holds.

Finally, let us prove the claim 3. However, from the claim 2 we see that sim(x, x′;λ) ≥ δ if and
only if x, x′ ∈ Bi for some i ∈ [K]. Furthermore, y is well-defined and the set {x ∈ X | y(x) = i} = Bi
is measurable for every i ∈ [K]. Thus, the claim 3 is also true, and we end the proof.

F.1.2 An Example When Clusters Overlap

Here, we also deal with an example where the clusters in X have some overlap. In the following
proposition, for the sake of simplicity, we consider the case that there are two clusters in X.

Proposition 4. Let r > 0, and v1, v2 ∈ Rp. For each i ∈ {1, 2}, let B(vi; r) ⊂ Rp be the open
ball of radius r centered at point vi. Suppose that ‖v1 − v2‖2 = 3r. Define X = B(v1; r) ∪ B(v2; r),
X = B(v1; 2r) ∪ B(v2; 2r), and a(x|x) = vol(B(v1; 2r))−1

∑2
i=1 1B(vi;2r)×B(vi;r)(x, x). Let pX(x) :=

(2 · vol(B(v1; r)))−1 be a probability density function of PX. Define y : X → {1, 2} as y(x) = 1 if
x ∈ B(v1; 2r) and y(x) = 2 if x ∈ B(v2; 2r) \ B(v1; 2r). Then, we have the following results:

1. w(x) > 0 for every x ∈ X.

2. sim(x, x′;λ) = 2−λ if x, x′ ∈ B(v1; 2r)\B(v2; 2r) or x, x′ ∈ B(v2; 2r)\B(v1; 2r), sim(x, x′;λ) =
−λ if (x, x′) ∈ (B(v1; 2r)\B(v2; 2r))×(B(v2; 2r)\B(v1; 2r)) or (x, x′) ∈ (B(v2; 2r)\B(v1; 2r))×
(B(v1; 2r) \ B(v2; 2r)), and sim(x, x′;λ) = 1− λ otherwise.

3. Let δ ∈ (−λ, 1− λ]. Then, δ, K, B1, · · · ,BK , and y satisfy Assumption 2.

Proof. Let X1 (resp. X2) denote B(v1; r), (resp. B(v2; r)). Then,

w(x) = E [a(x|x)]

=

∫
X
a(x|x)pX(x)dx

=

∫
X1

a(x|x)pX(x)dx+

∫
X2

a(x|x)pX(x)dx

= pX(x)

{∫
X1

a(x|x)dx+

∫
X2

a(x|x)dx

}
(pX is a constant function)

Here, we consider Case 1 and Case 2. Firstly, Case 1 is when either x ∈ B(v1; 2r) \B(v2; 2r) or x ∈
B(v2; 2r)\B(v1; 2r) holds. Since in this case, it is sufficient to prove for the case that x ∈ B(v1; 2r)\
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B(v2; 2r) holds, we may assume this condition. Then,
∫
X1
a(x|x)dx = vol(B(v1; r))vol(B(v1; 2r))−1

and
∫
X2
a(x|x)dx = 0. Thus, w(x) = 1/(2vol(B(v1; 2r))). Secondly, Case 2 is when x ∈

B(v1; 2r) ∩ B(v2; 2r). Then,
∫
X1
a(x|x)dx =

∫
X2
a(x|x)dx = vol(B(v1; r))vol(B(v1; 2r))−1. Thus,

w(x) = 1/vol(B(v1; 2r)). Since r > 0, it implies vol(B(v1; 2r)) > 0. Thus w(x) > 0 for both cases.

Next, we compute

w(x, x′) = Ex
[
a(x|x)a(x′|x)

]
=

∫
X
a(x|x)a(x′|x)pX(x)dx

=

∫
X1

a(x|x)a(x′|x)pX(x)dx +

∫
X2

a(x|x)a(x′|x)pX(x)dx

= pX(x)

{∫
X1

a(x|x)a(x′|x)dx+

∫
X2

a(x|x)a(x′|x)dx

}
. (pX is a constant function)

Here, we consider Case A, Case B, Case C, and Case D. Firstly Case A is that both x and x′

belong to B(v1; 2r) \ B(v2; 2r) (note that the computation for the case that both x and x′ belong
to B(v2; 2r) \ B(v1; 2r) is the same). Then,

∫
X1
a(x|x)a(x′|x)dx = vol(B(v1; r))/vol(B(v1; 2r))2

and
∫
X2
a(x|x)a(x′|x)dx = 0. Hence, w(x, x′) = {2(vol(B(v1; 2r)))2}−1. Here recall that

w(x) = w(x′) = 1/(2vol(B(v1; 2r))), then we have sim(x, x′;λ) = 2 − λ. Secondly Case B is
that x ∈ B(v1; 2r) \ B(v2; 2r) and x′ ∈ B(v2; 2r) \ B(v1; 2r) (the calculation for the case that
x ∈ B(v2; 2r) \ B(v1; 2r) and x′ ∈ B(v1; 2r) \ B(v2; 2r) is the same). Then,

∫
X1
a(x|x)a(x′|x)dx =∫

X2
a(x|x)a(x′|x)dx = 0. Therefore, sim(x, x′;λ) = 0 − λ = −λ. Thirdly Case C is that both

x and x′ belong to B(v1; 2r) ∩ B(v2; 2r). Then,
∫
X1
a(x|x)a(x′|x)dx =

∫
X2
a(x|x)a(x′|x)dx =

vol(B(v1; r))/vol(B(v1; 2r))2. Since w(x) = w(x′) = 1/vol(B(v1; 2r)), sim(x, x′;λ) = 1 − λ.
Finally in Case D, consider the complementary of the union of the other cases. From the
setting, we may assume that x belongs to B(v1; 2r) ∩ B(v2; 2r) and x′ to B(v1; 2r) \ B(v2; 2r).
Then,

∫
X1
a(x|x)a(x′|x)dx = vol(B(v1; r))/vol(B(v1; 2r))2 and

∫
X2
a(x|x)a(x′|x)dx = 0. Since

w(x) = 1/vol(B(v1; 2r)) and w(x′) = 1/(2vol(B(v1; 2r))), we have sim(x, x′;λ) = 1 − λ. As a
result,

sim(x, x′;λ) =


2− λ, if Case A holds,
−λ, if Case B holds,

1− λ, if Case C holds,
1− λ, if Case D holds.

