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Abstract. Time-series forecasting models often encounter abrupt changes
in a given period of time which generally occur due to unexpected or un-
known events. Despite their scarce occurrences in the training set, abrupt
changes incur loss that significantly contributes to the total loss. There-
fore, they act as noisy training samples and prevent the model from learn-
ing generalizable patterns, namely the normal states. Based on our find-
ings, we propose a reweighting framework that down-weights the losses
incurred by abrupt changes and up-weights those by normal states. For
the reweighting framework, we first define a measurement termed Local
Discrepancy (LD) which measures the degree of abruptness of a change
in a given period of time. Since a training set is mostly composed of
normal states, we then consider how frequently the temporal changes
appear in the training set based on LD. Our reweighting framework is
applicable to existing time-series forecasting models regardless of the ar-
chitectures. Through extensive experiments on 12 time-series forecasting
models over eight datasets with various in-output sequence lengths, we
demonstrate that applying our reweighting framework reduces MSE by
10.1% on average and by up to 18.6% in the state-of-the-art model.

Keywords: Time-series forecasting · Data imbalance · Noisy samples.

1 Introduction

As vast records are collected over time in diverse fields, the demand to predict
the future based on the previous sequential data has led to efforts to solve the
time-series forecasting problem in various applications such as energy [1], eco-
nomics [7], traffic [23], weather [21], environment pollution [6] and mechanical
system monitoring [29]. Previous studies focused on addressing the well-known
challenges of time-series forecasting such as finding reliable dependencies from
intricate and entangled temporal patterns [25,19] or extending the forecasting
time (i.e., long-term forecasting) [30,17,25,29]. For example, recent studies fo-
cused on improving the Transformer-based [22] models to address the long-term
forecasting by taking the advantage of the long-term capacity of the self-attention
mechanism and reducing quadratic computational costs [15,29,25,17].
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(a) Normal state at Training (b) Abrupt change at Training (c) Abrupt change at Test (d) Imbalanced training loss

Fig. 1. We observe that the state-of-the-art forecaster correctly predicts the target
values during the training phase over both (a) normal states and (b) abrupt changes,
respectively. However, (c) illustrates that the model fails to correctly predict the abrupt
change during the test phase. (d) shows imbalanced loss when the training samples are
sorted by MSE loss of each sample in the early training phase. Our important finding
is that the training samples with abrupt change (b) occupy the large portion of total
loss. On the other hand, training samples within the normal states (a) have a relatively
small loss. This leads the model to focus less on the normal states during training.

Despite the remarkable improvements of the previous studies, even the state-
of-the-art models take little account of the abrupt changes in time-series data.
Abrupt change refers to the drastic change of target values (either increase or
decrease) beyond the extent of the changes observed in the recent past. These
abrupt changes are challenging, if not impossible to predict based solely on
previous observations of the target variable, as they are generally caused by
unexpected and external events (e.g., natural disaster and war). Such changes
break the auto-correlation structures, the periodic relationships between target
variables, which are essential for a time-series forecaster to predict futures. One
straightforward remedy is to laboriously collect external variables (e.g., annota-
tions of external events) and enforce a model to learn the relationship between
the collected variables and the target variables (i.e., cross-correlation). However,
utilizing additional variables without thorough verification causes the model to
learn a spurious correlation between variables, which worsens the generaliza-
tion ability. Moreover, some abrupt changes have unknown causes (e.g., sensor
malfunction), which cannot be addressed by simply collecting external variables.

