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Abstract. Classification of high-dimensional low sample size (HDLSS)
data poses a challenge in a variety of real-world situations, such as gene
expression studies, cancer research, and medical imaging. This article
presents the development and analysis of some classifiers that are specif-
ically designed for HDLSS data. These classifiers are free of tuning pa-
rameters and are robust, in the sense that they are devoid of any moment
conditions of the underlying data distributions. It is shown that they
yield perfect classification in the HDLSS asymptotic regime, under some
fairly general conditions. The comparative performance of the proposed
classifiers is also investigated. Our theoretical results are supported by
extensive simulation studies and real data analysis, which demonstrate
promising advantages of the proposed classification techniques over sev-
eral widely recognized methods.

Keywords: Classification · Data Mining · Generalized Energy · High-
Dimensional Asymptotics

1 Introduction

High-dimensional low sample size data is characterized by having a large number
of features or variables, but only a few samples or observations. The problem
of HDLSS classification has been an important problem in the statistics and
machine learning communities. In today’s world, high-dimensional low sample
size problems are frequently encountered in scientific areas including microarray
gene expression studies, medical image analysis, and spectral measurements in
chemometrics to name a few.

Traditional classification techniques such as logistic regression, support vec-
tor machines, and k-nearest neighbors [9,12] often fail on this type of data [20]
when certain regularity conditions on the underlying distributions are not met.
In case of k-nearest neighbors, for example, when the dimension of the data is
⋆ Both authors contributed equally to this research.
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far greater than the number of observations, the concept of neighbors becomes
loose and ill-defined. Consequently, the k-nearest neighbor classifier exhibits er-
ratic behavior [4]. Due to distance concentration, Euclidean distance (ED)-based
classifiers suffer certain limitations in HDLSS situations [2,13]. Some recent work
has studied the effect of distance concentration on some widely used classifiers
based on Euclidean distances, such as 1-nearest neighbor (1-NN) classifier [15],
support vector machines (SVM) [8], etc. They derived conditions under which
these classifiers yield perfect classification in the HDLSS setup [14]. Moreover,
ED-based classifiers lack robustness to outliers, since ED is sensitive to outliers.

For the HDLSS setup, numerous studies adopt dimension reduction approach
as a pre-processing step before performing the classification. These work include
modern classifiers and learning techniques centered mainly on feature selection
(e.g., correlation-based, information theory-based, feature clustering [27], etc.),
projection based on transformation [1,17], regularization (ridge, LASSO, SCAD,
and Elastic-net [32]), deep learning (autoencoders [16,30]), etc. However, this
is not optimal when the dimension reduction step is conducted independently
of the goals of finding reduced features that maximize the separation between
classes of signals. In fact, it is inevitable that some information is lost via di-
mension reduction if a large number of features turn out to be relevant and
weakly dependent upon each other. A few studies have conducted classification
of HDLSS data without employing dimension reduction (see, e.g., [23,26,31]).

Energy distance was introduced in [3,28] as a statistical measure of distance
between two probability distributions on Rd. It was primarily designed with a
goal of testing for equality of two or more multivariate distributions, and worked
particularly well with high-dimensional data. Recently, energy distances have
been utilized in the context of classification (see, e.g., [22,23,24]) as well. In this
article, we develop classifiers based on a more general version of energy distance
that yield asymptotically perfect classification (i.e., zero misclassification rate)
under fairly general assumptions in an HDLSS setting, without maneuvering
dimension reduction.

Suppose X and Y are two d-variate random vectors following the distribution
functions F and G, respectively. In the context of testing for equality of the
two distributions, a constant multiple of the following was introduced in [18] as
squared multivariate Cramér-von Mises (CvM) distance between F and G. It is
a special case of the generalized energy distance [25]:

W∗
FG = 2

∫ ∫
(Fβ(t)−Gβ(t))

2
dH(β, t) , (1)

where β ∈ Rd, and Fβ(t) = P
[
β⊤X ≤ t

]
and Gβ(t) = P

[
β⊤Y ≤ t

]
, for t ∈ R,

are the cumulative distribution functions of β⊤X and β⊤Y respectively, eval-
uated at t, dH(β, t) = dHβ(t) dλ(β) with λ(β) being the uniform probabil-
ity measure on d-dimensional unit sphere Sd−1 = {x ∈ Rd : x⊤x = 1}, and
Hβ(t) = αFβ(t) + (1 − α)Gβ(t). Here, α is a fixed value in (0, 1). In the same
context of hypothesis testing, [19] considered a constant multiple of (1), with
H(β, t) as the distribution function of a (d+1)-dimensional normal random vec-
tor with mean 0d+1, the (d+ 1)-dimensional zero vector, and covariance matrix
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Id+1, the identity matrix of order (d + 1). However, considering such a fixed
distribution which is not data-dependent may not be useful in general. On the
other hand, the weight function Hβ considered in [18] is more flexible, since it
adapts according to the underlying class distributions. In that sense, W∗

FG is
referred to as a data-adaptive energy distance between F and G. It was shown
in [18] that W∗

FG = 0 if and only if F = G. This property of W∗
FG says that

it has the capability of discriminating between two different distributions. This
motivates us to utilize W∗

FG in the context of binary classification problems.