Finally, take δ ∈ (−λ, 1−λ]. Then, from the computation for sim(x, x′;λ) above, the conditions
in Assumption 2 are satisfied.

F.2 SSL-HSIC Revisit

Li et al. (2021) propose the framework termed SSL-HSIC, which is defined using the notion
Hilbert-Schmidt Independence Criterion (HSIC, (Smola et al., 2007)). They show that under some
conditions, for a random variable Z (resp. Y ) that represents the feature vector (resp. the label),
one obtains

HSIC(Z, Y ) = c
(
Ex,x+

[
k(f(x), f(x+))

]
− Ex,x−

[
k(f(x), f(x−))

])
,
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where c > 0. Li et al. (2021) define the loss of SSL-HSIC as,

LSSL-HSIC(f ;κ) = −HSIC(Z, Y ) + κ
√

HSIC(Z,Z),

where κ ∈ R.

In the case that κ > 0, we have

LKCL(f ; 1) . LSSL-HSIC(f ;κ).

F.3 Supplementary Information of Section 3

F.3.1 Relations to Variants of InfoNCE

We first define variants of InfoNCE (Chen et al., 2020a; van den Oord et al., 2018):

• Decoupled InfoNCE loss, which is a variant of the decoupled NT-Xent loss of Chen et al.
(2021):

L̃NCE(f ; τ, λ) = −Ex,x+
[
f(x)>f(x+)

τ

]
+ λEx,x+

{x−i }

[
log

(
e
f(x)>f(x+)

τ +
M∑
i=1

e
f(x)>f(x−

i
)

τ

)]
.

• Asymptotic of contrastive loss (Wang and Isola, 2020) decoupled by following the way of Chen
et al. (2021):

L̃∞-NCE(f ; τ, λ) = −Ex,x+
[
f(x)>f(x+)

τ

]
+ λEx

[
logEx′

[
e
f(x)>f(x′)

τ

]]
,

• InfoNCE loss as a variant of decoupled contrastive learning loss (Yeh et al., 2022):

L̃NCE(f ; τ, 1) = −Ex,x+
[
f(x)>f(x+)

τ

]
+ Ex,{x−i }

[
log

(
M∑
i=1

e
f(x)>f(x−

i
)

τ

)]
.

• InfoNCE loss as a variant of decoupled contrastive learning loss with additional weight
parameter, following Chen et al. (2021):

L̃NCE(f ; τ, λ) = −Ex,x+
[
f(x)>f(x+)

τ

]
+ λEx,{x−i }

[
log

(
M∑
i=1

e
f(x)>f(x−

i
)

τ

)]
.

Note that LNCE(f ; τ) and L∞-NCE(f ; τ) in Section 2 coincide with L̃NCE(f ; τ, 1) and
L̃∞-NCE(f ; τ, 1) in this subsection, respectively. We show the following facts:

Proposition 5. The following relations hold:

τ−1LLinKCL(f ;λ) ≤ L̃NCE(f ; τ, λ) + λ logM−1, (29)

τ−1LLinKCL(f ;λ) ≤ L̃∞-NCE(f ; τ, λ), (30)

τ−1LLinKCL(f ;λ) ≤ L̃NCE(f ; τ, λ) + λ logM−1. (31)
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Proof. From the definition of LNCE(f ; τ, λ), we have

L̃NCE(f ; τ, λ) + λ log
1

M

= −τ−1Ex,x+
[
f(x)>f(x+)

]
+ λEx,x+,{x−i }

[
log

(
1

M
ef(x)>f(x+)/τ +

1

M

M∑
i=1

ef(x)>f(x−i )/τ

)]

≥ −τ−1Ex,x+
[
f(x)>f(x+)

]
+ λEx,{x−i }

[
log

(
1

M

M∑
i=1

ef(x)>f(x−i )/τ

)]

≥ −τ−1Ex,x+
[
f(x)>f(x+)

]
+ τ−1λEx,{x−i }

[
1

M

M∑
i=1

f(x)>f(x−i )

]
= τ−1LLinKCL(f ;λ),

where in the first inequality we use the fact that M−1ef(x)>f(x+)/τ ≥ 0 for any x, x+ ∈ X, and in
the second inequality we use Jensen’s inequality. Note that when λ = 1, we obtain (1).

The proofs of (31) are almost the same as the proof of (29). The equation (30) is obtained by
applying Jensen’s inequality.

F.3.2 Relations to SCL

Let us define the quadratic kernel contrastive loss as:

LQKCL(f ;λ) = −Ex,x+
[(
f(x)>f(x+)

)2
]

+ λEx,x−
[(
f(x)>f(x−)

)2
]
.

The spectral contrastive loss LSCL(f) (HaoChen et al., 2021) is defined as,

LSCL(f) = −2Ex,x+ [f(x)>f(x+)] + Ex,x− [(f(x)>f(x−))2]. (32)

The following proposition is an elementary result.

Proposition 6. We have,

LQKCL(f ; 2−1) ≤ 1

2
LSCL(f) +

1

4
.

Proof. Since t2 + 1/4 ≥ t for every t ∈ R, we obtain the claim.

F.4 Comparison of Assumption 2 of our work to Assumption 3 in HaoChen
and Ma (2023)

Let M be a measurable subset of X, and let g : X → R be a function. HaoChen and Ma (2023)
introduce the following notion that quantifies the inner-connectivity of clusters (see (4) in HaoChen
and Ma (2023)):

QM(g) :=
Ex,x+ [(g(x)− g(x+))2|M×M]

Ex,x− [(g(x)− g(x−))2|M×M]
.
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Here, the expectations above are defined as

Ex,x+ [(g(x)− g(x+))2|M×M] =

∫
X×X

(g(x)− g(x′))2P+(dx, dx′|M×M),

Ex,x− [(g(x)− g(x−))2|M×M] =

∫
X

∫
X

(g(x)− g(x′))2PX(dx|M)PX(dx′|M),

where we use the notation dP+ = w(x, x′)dν⊗2
X . We focus on the following notion, where HaoChen

and Ma (2023) denote their subsets by {S1, · · · , Sm}.

Assumption 4 (F-implementable inner-cluster connection larger than β, quoted from Assump-
tion 3 in HaoChen and Ma (2023)). For any function f ∈ F and any linear head w ∈ Rk, let
function g(x) = w>f(x). For any i ∈ [m] we have that:

QSi(g) ≥ β.