While forecasting abrupt changes is known to be challenging [18,10], even
worse, another significant issue of abrupt changes is that they limit the general-
ization performance of forecasting models during the test phase. Deep learning
models are known to correctly predict all training samples regardless of the noisy
labels by simply memorizing them (i.e., overfitting) [27]. Our finding is that re-
cent time-series forecasting models can easily memorize even abrupt changes in
which the output sequence shows the different temporal characteristics (e.g.,
mean, variance, and periodic structure) with the input sequence as shown in
Figure 1. To be more specific, Figure 1(a) and (b) show that the model correctly
predicts the target values during the training phase in both normal states (i.e.,
trend or periodicity of input sequence maintained in the output sequence) and
abrupt changes, respectively. However, Figure 1(c) illustrates that the model
fails to correctly predict the abrupt change during the test phase. The main
reason is that the model is heavily overfitted to the abrupt changes since they
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take a significant portion of the total loss value compared to the ones in normal
states (Figure 1(d)). Therefore, we propose a simple yet effective reweighting
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Fig. 2. (a) We trained a model with a training series including four abrupt changes
(red-shaded regions). (b) While the losses caused by the abrupt changes are consider-
ably high in the early training phase, they are reduced significantly after several epochs
of training. (d) After the losses by abrupt changes are decreased, however, we observe
that the test losses rather increase, implying the degraded generalization capability. (c)
We mitigate such an issue by proposing a reweighting framework that down-weights the
losses of samples containing the abrupt changes (blue arrow) and up-weights normal
samples (red arrow). (d) The model trained with our proposed reweighting framework
achieves lower test MSE compared to that of the model without our framework.

framework that encourages the model to balance the imbalanced loss between
abrupt changes and normal states. Generally, time-series datasets do not provide
explicit labels as to when the abrupt changes occur. Moreover, explicitly bisect-
ing time stamps into abrupt changes and normal states is challenging since the
definition of abrupt change may be vague depending on perspectives. Thus, we
define a measure called Local Discrepancy (LD) which is used to determine how
much a change in a given period of time is abrupt. By sliding a fixed-size window
over the training time-series data, we compute the statistical difference between
the in-output sequences as LD. Then, based on the observation that abrupt
changes rarely appear in the training samples while normal states comprise the
majority of the training set, we count the frequency of temporal changes based
on LD. We divide the LD values into a predefined number of bins which are
smoothed by kernel density estimation (i.e., estimated LD density). By obtain-
ing low LD density for the abrupt changes and high ones for the normal states,
we reweight loss values proportional to the estimated LD Density, which we
term our method as ReLD. This enables to emphasize the normal states which
are the ones a model should learn for enhancing the forecasting capability. In
summary, the main contributions of our work are as follows:

– We reveal that the abrupt changes significantly degrade the time-series fore-
casting performance by taking most of the loss values.
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– We propose a simple yet effective reweighting framework that adjusts the
balance of the loss based on LD density, namely ReLD.

– Our reweighting framework consistently improves the performance of twelve
existing time-series models on eight datasets, which reduces MSE by 10.1%
on average and up to 18.6% when applied to the state-of-the-art model.

– ReLD also outperforms methods addressing the noisy samples such as smooth-
ing, outlier filtering, and error-based baselines with a significant margin.

2 Related Work

2.1 Deep Learning Models for Time-series Forecasting

Deep learning-based models that have shown successful results in various do-
mains have been actively applied to the time-series forecasting problem, which
was originally dominated by classic statistical-based models [2]. Recent studies
focused on extending forecasting time [30,17,25,29]. As the demand for long-
term planning and early warning in the real-world applications has increased,
long-term forecasting has become essential. Thus, transformer-based forecast-
ing models, which are known to effectively learn global temporal patterns, have
emerged. These studies proposed sparse attention mechanisms to reduce the
computational cost of the canonical attention mechanism when processing long
sequences. The previous studies have demonstrated their effectiveness on various
time-series datasets across multiple domains. However, they do not deal with how
the locally appearing anomalous patterns (i.e., abrupt changes) of time series
affect the generalization capability of models.

2.2 Robustness Against Noisy Samples and Data Imbalance

As aforementioned, deep learning models perfectly classify samples even with
wrong annotations (i.e., noisy samples) by simply memorizing them during the
training phase [27], an issue explored widely in image classification [8,28]. Sim-
ilarly, the abrupt changes in time-series forecasting are generally occurred by
unexpected or unknown events, making them challenging to forecast correctly
solely based on the previous time series. Due to this fact, perfectly forecasting
them during the training phase indicates that the models simply memorized
them which are in fact noisy samples in the time-series data.