1.1 Our contribution

In this article, we start off by developing a classifier based on W∗
FG. However,

it suffers certain limitations in the HDLSS setting. We investigate and address
those issues by modifying W∗

FG in different ways, and based on the new measures
of distance, we develop classifiers that are robust in the sense that their perfor-
mance does not depend on the existence of the moments of the underlying class
distributions. Moreover, the proposed classifiers are free from tuning parameters
and admit strong theoretical guarantees under fairly general assumptions, in an
HDLSS setup.

The rest of the paper is organized as follows. In Section 2, we develop a
classifier based on W∗

FG, discuss its limitations and modify it to obtain three
robust classifiers to achieve asymptotically perfect classification under milder
conditions. Section 3 provides an analysis of the asymptotic behaviors and a rel-
ative comparison of the proposed classifiers. Section 4 demonstrates convincing
advantages of the proposed classifiers using numerical simulations and real data
analysis. Proofs of the theoretical results are included in Section A of Supplemen-
tary Material. Lastly, Section B of the Supplementary Material contains some
additional details on the simulation studies and real data analysis. The supple-
mentary material and the relevant R codes for simulation studies and real data
analysis are available at: https://github.com/jyotishkarc/sub-834-ecml-2023.

2 Methodology

Consider two mutually independent samples

X
(d)
1 ,X

(d)
2 , . . . ,X(d)

m
i.i.d.∼ Fd and Y

(d)
1 ,Y

(d)
2 , . . . ,Y

(d)
n

i.i.d.∼ Gd

where X
(d)
i = (Xi1, Xi2, . . . , Xid)

⊤ for i = 1, 2, . . . ,m, and Y
(d)
j = (Yj1, Yj2, . . . ,

Yjd)
⊤ for j = 1, . . . , n are d-dimensional random vectors arising from two differ-

ent population distributions Fd and Gd. For the sake of convenience, we shall
drop d from notations where dependence on d is obvious. As mentioned in Sec-
tion 1.1, we shall keep the sample sizes m and n fixed throughout our analysis.

https://github.com/jyotishkarc/sub-834-ecml-2023
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The angular distance between any u,v ∈ Rd was defined in [18] as follows:

ρ (u,v) = E [ρ0 (u,v;Q)] with Q ∼ αF+ (1− α)G. (2)

ρ0 (u,v;w) =


1

π
∠(u−w,v −w) if u ̸= w and v ̸= w,

0 otherwise,
(3)

with α = m
m+n , and ∠(a,b) = cos−1

(
a⊤b

∥a∥2∥b∥2

)
with ∥v∥2 as the l2 norm of

v. Note that ρ ∈ [0, 1] since ρ0 takes values in [0, 1]. It was shown in [18] that
W∗

FG, defined in (1), has the following closed-form expression:

W∗
FG = E [2ρ (X1,Y1)− ρ (X1,X2)− ρ (Y1,Y2)] . (4)

2.1 A classifier based on W∗
FG

Let us consider the unknown expectations tFF = E [ρ (X1,X2)] and tGG =
E [ρ (Y1,Y2)]. We start off by defining estimators of tFF and tGG as follows.

t̂FF =
1

m(m− 1)

∑
i ̸=j

ρ̂ (Xi,Xj) and t̂GG =
1

n(n− 1)

∑
i ̸=j

ρ̂ (Yi,Yj) ,

where ρ̂ is defined as a sample version of ρ in the following manner:

ρ̂(u,v) =
1

m+ n

( m∑
i=1

ρ0(u,v,Xi) +

n∑
j=1

ρ0(u,v,Yj)
)
. (5)

Similarly, for z ∈ Rd, we define

t̂F(z) =
1
m

∑
i ρ̂ (Xi, z), t̂G(z) = 1

n

∑
j ρ̂ (Yj , z) ,

lF(z) = t̂F(z)− 1
2 t̂FF, lG(z) = t̂G(z)− 1

2 t̂GG.
(6)

Finally, the classifier δ0 is defined as follows:

δ0(z) =

{
1 if lG(z)− lF(z) > 0,
2 otherwise, (7)

where δ0(z) = 1 or δ0(z) = 2 correspond to assigning z to class 1 or class 2 having
data distribution F or G, respectively. Let µF and µG denote the mean vectors
for F and G, respectively, and ΣF and ΣG denote the covariance matrices for F
and G, respectively. In order to analyze the behavior of the δ0 in HDLSS setup,
consider the following assumptions:

Assumption 1. There exists a constant c < ∞ such that E[|Uk|4] < c for all
1 ≤ k ≤ d, where U = (U1, · · · , Ud)

⊤ follows either F or G.