In summary, the relation between Assumption 3 of HaoChen and Ma (2023) and Assumption 2
of our work is given below:

Proposition 7. Suppose that Assumption 2 holds. Take δ ∈ R, K ∈ N, and M1, · · · ,MK such
that the conditions (A) and (B) are satisfied. Suppose also that: 1) there exists some c > 0 such
that for every i ∈ [K], c · P+(Mi ×Mi) ≤ PX(Mi)

2 holds; 2) δ + λ ≥ 0 holds. Then, the function
class F̃ including all the maps from X to Sd−1 satisfies Assumption 3 in HaoChen and Ma (2023).

Proof. Take an arbitrary f ∈ F̃ and w ∈ Rd. For each i ∈ [K], for any x, x′ ∈ Mi we have that
w(x, x′) ≥ (δ + λ)w(x)w(x′). Since δ + λ ≥ 0,∫

Mi×Mi

(g(x)− g(x′))2w(x, x′)ν⊗2
X (dx, dx′) ≥ (δ + λ)

∫
Mi×Mi

(g(x)− g(x′))2w(x)w(x′)ν⊗2
X (dx, dx′).

Here, using c · P+(Mi ×Mi) ≤ PX(Mi)
2, we have

1

P+(Mi ×Mi)

∫
Mi×Mi

(g(x)− g(x′))2w(x, x′)ν⊗2
X (dx, dx′)

≥ c(δ + λ)
1

PX(Mi)2

∫
Mi×Mi

(g(x)− g(x′))2w(x)w(x′)ν⊗2
X (dx, dx′).

The above inequality means that,∫
X×X

(g(x)− g(x′))2P+(dx, dx′|Mi ×Mi) ≥ c(δ + λ)

∫
X

∫
X

(g(x)− g(x′))2PX(dx|Mi)PX(dx′|Mi).

Thus, we obtain QMi(g) ≥ c(δ + λ), where g(x) = w>f(x).

The above proposition indicates that the inner-connectivity QMi(g) for any i ∈ [K] and g(x) =

w>f(x) with f ∈ F̃ is lower bounded by c(δ+λ) under the assumptions. Therefore, Assumption 2
of our work is a sufficient condition of Assumption 3 in HaoChen and Ma (2023) if c ·P+(Mi×Mi) ≤
PX(Mi)

2 (for every i ∈ [K]) and δ + λ ≥ 0 hold.
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Remark 4. We can construct a positive value c in the above statement explicitly. In this remark,
we show a simple way to do so. Let X,Y be random variables on a probability space (Ω, PΩ) with the
joint probability distribution P+ and the marginal distribution PX. Denote p1 = PΩ(X ∈ Mi) and
p = PΩ(X ∈ Mi, Y ∈ Mi). Here, let V be the covariance matrix of the random variables 1{X∈Mi}
and 1{Y ∈Mi}. The positive semi-definiteness of V implies the inequality (p1 − p2

1)2 − (p− p2
1)2 ≥ 0.

This inequality is valid when 2p2
1 − p1 ≤ p ≤ p1. Combining this fact with the property p ≥ 0, we

obtain

max{2p2
1 − p1, 0} ≤ p ≤ p1,

which implies,

PX(Mi) ·max{2PX(Mi)− 1, 0} · P+(Mi ×Mi) ≤ PX(Mi)
2.

Thus, if PX(Mi) > 1/2 holds for every i ∈ [K], then we can take

c = min
i∈[K]
{PX(Mi)(2PX(Mi)− 1)}.

F.5 More Discussion about Generalization Bounds in Section 5.3

In this section, we discuss the differences between our generalization error bound and the results
presented by other works on contrastive learning. We summarize the differences below.

• Arora et al. (2019); Ash et al. (2022); Lei et al. (2023); Zou and Liu (2023) consider the
case that for a pair (x, x+), M -tuple samples (x−1 , · · · , x

−
M ) independent from other random

variables are available. Thus, our problem setup is different from them. Especially, in our
analysis, it is also necessary to tackle the cases in which Xi, X

′
i, i ∈ [n], are not necessarily

independent and the standard techniques (e.g., see Mohri et al. (2018)) cannot be applied.
We instead utilized the results of McDiarmid’s inequality for dependent random variables
shown by Zhang et al. (2019).

• The empirical loss considered in Zhang et al. (2022) is defined in a different way from our
empirical kernel contrastive loss. Also, our proof technique is different from Zhang et al.
(2022).

• HaoChen et al. (2021); Nozawa et al. (2020) consider the case in which the augmented samples
are not necessarily independent. Nozawa et al. (2020) utilize the theory on PAC-Bayes
bounds (Guedj, 2019), and HaoChen et al. (2021) provide the high probability bound.
Our analysis is different from Nozawa et al. (2020) since our analysis is based on several
concentration inequalities. HaoChen et al. (2021) consider the empirical spectral contrastive
loss that is defined by raw samples and expressed in the expectation w.r.t. the augmented
samples that are drawn according to the conditional distribution given the raw samples (see
Section 4.1 in HaoChen et al. (2021)). On the other hand, we derive a generalization error
bound for the empirical kernel contrastive loss defined by only augmented samples.

• Wang et al. (2022b) establish the generalization error bound for the spectral contrastive
loss (HaoChen et al., 2021), where their analysis improves the convergence rate of HaoChen
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et al. (2021). In their analysis, they decompose the second term of the spectral contrastive
loss in a different way from us (for the detail of their decomposition, see the proof of
Proposition D.1 of Wang et al. (2022b)). Also, they utilize the concentration inequality shown
by Clémençon et al. (2008) (see equation (51) in Wang et al. (2022b)), while we use the results
proved by Zhang et al. (2019). Thus, the techniques we use in the proof of Theorem 6 are
different from those of Wang et al. (2022b).

F.6 Detailed Comparison to Robinson et al. (2021b)

Robinson et al. (2021b) tackle the hard negative sampling problem in contrastive learning from both
the theoretical and empirical perspectives. They also establish generalization bounds for their hard
negative objectives by introducing the 1-NN classifier (for their definition of the 1-NN classifier, see
the statement of Theorem 5 in Robinson et al. (2021b)). We give a detailed comparison between
our results and the theoretical analysis by Robinson et al. (2021b). The main differences are listed
below:

• The problem setup of the theoretical results by Robinson et al. (2021b) is based on that
of Arora et al. (2019), i.e., they rely on the conditional independence assumption. On the
other hand, we does not rely on it, where we utilize the similarity function sim(·, ·;λ) instead.