Unlike studies addressing noisy samples in other fields, the number of abrupt
changes is excessively scarce compared to that of normal states in time-series,
so considering the data imbalance in addition to the noisy samples is important.
The main intuition of addressing data imbalance is to emphasize the training
of the minor samples based on the frequency of each class [16,26]. For example,
Yang et al. [26] proposed the label distribution smoothing method that addresses
the data imbalance in the image regression task. To tackle such data imbalance in
time-series forecasting due to the scarce temporal patterns, few studies proposed
an augmentation approach [18] or modified model architectures [10]. However,
when addressing the data imbalance, they did not take account of models being
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overfitted to the scarce abrupt changes during the training phase. In this regard,
we propose a reweighting framework that takes both issues into account: 1)
abrupt changes work as noisy samples, and 2) they cause the data imbalance.

3 Method

3.1 Preliminary

We first describe the forecasting task in a rolling window setting [15,29,25,17],
which covers all possible in-output sequence pairs of the entire time series S =
{s1, . . . , sT | st ∈ Rm}, where T is the length of observed series and m denotes the
number of variables at time t. Univariate and multivariate time-series forecasting
addresses time-series data with m = 1 and m > 1, respectively. By sliding a fixed-
size window on S, we obtain the windows D = {(Xt,Yt)}Nt=1, which are divided
into two parts: input sequence Xt = {st−I , . . . , st−1} with given length I and
output sequence Yt = {st, . . . , st+O−1} with length O to predict. A forecaster
f predicts the most probable length-O sequence in the future given the past
length-I sequence by learning temporal dependencies in S. We mainly address
the loss imbalance caused by the in-output sequence pairs which include a large
discrepancy between adjacent Xa and Ya compared to other Xt and Yt pairs
where a is the time stamp with an abrupt change. However, since most time-
series datasets do not provide a label for the abrupt change, we propose a training
framework in an unsupervised setting.
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Fig. 3. The four examples of temporal changes locally seen in time series data: (a)
normal, (b) fluke, (c) frequency change, and (d) trend shift. Local discrepancy com-
puted by the sliding window captures the three abrupt changes beyond the bounds (red
line) seen in normal states. In the estimated LD density distribution, training samples
with abrupt changes are visibly fewer than training samples with normal state and are
sparsely distributed with large absolute local discrepancy.
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3.2 Local Discrepancy

We propose the Local Discrepancy (LD) based on a statistical difference in order
to measure how two adjacent in-output sequences, Xt and Yt, are different from
each other. We define LD as follows:

LocalDis(Xt,Yt) =
X̄t − Ȳt√

s2X̄t

I +
s2Ȳt

O + ε

:= vt, (1)

where X̄t is the sample mean and sX̄t
is the sample standard deviation of Xt.

Statistical tests are generally used to determine whether means of two sam-
ples (i.e., groups of data points in a sequence) are identical or not [24]. In this
regard, we leverage t-statistic1, a scalar value, as normalized discrepancy to mea-
sure how much two adjacent groups of samples are distinct. Figure 3 describes
how LD reflects the different types of local temporal changes in time-series data
(e.g., (a) normal changes, (b) fluke point, (c) frequency change, and (d) trend
shift). The LD values of normal states oscillate within a certain range (see (a)
red line) since the LD also has periodicity as proven by Theorem 1, but the LD
values of abrupt changes is beyond the range of normal LD. Additionally, the
periodicity and boundedness of LD in normal periodic series are theoretically
discussed in Supplementary A with all proofs.

Theorem 1 (Periodicity of LD). If f is a periodic function that satisfies
f(t) = f(t+ p),

LD(a, a+ L) =
m(a)−m(a+ L)√

s(a)
N + s(a+L)

N

(2)

is also a periodic function with period p, where m(a) = 1
N

∑
t∈I(a) f(t), s(a) =

1
N

∑
t∈I(a)(f(t) − m(a))2, and I(a) = {a + L

N · i}N−1
i=0 for range [a, a + L] and

sampling interval L/N .