Assumption 2. λFG = lim
d→∞

{1

d
∥µF − µG∥2

}
and σ2

I = lim
d→∞

{1

d
trace(ΣI)

}
exist for I ∈ {F,G}.
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Assumption 3. Let U, V and Z be three independent random vectors such that
each of them follows either F or G. Then,∑

i<j

cov((Ui − Zi)(Vi − Zi), (Uj − Zj)(Vj − Zj)) = o(d2).

Assumption 1 requires finiteness of the fourth moments of all marginals of F and
G. Assumption 2 demands the existence of the limiting values of the average of
the squared mean difference between the marginals of two distributions and the
variances of the marginals to exist. Assumption 3 is trivially satisfied when the
component variables of the underlying populations are independent. It also holds
with certain additional constraints on their dependence structure, e.g., when the
sequence {(Uk−Zk)(Vk−Zk)}k≥1 has ρ-mixing property. In fact, if the sequences
{Uk}k≥1, {Vk}k≥1 and {Zk}k≥1 all have ρ-mixing property, then the sequence
{h(Uk, Vk, Zk)}k≥1 also has ρ-mixing property, for any Borel measurable function
h (see [7] for more details).

Theorem 1. Suppose assumptions 1 to 3 are satisfied. Then, θ∗FG = limd→∞ W∗
FG

is finite, and for a test observation Z,

(a) if Z ∼ F, then lG(Z)− lF(Z)
P→ 1

2θ
∗
FG as d→ ∞;

(b) if Z ∼ G, then lG(Z)− lF(Z)
P→ − 1

2θ
∗
FG as d→ ∞.

As d → ∞, lG(Z) − lF(Z) converges in probability to the limit of 1
2W

∗
FG if

Z ∼ F, and to the negative of it, if Z ∼ G. This justifies the construction of the
classifier δ0 in (7). The probability of misclassification of a classifier δ is defined
as ∆ = αP [δ(Z) = 2|Z ∼ F] + (1 − α)P [δ(Z) = 1|Z ∼ G]. Now, we state a
result on the convergence of the misclassification probabilities of the classifier δ0
(denoted by ∆0), under the set of assumptions stated above.

Theorem 2. Suppose that assumptions 1 to 3 are satisfied, and either λFG ̸= 0
or σ2

F ̸= σ2
G holds. Then, ∆0 −→ 0 as d −→ ∞.

It follows from Theorem 2 that if F and G differ in their locations and/or
scales, then ∆0 converges to 0 as the dimension grows. Clearly, the asymptotic
properties of the classifier δ0 are governed by the limiting constants, λFG, σF,
and σG. Similar issues regarding assumptions on the existence of moments of
class distributions were also present in the two-sample test based on W∗

FG in
[18]. Let us now consider the following two examples:

Example 1: X1k
i.i.d.∼ N(1, 1) and Y1k

i.i.d.∼ N(1, 2)

Example 2: X1k
i.i.d.∼ N(0, 3) and Y1k

i.i.d.∼ t3

for 1 ≤ k ≤ d. Here, N(µ, σ2) refers to a Gaussian distribution with mean µ
and variance σ2, and ts denotes the Student’s t-distribution with s degrees of
freedom.
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Fig. 1. Average misclassification rates with errorbars for δ0, along with some popular
classifiers for increasing dimensions. Bayes classifier is treated as a benchmark.

In Example 1, ∥µF−µG∥2 = 0 but σ2
F = 1, σ2

G = 2. It can be observed from
Fig. 1 that δ0 identifies this difference in scale and its performance improves as
d increases, whereas most of the popular classifiers misclassify nearly 45% of the
observations.

In Example 2, ∥µF−µG∥2 = 0 and σ2
F = σ2

G = 3, i.e., there is no difference
between either location parameters or scale parameters. Consequently, δ0 (as well
as the popular classifiers) fails to classify the test observations correctly since
the assumptions in Theorem 2 are not met.