• In the proof of Theorem 5 of Robinson et al. (2021b) (see also Theorem 8 and the proof of their
work), the supervised loss is upper-bounded by the term EcEx,x+∼iidp(·|c)‖f(x)− f(x+)‖2. In
summary, the differences between Theorem 5 of Robinson et al. (2021b) and Theorem 2 of our
work are: (i) In the numerator of the upper bound in the proof of Theorem 8 of Robinson et al.
(2021b), the term mentioned above appears. On the other hand, in Theorem 2 of our work,
the quantity a(f) appears. (ii) Our upper bound includes the quantity ∆min(f). (iii) We also
note that the proof techniques used in Theorem 2 in our work are different from Robinson
et al. (2021b).

• Note that the label employed in the analysis by Robinson et al. (2021b) is a random variable,
while our analysis employ the deterministic labeling function.

F.7 Detailed Comparison to Huang et al. (2023); Zhao et al. (2023)

Huang et al. (2023) present the generalization bounds that utilizes the 1-NN classifier (for the
definition of the 1-NN classifier introduced in Huang et al. (2023), see Section 2 in their paper).
Besides, Zhao et al. (2023) extend the results of Huang et al. (2023). Thus, it is worth discussing
the differences between the results by Huang et al. (2023); Zhao et al. (2023) and our Theorem 2.
We summarize the differences below:

• Huang et al. (2023) show that if the centers of clusters in the feature space are sufficiently
apart from each other (note that they call it divergence), then their supervised error function
is upper bounded by the alignment term up to several constants and parameters. Hence,
their results do not show that the divergence relates directly to the supervised error, i.e., the
divergence term does not appear in their upper bounds of the supervised error. On the other
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hand, we show that the quantities related to the divergence in the RKHS can also contribute
to upper-bounding the supervised error (see Theorem 2).

• In Huang et al. (2023); Zhao et al. (2023), it is little investigated to what range of encoder
models their results can apply. On the other hand, our Theorem 2 requires only the
meaningfulness (Definition 2) of encoders belonging to F . Especially, suppose k is the linear
kernel, then Theorem 2 in our study refines Theorem 1 of Huang et al. (2023) in this sense.

• Huang et al. (2023); Zhao et al. (2023) utilize the notion termed (σ, δ)-augmentation, while
our analysis utilizes Assumption 2 based on the definition of the similarity function sim(·, ·;λ).

• Huang et al. (2023); Zhao et al. (2023) often use the assumption that the encoder f is a
Lipschitz function. Meanwhile, our main result does not require that f should be a Lipschitz
function.

• Zhao et al. (2023) consider the squared loss for the downstream classification task (see
Theorem 3.2 in their paper). On the other hand, we consider the classification error.

G Connections between KCL and Normalized Cut

In this section, we present supplementary information of Section 4.1. Throughout this section,
we assume that infx∈Xw(x) < ∞ and supx∈X supx∈X a(x|x) < ∞ hold. Note that the assumption
supx∈X supx∈X a(x|x) <∞ implies supx∈Xw(x) <∞.

G.1 The Problem Setup of Normalized Cut

In this section, we first explain the population-level normalized cut problem based on Shi and Malik
(2000); Terada and Yamamoto (2019); Von Luxburg (2007). Suppose that there are total K clusters
in X. Following Terada and Yamamoto (2019), the optimization problem of the population-level
normalized cut is given as:

min
V1,··· ,VK

K∑
i=1

W (Vi,Vci )
vol(Vi)

(33)

where the minimum in the above problem is taken over all the possible combinations of K disjoint
non-empty measurable subsets V1, · · · ,VK satisfying

⋃K
i=1 Vi = X, and W and vol(·) are defined

as,

W (Vi,Vci ) =

∫
(x,x′)∈Vi×Vci

sim(x, x′;λ)w(x)w(x′)dν⊗2
X (x, x′), (34)

vol(Vi) =

∫
Vi
w(x)dνX(x), (35)

where ν⊗2
X := νX ⊗ νX is the product measure. Here also note that vol(·) is the volume of a set

Vi. Terada and Yamamoto (2019) consider the case that a reproducing kernel is used as similarity
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measurement: see Theorem 7 in Terada and Yamamoto (2019). Note that some existing work deals
with the measurable partition problems such as the ratio cut and Cheeger cut (Trillos et al., 2016).

Denote by L2(X, PX), the Hilbert space over the field R consisting of real-valued and
squared-integrable function defined on X for PX-a.e., with its inner product 〈f, g〉L2(X,PX) =∫
f(x)g(x)dPX(x). Let U : RK → L2(X, PX) be a linear operator defined as,

(Uz)(·) =
K∑
i=1

1Vi(·)√
vol(Vi)

zi, z = (z1, · · · , zK)>, (36)

where 1Vi(x) = 1 if x ∈ Vi and 0 if x /∈ Vi, and zi := 〈z, ei〉RK for each i ∈ [K] with an orthonormal
basis {ei}Ki=1 of RK . Note that under the setting that |X| < ∞, the linear operator U is equal
to (1Vj (xi)/

√
vol(Vj))ij . Therefore, the definition of U matches that of the classical theory of

normalized cut (Shi and Malik, 2000). Moreover, every augmented data x ∈ X belongs to one
of the subsets V1, · · · ,VK . Since V1, · · · ,Vk are disjoint, linear operator U is bounded, and the
adjoint operator U † exists uniquely. Here, Von Luxburg (2007) explain that the objective function
of the normalized cut problem can be rewritten as a combinatorial optimization problem. Applying
the arguments presented by Von Luxburg (2007) to our setup, we have

K∑
i=1

W (Vi,Vci )
vol(Vi)

= −Tr(U †AU) + (1− λ)K, (37)

where A : L2(X, PX)→ L2(X, PX) is a Hilbert-Schmidt integral operator defined as

Aψ(·) =

∫
sim(·, x;λ)ψ(x)w(x)dνX(x) ψ ∈ L2(X, PX), (38)

and −Tr(U †AU) = −
∑K

i=1〈U †AUei, ei〉RK . The proof of (37) closely follows that of Von Luxburg
(2007); in Appendix G.3, we present the proof of an extended version. Here the following proposition
shows the well-definedeness of A.