These simulations support Theorem 2 (see Fig. 1) and illustrate the limita-
tions of the classifier δ0 when there is no difference in either location parameters
or scale parameters. In the next subsection, we refine δ0 to develop some classi-
fiers whose asymptotic properties are free of any moment conditions, as well as
the limiting constants λFG, σ

2
F, and σ2

G, mentioned in assumptions 1 and 2.

2.2 Refinements of δ0

A New Measure of Distance: We modify W∗
FG by taking the average of the

distances between each Fk and Gk, the k-th marginals of F and G, respectively.
Define W∗

FG = 1
d

∑d
k=1 W∗

FkGk
. For each 1 ≤ k ≤ d, it follows from (4) the

quantity W∗
FkGk

has the following closed-form expression:

W∗
FkGk

= E [2ρ (X1k, Y1k)− ρ (X1k, X2k)− ρ (Y1k, Y2k)] , (8)

where X1,X2
i.i.d.∼ F and Y1,Y2

i.i.d.∼ G.
Recall the definition of ρ in (2). For any two d-dimensional random variables

u = (u1, u2, . . . , ud)
⊤ and v = (v1, v2, . . . , vd)

⊤, we define

ρ̄(u,v) =
1

d

d∑
k=1

ρ (uk, vk) . (9)
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We now introduce some notations:

TFG = E [ρ̄ (X1,Y1)] , TFF = E [ρ̄ (X1,X2)] , and TGG = E [ρ̄ (Y1,Y2)] .

This implies that W∗
FG = 2TFG − TFF − TGG. Note that W∗

FkGk
≥ 0, and

equality holds iff Fk = Gk. Thus, W∗
FG = 0 iff Fk = Gk for all 1 ≤ k ≤ d. This

property of W∗
FG suggests that it can be utilized as a measure of separation

between F and G.
Since TFF, TGG, and TFG are all unknown quantities, we consider the fol-

lowing estimators based on the sample observations:

T̂FG =
1

mn

∑
i,j

ˆ̄ρ (Xi,Yj) ,

T̂FF =
1

m(m− 1)

∑
i̸=j

ˆ̄ρ (Xi,Xj) ,

T̂GG =
1

n(n− 1)

∑
i ̸=j

ˆ̄ρ (Yi,Yj) .

where ˆ̄ρ(u,v) is a natural estimator of ρ̄(u,v), defined as follows:

ˆ̄ρ(u,v) =
1

d

d∑
k=1

ρ̂ (uk, vk) . (10)

This leads to an empirical version of W∗
FG defined as

Ŵ
∗
FG = 2T̂FG − T̂FF − T̂GG. (11)

For z = (z1, z2, . . . , zd)
⊤ ∈ Rd, we define:

T̂F(z) =
1
m

∑
i
ˆ̄ρ (Xi, zi) , T̂G(z) = 1

n

∑
j
ˆ̄ρ (Yj , zj) ,

LF(z) = T̂F(z)− 1
2 T̂FF , LG(z) = T̂G(z)− 1

2 T̂GG,

S(z) = T̂F(z) + T̂G(z)− 1
2

(
T̂FF + T̂GG

)
− T̂FG.

Classifier Based on W∗
FG: Define D1(z) = LG(z) − LF(z). We prove that

D1(Z) converges in probability to 1
2W

∗
FG, if Z ∼ F and to − 1

2W
∗
FG, if Z ∼ G,

as d → ∞ (see Theorem 3). This, along with the fact that the average energy
distance, W∗

FG is non-negative, motivates us to consider the following classifier:

δ1(z) =

{
1 if D1(z) > 0,
2 otherwise. (12)

Recall that (TFG − TFF) and (TFG − TGG) sum up to W∗
FG. So, in case TFG

lies between TFF and TGG, adding them up might nearly cancel each other out,
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resulting in a very small value of W∗
FG. Consequently, it may not fully capture

the actual dissimilarity between F and G. A natural way to address this problem
is to square the two quantities before adding them. We define

τ̄FG = (TFG − TFF)
2
+ (TFG − TGG)

2
.

It follows from simple calculations that one may write τ̄FG in the following form:

τ̄FG =
1

2
W∗2

FG +
1

2
(TFF − TGG)

2
. (13)

Note that τ̄FG being a convex combination of squares of W∗
FG = 2TFG − TFF −

TGG and TFF − TGG, both of which are measures of disparity between F and
G, can be considered as a new measure of disparity between the two distribu-
tions. The modification approach proposed in (13) is similar to what had been
suggested in the literature of two-sample hypothesis tests to improve the power
of some two-sample tests for HDLSS data in [6].

Classifier Based on τ̄FG: We now develop a classifier that utilizes τ̄FG. Recall
the definitions of D1(z) and S(z). For z ∈ Rd, define

D2(z) =
1

2
Ŵ

∗
FG · D1(z) +

1

2

(
T̂FF − T̂GG

)
· S(z).