Proposition 8. Suppose the setting described in Section 2.1 holds, infx∈Xw(x) > 0, and
supx∈X supx∈X a(x|x) <∞ holds. Then, the integral operator A is well-defined.

Proof. We can evaluate∣∣∣∣∫ sim2(x, x;λ)w(x)dνX(x)

∣∣∣∣ =

∣∣∣∣∣
∫ (

w(x, x)

w(x)w(x)
− λ
)2

w(x)dνX(x)

∣∣∣∣∣
≤
∫ ((

w(x, x)

w(x)w(x)

)2

+ 2λ
w(x, x)

w(x)w(x)
+ λ2

)
w(x)dνX(x)

< +∞,

where we use the assumptions that infx∈Xw(x) > 0, supx∈X supx∈X a(x|x) <∞.

Suppose the dimension of the RKHS Hk associated with the kernel function k is greater than
or equal to K. In the following section, it is convenient to redefine (33) as,

min
V1,··· ,VK

∞∑
i=1

W (Vi,Vci )
vol(Vi)

,
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where we define Vj = ∅ for every j > K. Also, let us redefine (36) as the linear operator U : Hk →
L2(X, PX),

(Uψ)(·) =
∞∑
i=1

1Vi(·)√
vol(Vi)

〈ψ, ei〉Hk ,

where {ej}∞j=1 is an orthonormal basis of Hk (if Hk is finite dimensional, then we understand that

{ej}∞j=1 consists of finitely many non-zero elements), and we define 1Vi(·)/
√

vol(Vi) = 0 for every
i > K as notations. Then, we have the following identity that is analogous of (37):

∞∑
i=1

W (Vi,Vci )
vol(Vi)

= −Tr(U †AU) + (1− λ)K. (39)

For the sake of completeness, we provide the proof of the identity (39) in Appendix G.3.

G.2 Connecting KCL and Normalized Cut via RKHS

Let k : Sd−1× Sd−1 be a continuous, symmetric, and positive-definite kernel function whose RKHS
Hk is K-dimensional Hilbert space (K is either finite or∞); For the theory of reproducing kernels,
see e.g., Aronszajn (1950); Berlinet and Thomas-Agnan (2004); Steinwart and Christmann (2008).
Many kernel functions satisfy these conditions, e.g. the Gaussian kernel, the polynomial kernel, and
the linear kernel. Since Sd−1 is separable, the RKHS Hk has an orthonormal basis that is at most
countable (e.g., see Berlinet and Thomas-Agnan (2004)). Let {ej}∞j=1 be a countable orthonormal
basis of Hk, where {ej}∞j=1 includes only finitely many non-zero elements if Hk is finite-dimensional.
Note that our construction is valid regardless of the choice of {ej}∞j=1. Recall the problem setup

presented in Section 2.1. Then, the linear operator H : Hk → L2(X, PX) is defined as

(Hϕ)(·) = 〈h(f(·)), ϕ〉Hk , (40)

for ϕ ∈ Hk. Let ‖ · ‖Hk be the norm of the RKHS Hk. Then the following holds for the linear
operator H defined in (40):

Proposition 9. The linear operator H is well-defined, i.e., Hϕ ∈ L2(X, PX) for every ϕ ∈ Hk.
Also, H is continuous, i.e., for a sequence ϕj converging strongly to ϕ in Hk, we have that Hϕj is
convergent to Hϕ.

Proof. For any ϕ ∈ Hk, we have∫
|(Hϕ)(x)|2w(x)dνX(dx) =

∫
|〈h(f(x)), ϕ〉Hk |

2w(x)dνX(x)

≤
∫
‖h(f(x))‖2Hk‖ϕ‖

2
Hkw(x)dνX(x)

≤ ‖ϕ‖2HkEx [k(f(x), f(x))] < +∞.

Here in the second inequality we use the Cauchy-Schwarz inequality, and in the last equality we use
the fact that Sd−1 is compact and k is continuous. Furthermore, if ϕj → ϕ in the sense of strongly
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convergence in Hk, then we have

‖〈h(f(·)), ϕj〉Hk − 〈h(f(·)), ϕ〉Hk‖
2
L2(X,PX) =

∫
|〈h(f(x)), ϕj − ϕ〉Hk |

2w(x)dνX(x)

≤ ‖ϕj − ϕ‖2HkEx [k(f(x), f(x))]

−→ 0 (j →∞).

Thus Hϕj converges to Hϕ, and we end the proof.

Proposition 9 implies that H is bounded. Therefore, the adjoint operator H† : L2(X, PX)→ Hk
exists uniquely.

Now let us recall the definition of the similarity function sim(·, ·;λ) with the fixed λ in (2), and
we consider to relax the combinatorial problem (33) using the linear operator H defined in (40) as
follows: we replace the linear operator U in (37) with H, which results in the objective function
−Tr(H†AH). Then, the following proposition holds.

Proposition 10. We have

−Tr(H†AH) = −Ex,x+
[
k(f(x), f(x+))

]
+ λEx,x−

[
k(f(x), f(x−))

]
.

Proof. From the definition of sim(x, x′;λ),

(Aψ)(x) =

∫
sim(x, x′;λ)ψ(x′)w(x′)dνX(x′)

=

∫ (
w(x, x′)

w(x)w(x′)
− λ

)
ψ(x′)w(x′)dνX(x′)

=

∫
w(x, x′)

w(x)w(x′)
ψ(x′)w(x′)dνX(x′)︸ ︷︷ ︸

:=(Aposψ)(x)

−λ
∫
ψ(x′)w(x′)dνX(x′)︸ ︷︷ ︸

:=(Anegψ)(x)

.

Firstly, let us proof the identity

Tr(H†AposH) = Ex,x+
[
k(f(x), f(x+))

]
.

The proof is described as follows: From the definition of H,

(Hei)(x) = 〈h(f(x)), ei〉Hk x ∈ X.

Then we have

(AposHei)(x) =

∫
w(x, x′)

w(x)w(x′)
w(x′)〈h(f(x′)), ei〉HkdνX(x′)

=

∫
w(x, x′)

w(x)
〈h(f(x′)), ei〉HkdνX(x′).