We show that as d→ ∞, D2(Z) converges in probability to τ̄FG (> 0) if Z ∼ F,
and to −τ̄FG (< 0) if Z ∼ G (see Theorem 3 in Section 3 below). This motivates
us to consider the following classifier:

δ2(z) =

{
1 if D2(z) > 0,
2 otherwise. (14)

We consider another measure of disparity between F and G (say, ψ̄FG), by simply
replacing the squares of W∗

FG and SFG by their absolute values in the expression
for τ̄FG. A similar modification has already been considered, in the context of
two-sample testing (see, e.g., [29]). Based on this, we define yet another measure
of separation:

ψ̄FG =
1

2
W∗

FG +
1

2
|TFF − TGG| .

Classifier Based on ψ̄FG: For z ∈ Rd, we define

D3(z) =
1

2
Ŵ

∗
FG sign (D1(z)) +

1

2

(
T̂FF − T̂GG

)
· sign (S(z))

where sign(·) is defined as sign(x) = x
|x| for x ̸= 0, and 0 for x = 0.

We prove that as d→ ∞, D3(Z) converges in probability to ψ̄FG, a positive
quantity if Z ∼ F, and to −ψ̄FG, a negative quantity if Z ∼ G (see Theorem 4
in Section 3 below). This motivates us to construct the following classifier:

δ3(z) =

{
1 if D3(z) > 0,
2 otherwise. (15)
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3 Asymptotics under HDLSS Regime

Suppose U = (U1, U2, . . . , Ud)
⊤ and V = (V1, V2, . . . , Vd)

⊤ are drawn indepen-
dently from F or G. We assume that the component variables are weakly de-
pendent. In particular, we assume the following.

Assumption 4. For any four d-dimensional random vectors U,V,Q,Q∗ hav-
ing distribution F or G, such that they are mutually independent,

i.
∑

1≤k1<k2≤d cov(ρ0(Uk1
, Vk1

;Qk1
), ρ0(Uk2

, Vk2
;Qk2

)) = o(d2);

ii.
∑

1≤k1<k2≤d cov(ρ0(Uk1 , Vk1 ;Qk1), ρ0(Uk2 , Vk2 ;Q
∗
k2
)) = o(d2).

Assumption 4 is trivially satisfied if the component variables of the underlying
distributions are independently distributed, and it continues to hold when the
components have ρ-mixing property.

Theorem 3. Suppose assumption 4 is satisfied. For a test observation Z,

(a) if Z ∼ F, then
∣∣∣D1(Z)− 1

2W
∗
FG

∣∣∣ P→ 0 and |D2(Z)− τ̄FG| P→ 0 as d→ ∞;

(b) if Z ∼ G, then
∣∣∣D1(Z) +

1
2W

∗
FG

∣∣∣ P→ 0 and |D2(Z) + τ̄FG| P→ 0 as d→ ∞.

Theorem 3 states that if Z ∼ F (respectively, Z ∼ G), the discriminants
corresponding to δ1 and δ2 converge in probability to a positive (respectively,
negative) quantity as d→ ∞. This justifies our construction of the classifiers δ1
and δ2 in (12) and (14), respectively.

Now, we expect δ1 to yield an optimal performance if W∗
FG does not vanish

with increasing dimensions. Hence, it is reasonable to assume the following:

Assumption 5.
lim inf
d→∞

W∗
FG > 0.

Assumption 5 implies that the separation between F and G is asymptotically
non-negligible. Observe that this assumption is satisfied if the component vari-
ables of F and G are identically distributed. We also need the following assump-
tion for the asymptotic analysis of δ3.

Assumption 6.
lim inf
d→∞

|TFF − TGG| > 0.

Theorem 4. Suppose assumptions 4 to 6 hold true. For a test observation Z,

(a) if Z ∼ F, then
∣∣D3(Z)− ψ̄FG

∣∣ P→ 0 as d→ ∞;

(b) if Z ∼ G, then
∣∣D3(Z) + ψ̄FG

∣∣ P→ 0 as d→ ∞.

Theorem 4 states that if Z ∼ F (respectively, Z ∼ G), the discriminant D3

corresponding to δ3 converges in probability to a positive (respectively, negative)
quantity as d→ ∞, which justifies our construction of the classifier δ3 in (15).
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3.1 Misclassification Probabilities of δ1, δ2, and δ3 in the HDLSS
asymptotic regime

We now show the convergence of the misclassification probabilities of our classi-
fiers δi (denoted as ∆i), under some fairly general assumptions for i = 1, 2, 3.

Theorem 5. Suppose assumptions 4 and 5 hold. Then, ∆1 → 0 and ∆2 →
0 as d→ ∞. If, in addition, assumption 6 holds, then ∆3 → 0 as d→ ∞.

Observe that the asymptotic behaviors of the classifiers δ1, δ2, and δ3 are
no longer governed by the constants λFG, σF and σG. In fact, they are robust
in terms of moment conditions since their behavior does not depend on the
existence of any moments of F and G altogether.

3.2 Comparison of the classifiers

Although the proposed classifiers yield perfect classification with increasing di-
mensions, they have some ordering among their misclassification rates under
appropriate conditions. The following result describes the same.

Theorem 6. Suppose assumptions 4 and 5 hold. Then,

(a) if lim infd→∞ (max{TFF, TGG} − TFG) > 0, there exists d′0 ∈ N such that
∆2 ≤ ∆3 ≤ ∆1 for all d ≥ d′0,

(b) if lim infd→∞ (TFG −max{TFF, TGG}) > 0 and assumption 6 holds, there
exists d′0 ∈ N, such that ∆2 ≥ ∆3 ≥ ∆1 for all d ≥ d′0.

Remark. If assumption 6 is dropped from Theorem 6(b), it can still be con-
cluded that if lim infd→∞ (TFG −max{TFF, TGG}) > 0, under assumptions 4
and 5, there exists d′0 ∈ N such that ∆2 ≥ ∆1 for all d ≥ d′0 (see Lemma A.8(b)
of the Supplementary Material).

We observe that δ3 always works ‘moderately’ among the proposed classifiers,
in the sense that its misclassification probability is neither the largest nor the
smallest in both the aforementioned situations. It might be difficult to verify
the conditions in Theorem 6 in practice. Under such circumstances, it is more
reasonable to use δ3 since it is the most ‘stable’ among the proposed classifiers.

4 Empirical Performance and Results

We examine the performance of our classifiers on a variety of simulated and real
datasets, compared to several widely recognized classifiers such as GLMNET [15],
Nearest Neighbor Random Projection (NN-RP) [11], Support Vector Machine
with Linear (SVM-LIN) as well as Radial Basis Function (SVM-RBF) kernels [8],
Neural Networks (N-NET) [5], and k-Nearest Neighbor [12,9] with k = 1 (i.e.,
1-NN). Additionally, the Bayes classifier is treated as a benchmark classifier
in all the aforementioned simulated examples to assess the performances of the
proposed classifiers, since it performs optimally when the true data distributions
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are known. All numerical exercises were executed on an Intel Xeon Gold 6140
CPU (2.30GHz, 2295 Mhz) using the R programming language [21]. Details
about the packages used to implement the popular classifiers are provided in
Section B of Supplementary Material.

4.1 Simulation Studies

We perform our comparative study on five different simulated examples concern-
ing different location problems as well as scale problems. In each example, we
consider a binary classification problem with data simulated from two different
d-variate distributions. Fixing the training sample size, we increase d to mimic
an HDLSS setting. In such situations, our proposed classifiers are expected to
achieve perfect classification at higher values of d. We carry out our analysis for
eight different values of d, namely, 5, 10, 25, 50, 100, 250, 500, and 1000.

Examples 1 and 2 were already introduced in Section 2. We consider three
more simulated examples as follows:

Example 3: X1k
i.i.d∼ C(0, 1) and Y1k

i.i.d∼ C(1, 1),
Example 4: X1k

i.i.d∼ C(1, 1) and Y1k
i.i.d∼ C(1, 2),

Example 5:X1k
i.i.d∼ 9

10N(1, 1)+ 1
10C(4, 1) and Y1k

i.i.d∼ 9
10N(1, 2)+ 1

10C(4, 1),

for 1 ≤ k ≤ d. Here, C(µ, σ2) refers to Cauchy distribution with location µ and
scale σ. Example 3 and Example 4 are location and scale problems, respec-
tively. In Example 5, we consider the competing distributions to be N(1, 1)
and N(1, 2) but with 10% contamination from a C(4, 1) distribution.

For all the examples, a training dataset was formed with a random sample
of 20 observations from each class, and a randomly generated test dataset of
size 200 (100 from each class) is used. The same process was repeated 100 times
independently, and all individual misclassification rates were averaged to esti-
mate the probability of misclassification of δ1, δ2, and δ3 as well as the popular
classifiers, which are reported in Section 2 of the Supplementary Material.