Here, the adjoint operator H† satisfies the following identity; For ψ ∈ L2(X, PX),

〈Hei, ψ〉L2(X,PX) = 〈ei, H†ψ〉Hk .
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Utilizing this relation yields the following representation:

H†AposHej

=

∞∑
i=1

〈H†AposHej , ei〉Hkei

=

∞∑
i=1

〈AposHej , Hei〉L2(X,PX)ei

=

∞∑
i=1

(∫
w(x)〈h(f(x)), ei〉Hk

∫
w(x, x′)

w(x)
〈h(f(x′)), ej〉HkdνX(x′)dνX(x)

)
ei

=
∞∑
i=1

(∫ ∫
w(x, x′)〈h(f(x)), ei〉Hk〈h(f(x′)), ej〉HkdνX(x)dνX(x′)

)
ei.

Therefore,

Tr(H†AposH) =
∞∑
j=1

〈H†AposHej , ej〉Hk

=
∞∑
j=1

∫ ∫
w(x, x′)〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉HkdνX(x)dνX(x′)

=

∫ ∫
w(x, x′)

∞∑
j=1

〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉HkdνX(x)dνX(x′)

=

∫ ∫
w(x, x′)〈h(f(x)), h(f(x′))〉HkdνX(x)dνX(x′)

= Ex,x+
[
k(f(x), f(x+))

]
.

Note that the third equality above is due to the Dominated Convergence Theorem. Indeed, the
sum

∑n
j=1〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉Hk converges pointwisely to 〈h(f(x)), h(f(x))〉Hk on X × X,

and ∣∣∣∣∣∣
n∑
j=1

〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉Hk

∣∣∣∣∣∣ ≤
n∑
j=1

∣∣〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉Hk
∣∣

≤

 n∑
j=1

〈h(f(x)), ej〉2Hk

1/2 n∑
j=1

〈h(f(x′)), ej〉2Hk

1/2

≤

 ∞∑
j=1

〈h(f(x)), ej〉2Hk

1/2 ∞∑
j=1

〈h(f(x′)), ej〉2Hk

1/2

= ‖h(f(x))‖Hk‖h(f(x′))‖Hk
≤ sup

x∈X
k(f(x), f(x)) < +∞.
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On the other hand, it is obvious that,

〈H†AnegHej , ej〉Hk = 〈AnegHej , Hej〉L2(X,PX)

=

∫
w(x)〈h(f(x)), ej〉Hk

∫
w(x′)〈h(f(x′)), ej〉HkdνX(x′)dνX(x)

=

∫ ∫
〈h(f(x)), ej〉Hk〈h(f(x′)), ej〉Hkw(x)w(x′)dνX(x)dνX(x′).

Hence we obtain,

Tr(H†AnegH) =

∞∑
j=1

〈H†AnegHej , ej〉Hk

=

∫ ∫
〈h(f(x)), h(f(x′))〉Hkw(x)w(x′)dνX(x)dνX(x′)

= Ex,x−
[
k(f(x), f(x−))

]
.

Hence, we obtain the desired results and end the proof.

G.2.1 Comparison with Related Work from the Graph Cut Viewpoint

HaoChen et al. (2021) has already investigated links between the population-level spectral clustering
and contrastive learning. However, our integral kernel (2) introduced in Section 4.1 is slightly
different from that of HaoChen et al. (2021), since 1) we divide w(x, x′) by w(x)w(x′) in the first
term rather than by

√
w(x)w(x′) (see Appendix F in HaoChen et al. (2021)), 2) we also incorporate

the hyperparemeter λ.

Note that Tian (2022) introduces a unified framework termed α-CL, which connects various
contrastive losses from the coordinate-wise optimization perspective. In Tian (2022), the contrastive
covariance plays a central role in the theoretical analysis. On the other hand, we use the similarity
function defined in Section 4, and thus the approach of our analysis is different from the contrastive
covariance of Tian (2022).

G.3 Proof of (39)

Proof of (39). For the proof of (39), we closely follow the approaches presented in Section 5
of Von Luxburg (2007). Since we consider the population-level normalized cut, we present the
proof of (39) for the sake of completeness.

Let us define the identity operator D : L2(X, PX) → L2(X, PX) as Dψ = ψ for ψ ∈ L2(X, PX).
From the definitions of D and U , we have

DUei =


1Vi (·)√
vol(Vi)

(i ≤ K),

0 (i > K).

Hence, we have the following for i ≤ K:

〈U †DUei, ei〉Hk =

∫
w(x)1Vi(x)2

vol(Vi)
dνX(x) = 1.

54



On the other hand, for i ≤ K we have

〈U †AUei, ei〉Hk

=

∫ ∫
(w(x, x′)− λw(x)w(x′))

1Vi(x)√
vol(Vi)

1Vi(x
′)√

vol(Vi)
dνX(x′)dνX(x)

Therefore, we obtain the following:

Tr(U †(D −A)U) =
∞∑
i=1

〈U †(D −A)Uei, ei〉Hk

=

K∑
i=1

〈U †(D −A)Uei, ei〉Hk

= λK +
1

2

K∑
i=1

∫ ∫ (
w(x, x′)− λw(x)w(x′)

)( 1Vi(x)√
vol(Vi)

− 1Vi(x
′)√

vol(Vi)

)2

dν⊗2
X (x, x′)

= λK +
K∑
i=1

∫
x∈Vi

∫
x′∈Vci

(w(x, x′)− λw(x)w(x′))

vol(Vi)
dνX(x′)dνX(x)

= λK +

K∑
i=1

∫
x∈Vi

∫
x′∈Vci

sim(x, x′;λ)

vol(Vi)
w(x)w(x′)dνX(x′)dνX(x)

= λK +

K∑
i=1

W (Vi,Vci )
vol(Vi)

.

Hence we end the proof.

H Experiments

H.1 Experimental setup

We provide the setting of the experiments presented in this paper. The code used in our experiments
is based on the official implementation of SimSiam1 and written with PyTorch (Paszke et al., 2019).
We basically follow the experimental setting of Chen and He (2021). For the sake of completeness,
we provide the detail of the setup used in our experiments. During the stage of pretraining, we
construct a trainable encoder model as follows: following Chen and He (2021), we use a backbone
architecture whose parameters are initialized, followed by the MLP that consists of linear layers,
batch normalization (Ioffe and Szegedy, 2015), and the ReLU activation function. Note that this
type of MLP is called projection head (Chen et al., 2020a). The output of a trainable encoder
model is normalized using the Euclidean norm as several works do (Chen et al., 2020a; Dwibedi
et al., 2021). On the other hand, during the stage of linear evaluation (Chen et al., 2020a; Chen
and He, 2021), the additional MLP is removed from a trained encoder model, and then a linear
classification head is added to the encoder model. The parameters of the trained encoder model

1https://github.com/facebookresearch/simsiam (Last accessed: March 25, 2023)
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are frozen in this stage, and only the linear head is trained. In all of the experiments reported in
this paper, we use ResNet-18 (He et al., 2016) as the backbone architecture. We use the 2-layer
multi-layer perceptron for the projection head, where the first linear layer is bias-free, and the last
linear layer has the bias term.