In Examples 2, 3, and 4, the competing distributions have identical first
and second moments. Consequently, δ0 performs poorly in such situations. For
this reason, we have dropped δ0 from further analysis. Plots of estimated misclas-
sification probabilities of δ1, δ2, and δ3 along with those of the aforementioned
popular classifiers are given in Fig. 2. In each example, since the component
variables are i.i.d., assumptions 4 and 5 hold. Conseqently, T̂IJ is a consistent
estimator of TIJ as d→ ∞ (see Lemma A.7(b) of the Supplementary Material)
for I, J ∈ {F,G}. Hence, we estimate TIJ by T̂IJ to explain Fig. 2. Fig. 2 shows
that ∆1, ∆2 and ∆3 approach zero as d increases for all the examples.

For Examples 1, 2, and 4, we observe max{T̂FF, T̂GG} > T̂FG. For these
three examples, Fig. 2 shows that ∆2 ≤ ∆3 ≤ ∆1. For Example 3, we observe
that max{T̂FF, T̂GG} < T̂FG (see Table 1, Section B of the Supplementary Ma-
terial). For this example, Fig. 2 shows that ∆2 ≥ ∆3 ≥ ∆1. Thus, the numerical
findings are consistent with Theorems 5 and 6 (see Sections 3.1 and 3.2).
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Fig. 2. Average misclassification rates with errorbars for δ1, δ2, and δ3, along with some
popular classifiers for different dimensions. Bayes classifier is treated as a benchmark.

Example 5 was specially curated to validate the effectiveness of our classi-
fiers in terms of robustness to outliers. In this example, we have considered two
competing mixture distributions with contamination arising from the C(4, 1) dis-
tribution. All of δ1, δ2, and δ3 outperform the popular classifiers as d increases.
Even in the presence of contamination, all of our proposed classifiers tend to
achieve perfect classification as d increases.

4.2 Implementation on Real Data

Alongside the simulation studies, we implement our methods on several HDLSS
datasets for a comprehensive performance evaluation. For each dataset, 50% of
the observations were selected at random to create a training set, while keeping
the proportions of observations from each class consistent with those of all orig-
inal datasets. The remaining observations were used to create the test set. To
obtain stable estimates of the misclassification probabilities, this procedure was
repeated 100 times independently, and individual misclassification rates were
averaged out to estimate the probability of misclassification of δ1, δ2, and δ3, as
well as the popular classifiers.

Although our methods are primarily designed for binary classification, we im-
plement a majority voting ensemble in the case of J-class problems with J ≥ 3.
So, for a dataset with J different classes, we consider all

(
J
2

)
= J(J−1)

2 many
unordered pairs of classes and treat them as separate binary classification prob-
lems. For each test observation, we perform classification for all of those

(
J
2

)
many problems and classify the test observation to the class to which it gets
assigned the maximum number of times. Ties are broken at random.

We conduct a case study on six real HDLSS datasets, namely, GSE1577 and
GSE89 from the Microarray database4, Golub-1999-v2 and Gordon-2002 from
the CompCancer database5, and Computers and DodgerLoopDay from the UCR
Time Series Classification Archive6 [10]. A brief description follows.
4 Available at https://file.biolab.si/biolab/supp/bi-cancer/projections/.
5 Available at https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm.
6 Available at https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

https://file.biolab.si/biolab/supp/bi-cancer/projections/
https://schlieplab.org/Static/Supplements/CompCancer/datasets.htm
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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• The GSE1577 dataset consists of 19 data points and 15434 features. It is
divided into 2 classes which are T-cell lymphoblastic lymphoma (T-LL) and
T-cell acute lymphoblastic leukemia (T-ALL).

• The GSE89 dataset consists of 40 data points and 5724 features. It is divided
into 3 classes corresponding to three stages of tumor - T2+, Ta, and T1.

• The Golub-1999-v2 dataset consists of 72 data points and 1877 features.
It is divided into 3 classes: Acute Myeloid Leukemia (AML), and two types
of Acute Lymphoblastic Leukemia - B-cell ALL and T-cell ALL.

• The Gordon-2002 dataset consists of 181 data points and 1626 features,
divided into 2 classes about the pathological distinction between malignant
pleural mesothelioma (MPM) and adenocarcinoma (AD) of the lung.

• The Computers dataset contains readings on electricity consumption from
500 households in the UK, sampled in two-minute intervals over a month.
Each observation has 720 features. The data points are categorized into two
classes: ‘Desktop’ and ‘Laptop’.

• The DodgerLoopDay dataset consists of 158 data points and 288 features,
divided into 7 classes corresponding to the 7 days of a week.

The estimated misclassification probabilities of δ1, δ2, and δ3, and the popular
classifiers for these datasets are reported in Table 1. The number of classes, data
points, and features are denoted by class, N , and d, respectively.