For the pretraining, we use the same data augmentation techniques as Chen et al. (2020b);
Chen and He Chen and He (2021). Note that following Chen and He Chen and He (2021), for the
CIFAR-10 experiments, we exclude the Gaussian blur augmentation. For the linear evaluation, we
also follow the data augmentation techniques of Chen and He (2021). Note that in both the stage
of pretraining and linear evaluation, we set drop last to True in the training data loader.

For optimization during both the stage of pretraining and linear evaluation, following Chen and
He (2021), we use the SGD optimizer. Inspired by HaoChen et al. (2021), we use the cosine-decay
learning rate scheduler (Loshchilov and Hutter, 2017) with warmup (Goyal et al., 2017). Note that
we use the cosine-decay learning rate scheduler in both the pretraining and linear evaluation and
apply warmup in the pretraining. Following the implementation of the learning rate scheduler of
the official implementation of SCL2, we also define our learning rate scheduler by the number of
iterations.

H.1.1 Configurations

In all of the experiments reported in this paper, we use the following configurations:

Pretraining For the learning rate, we set the initial learning rate to 0.0005, the base learning
rate to 0.05, and the warmup epochs to 10. Following Chen and He (2021), we use the linear
scaling (Goyal et al., 2017) for the learning rate. For the setting of the SGD optimizer, we also
follow the setting of Chen and He (2021) used for their CIFAR-10 experiments (see Appendix D
in their paper): the momentum is set 0.9, and the weight decay is set 0.0005. For the output
dimension of encoders, we set 512.

Linear Evaluation We follow the configurations of Chen and He (2021) for linear evaluation:
for the SGD optimizer, the momentum is 0.9, the weight decay is 0, the batch size is fixed to 256,
and the learning rate is 30.0, where the linear scaling (Goyal et al., 2017) is applied to the learning
rate. Note that we train the linear head for 100 epochs.

H.1.2 Kernel Functions

In the experiments, we use the following kernel functions:

2https://github.com/jhaochenz/spectral_contrastive_learning/blob/ee431bdba9bb62ad00a7e55792213ee37712784c/

optimizers/lr_scheduler.py (Last accessed: March 25, 2023)
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Gaussian Kernel. The Gaussian kernel kGauss is defined as,

kGauss(z, z
′) = exp

(
−‖z − z

′‖22
σ2

)
,

where σ2 > 0 is the bandwidth parameter.

Quadratic Kernel. The Quadratic kernel kGauss is defined as,

kQuad(z, z′) =
(
z>z′

)2
.

H.1.3 Loss Functions

For the implementation of the kernel contrastive loss, we implement the empirical kernel contrastive
loss (4). Note that in our experiments, the KCL frameworks with the Gaussian kernel and quadratic
kernel are called Gaussian KCL (GKCL), and Quadratic KCL (QKCL), respectively.

For comparison, we also perform several reproducing experiments for SimCLR (Chen et al.,
2020a) and SCL (HaoChen et al., 2021). For the implementation of the objective function of
SimCLR, we use lightly.loss.NTXentLoss3 of Lightly (Susmelj et al., 2020). For the implementation
of the spectral contrastive loss of SCL, we adapt the implementation of the official SCL code4.

H.1.4 Datasets

In the experiments, we use the following datasets: CIFAR-10 (Krizhevsky, 2009), STL-10 (Coates
et al., 2011), and ImageNet-100 (Tian et al., 2020). Note that ImageNet-100 is a subset of
the ImageNet-1K dataset (Deng et al., 2009), where the ImageNet-100 dataset contains images
categorized in 100 classes (Tian et al., 2020). When extracting images from the original the
ImageNet-1K dataset to create the ImageNet-100 dataset, we select the 100 classes used in Tian
et al. (2020). We also remark that for the experiments with the STL-10 dataset, we use the mixed
dataset that consists of the unlabeled images and the labeled training images for pretraining, the
labeled training images for the training of the linear head in the stage of linear evaluation, and the
labeled test images for computing the accuracy in linear evaluation. Throughout the experiments,
we use the following image size for each dataset: 32 × 32 pixels for CIFAR-10, 96 × 96 pixels for
STL-10, and 224×224 pixels for ImageNet-100, where the image sizes of CIFAR-10 and STL-10 are
the same as the sizes of the original images, respectively, and the image sizes for ImageNet-100 are
inspired by those for the ImageNet-1K dataset used in Chen et al. (2020a); Chen and He (2021).

H.1.5 Detail of Architectures for the CIFAR-10 Experiments

In the experiments with the CIFAR-10 dataset, following the settings of Chen and He (2021);
HaoChen et al. (2021); He et al. (2016), we modify the original ResNet-18 (He et al., 2016) as follows:

3Note that in our experiments, we use Lightly 1.2.25.
4https://github.com/jhaochenz/spectral_contrastive_learning/blob/ee431bdba9bb62ad00a7e55792213ee37712784c/

models/spectral.py (Last accessed: March 25, 2023)
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in the implementation code of ResNet5 of torchvision (TorchVision maintainers and contributors,
2016), we replace the first convolution layer with that whose kernel size is 3, stride is 1, and padding
is 1, and the maxpool layer with that whose kernel size is 1 and stride is 1.

H.1.6 Supplementary Information of the Implementation

We use the following packages for the experiments: PyTorch (Paszke et al., 2019), torchvi-
sion (TorchVision maintainers and contributors, 2016), NumPy (Harris et al., 2020), Lightly (Sus-
melj et al., 2020), Matplotlib (Hunter, 2007), and seaborn (Waskom, 2021).