Table 1. Estimated misclassification probabilities (in %) with standard errors (in
parentheses) for δ1, δ2, and δ3, and popular classifiers for real datasets. For each dataset,
the entries corresponding to the minimum misclassification rates are boldfaced.

Dataset
Description Popular Classifiers Proposed Classifiers

class N d
GLM-
NET

NN-
RP

SVM-
LIN

SVM-
RBF N-NET 1-NN δ1 δ2 δ3

GSE1577 2 19 15434 6.51 11.59 6.38 30.06 33.87 11.12 6.06 7.33 6.06
(0.66) (0.44) (0.35) (0.36) (0.98) (0.39) (0.84) (1.04) (0.84)

GSE89 3 40 5724 25.67 25.15 20.18 41.12 43.03 17.54 15.21 24.26 16.53
(0.47) (0.49) (1.05) (0.46) (1.92) (0.28) (0.80) (0.97) (0.96)

Golub-1999-v2 3 72 1877 8.78 15.28 10.55 33.05 75.26 8.98 6.89 9.40 7.49
(0.62) (0.44) (0.43) (0.39) (0.67) (0.39) (0.41) (0.43) (0.44)

Gordon-2002 2 181 1626 2.58 4.11 1.26 1.84 11.28 2.69 0.53 0.54 0.53
(0.47) (0.12) (0.09) (0.09) (2.83) (0.10) (0.01) (0.01) (0.01)

Computers 2 500 720 39.99 42.53 47.06 40.76 46.92 41.33 38.65 36.38 36.50
(0.69) (0.62) (0.39) (0.27) (0.41) (0.57) (0.28) (0.21) (0.22)

DodgerLoopDay 7 158 288 55.45 48.72 39.42 47.03 71.32 47.38 37.68 44.73 42.23
(0.32) (0.79) (0.44) (0.36) (1.08) (0.68) (0.39) (0.44) (0.52)

For the datasets GSE1577, GSE89, Golub-1999-v2, Gordon-2002, and Dodger-
LoopDay, the estimated misclassification probabilities of our proposed classifiers
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are in the order ∆1 ≤ ∆3 ≤ ∆2, i.e., the performance of δ1 is the best for these
examples and the misclassification probability of δ3 lies in between that of δ1
and δ2. To understand the relative performance of these classifiers, we computed
T̂FF, T̂FG and T̂GG, and they satisfy (T̂FG − max{T̂FF, T̂GG}) > 0. As dis-
cussed in Theorem 6, this ordering among the empirical versions of TFF, TFG

and TGG is consistent with the relative ordering of the performances of δ1, δ2
and δ3. Furthermore, δ1 and δ3 performed better than all the popular classifiers.
Although δ2 performed relatively worse than δ1 and δ3, it outperformed NN-RP,
SVM-RBF, N-NET, and 1-NN.

For the dataset Computers, the estimated misclassification probabilities of
our proposed classifiers are in the order ∆2 ≤ ∆3 ≤ ∆1, i.e., δ2 showed the best
performance with a misclassification probability close to 36%. The misclassifi-
cation probability of δ3 lies between that of δ1 and δ2. It turns out that T̂FF,
T̂FG and T̂GG satisfy (max{T̂FF, T̂GG} − T̂FG) > 0. This ordering among the
empirical versions of TFF, TFG and TGG is consistent with the relative ordering
of the performances of δ1, δ2 and δ3 (see Theorem 6 of Section 3.2). All of δ1,
δ2, and δ3 performed better than every popular classifier mentioned earlier.

Table 1 shows that δ1, δ2 and δ3 outperform widely recognized classifiers
in a majority of the reported datasets, which establishes the merit of our pro-
posed methods over the widely recognized ones. In addition, for all the reported
datasets, the ordering among T̂FF, T̂FG and T̂GG were found out to be consistent
with the results stated in Theorem 6.

5 Concluding Remarks

In this paper, we developed some classification methods that draw good intu-
ition from both classical and recent developments. We proved that under some
general conditions, the misclassification probabilities of these classifiers steadily
approach 0 in the HDLSS asymptotic regime. The major advantages of our pro-
posed methods are that they are free of tuning parameters, robust in terms of
moment conditions, and easy to implement. Theoretical justification and com-
prehensive empirical studies against other well-established classification methods
establish the advantages of our approach.

Nevertheless, when the competing distributions have at most o(d) many dif-
ferent marginals, and the rest are identically distributed, assumptions 5 and 6
will no longer hold. The theoretical guarantees for the optimal performance of
the proposed classifiers will break down in such situations. Developing classifiers
that avoid these assumptions is a fruitful avenue for further research.
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