H.2 Results of Linear Evaluation

We perform pretraining and linear evaluation with the CIFAR-10, STL-10, and ImageNet-100
datasets. In the stage of pretraining, we train the encoder models for 800 epochs. For the
experiments with the CIFAR-10 and STL-10 datasets, the batch sizes are set 256. Besides, for the
experiments with the ImageNet-100 dataset, we set 512 for the batch sizes. We select the following
hyperparameters of the KCL frameworks for all the experiments reported in this subsection: σ2 = 1
and λ = 8 for GKCL, and λ = 4 for QKCL. For SCL, inspired by HaoChen et al. (2021), we
select 3 for the radius parameter. For SimCLR, inspired by Chen et al. (2020a), we select 0.1 for
the temperature parameter. These hyperparameters are also used for all the experiments in this
subsection.

The results are shown in Table 1. In Table 1, the experiments with the CIFAR-10 dataset are
performed using one Quadro P6000 GPU. Besides, the experiments with STL-10 and ImageNet-100
are performed using one Tesla V100S GPU.

H.3 More Experiments

H.3.1 Ablation Study on the Weight Parameters and Batch Sizes

We investigate how the selection of λ and batch sizes affect the quality of learned representations.
In the experiments, we use the CIFAR-10 dataset. We select {1, 2, 4, 8, 16, 32} for λ, and
{64, 128, 256, 512, 1024} for the batch sizes. In each run, we pretrain an encoder model for 200
epochs. We use both GKCL and QKCL and evaluate those results.

5https://github.com/pytorch/vision/blob/eac3dc7bab436725b0ba65e556d3a6ffd43c24e1/torchvision/

models/resnet.py (Last accessed: March 26, 2023)
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Table 1: Top-1 and Top-5 accuracy (%) in linear evaluation for each method. For the CIFAR-10
and STL-10 experiments, we perform three trials of ”pretraining+linear evaluation,” and the results
indicate the mean±standard deviation. For the ImageNet-100 experiments, we perform one trial of
”pretraining+linear evaluation.” All the results reported below are obtained as follows: we trained
the linear heads for 100 epochs and evaluated the final classification accuracy of the models with the
corresponding validation or test dataset. The word ”repro.” is the abbreviation for ”reproducing,”
meaning that we performed several reproducing experiments to compare to the performance of
KCL.

CIFAR-10 STL-10 ImageNet-100
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SimCLR (repro.) 90.09±0.05 99.70±0.01 87.23±0.35 99.56±0.04 77.26 94.06
SCL (repro.) 91.53±0.10 99.71±0.05 86.68±0.12 99.49±0.07 75.22 93.36

GKCL 90.87±0.08 99.63±0.00 86.69±0.09 99.38±0.01 76.40 93.20
QKCL 90.62±0.10 99.59±0.05 87.07±0.20 99.37±0.03 77.12 93.96
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Figure 2: The results of ablation study for GKCL. The number in each cell indicates the Top-1
accuracy (%).

The Top-1 accuracy computed at the end of linear evaluation for GKCL and QKCL are shown
in Figure 2 and 3, respectively. Note that the experiments reported in Figure 2 and 3 are performed
by using one Tesla V100S GPU. The results of the experiments indicate that 1) the selection of the
value for λ affects the quality of the representations learned by KCL, 2) the small batch sizes (e.g.,
128 and 256) are more efficient when pretraining encoders, while the large batch sizes (e.g., 1024)
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Figure 3: The results of ablation study for QKCL. The number in each cell indicates the Top-1
accuracy (%).

degrade the performance. Note that Chen et al. (2021) showed similar findings to the first point
for the generalized NT-Xent loss. Besides, Chen and He (2021) point out the efficiency of SimSiam
with small batch sizes.

H.3.2 How Does λ Influence the Geometry of Representations Learned?

From Theorem 1, minimization of the kernel contrastive loss makes λ · c(f) smaller, which can
imply that the means of the clusters tend to distribute uniformly as λ increases. Motivated by this
result, in this subsubsection, we simulate how the mean of the feature vectors belonging to each
cluster distributes. In the experiments, we use the STL-10 dataset. In the stage of unsupervised
pretraining, we use the combination of the unlabeled images and the labeled training images in
the STL-10 dataset. We use GKCL for the pretraining. The weights used in the experiments are
{1, 2, 4, 8, 16, 32, 64}. We pretrain the encoder model for 400 epochs in each run. We set the batch
sizes to 256. After the stage of pretraining, we compute the mean for each class and calculate the
cosine similarities between those means. Since the clusters M1, · · · ,MK are hard to obtain for the
STL-10 dataset, we instead use the labels included in the labeled training images of the STL-10
dataset to compute the mean over the feature vectors of augmented data transformed from raw
data in each class. Note that we draw an augmented image from each raw image when computing
the means. The experiments in this subsubsection are performed by using one Tesla V100S GPU.

The results are summarized in Table 4 as a box plot. The results indicate that the variation
becomes smaller as λ increases. Thus, larger λ makes the means to distribute more uniformly in
this experimental setting. Note that this result may imply that the clusters M1, · · · ,MK and the
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Figure 4: The box plot of the cosine similarities between the means of the different classes for each
encoder model pretrained with different λ. Note that the horizontal lines in each bar represent, in
the order from bottom to top, the minimum value, the first quartile, the median, the third quartile,
and the maximum value, respectively.

subsets defined with labels have some relation. We leave the investigation of this question as future
work.

H.4 Too Large λ Degrades the Performance in Downstream Classification Tasks

In this subsection, we report the results of the experiments with different values for λ. In the
experiments, we use {1, 2, 4, 8, 16, 32, 64, 128, 256, 512} for the weight λ. For the contrastive learning
framework, we use GKCL. We use two datasets, CIFAR-10 and STL-10, and pretrain the encoder
during 400 epochs in each run. In the stage of pretraining, we set 128 for the batch size. Each
experiment reported in this subsection is performed using one Tesla V100S GPU.
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Table 2: Top-1 accuracy (%) in the results of linear evaluation, where the encoder is pretrained
with different λ for each run.

Top-1 Accuracy
λ CIFAR-10 STL-10

1 89.06 83.20
2 90.29 84.54
4 90.77 85.36
8 90.66 85.33
16 90.52 84.19
32 89.78 83.39
64 88.85 81.50
128 86.93 79.71
256 85.24 77.89
512 82.43 76.26

The results on the Top-1 accuracy at the end of the linear evaluation are presented in Table 2.
The results indicate that too large λ, such as 512, degrades the performance in the downstream
task.
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