As aforementioned, the definition of abrupt change may be vague depending
on perspectives. Thus, rather than bisecting the time stamps into abrupt changes
and normal states, we utilize LD values as weights of reweighting framework to
mitigate the impact of abrupt changes in training phase. In other words, losses
of training samples which have large absolute vt values will be down-weighed
since we consider them to be close to the abrupt change. By computing LD over
the training dataset Dtrain and each of m dimensions, we obtain the dataset
Dtrain = {(Xt,Yt, vt)}Nt=1 containing local discrepancy vt ∈ Rm for prediction
time t and for each of m dimensions. We then assign the weight wt =

c
|vt|+1 ∝

1
|vt|+1 ∈ Rm to each training sample inversely to LD value of sample in Dtrain

1 Other statistics such as KPSS and t-squared can be used as LD. However, when we
conduct a preliminary experiment, the t-statistic measures better than others. We
further discuss the details in Section 5.
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with constant c as scaling factor. Finally, we calculate the reweighted MSE loss
Lw as follows:

Lw(Yt, Ŷt) =
1

m ·O
·

m∑
j=1

wj
t

O−1∑
i=0

·(sjt+i − ŝjt+i)
2 (3)

where Ŷt is forecasting results of f conditioned on Xt. Through this simple
reweighting framework which assigns weight inversely to LD values, namely in-
vLD, we down-weight the loss of abrupt changes (large absolute LD) and up-
weight the loss of normal states (small absolute LD), following the observation
that the original MSE loss in the presence of abrupt changes is much larger
than the loss at the normal state. Reweighting MSE only based on LD, however,
does not take into account the property that normal states frequently appear
while the abrupt changes are rarely included in the time-series data. We further
improve our reweighting framework by considering such frequency differences
between abrupt changes and normal states.

3.3 Density-based reweighting for Time-series Forecasting
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down-weight

Local Discrepancy

LD Density-based reweighting

Low LD Region

Fig. 4. For the real-world dataset (ETTh1), we visualize the estimated LD density
distribution and the averaged MSE loss of samples in each LD bin after training a
forecaster for one epoch. Our density-based re-weighting framework effectively down-
weights (blue arrow) the losses on abrupt changes (low density and large LD) and
up-weights (red arrow) those on normal states (high density and small LD).

Time series often exhibit both short-term and long-term repeating patterns [14]
by periodicity, and taking them into account is crucial for making accurate pre-
dictions. Suppose a time series which has large shifts in a short period, but
repeated. We can assume such large shifts are part of the normal states consider-
ing their frequent occurrences. However, this temporal pattern is down-weighted
because of their large LD values regardless of the number of occurrences. In
other words, invLD based on the inverse of LD (i.e., wt ∝ 1

|vt| ) will not only
down-weight the loss values of abrupt changes but also those of normal states,
which the model should learn to properly forecast. Therefore, we improve the
time-series forecasting by considering the frequency of temporal changes (i.e.,
LD density) when reweighting loss values in time-series forecasting.

Inspired by deep imbalanced regression [26], we use the kernel density esti-
mation to address the missing regions between continuous LD spaces. Through
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the estimated density of LD p̃(v), we assign the weight wt = c · p̃(vt) ∝ p̃(vt)
and use these weights to train a model as Lw described in Equation 3. Figure 4
demonstrates that our final reweighting framework based on LD density, ReLD,
mitigates the imbalanced loss problem in a real-world dataset. The procedure of
our framework is described in Algorithm 2.

Algorithm 1 ReLD: Reweighting framework based on Local Discrepancy
Density
Require: Training set D = {(Xt,Yt)}Nt=1, bin size ∆b, symmetric kernel distribution

k(v, v′)

Compute Local Discrepancy LD (Xt,Yt) =
X̄t−Ȳt√

s2
X̄t
I

+
s2
Ȳt
O

+ε

:= vt

Compute the empirical label density distribution p(v) based on ∆b and D
Compute the effective label density distribution p̃ (v′) :=

∫
V k (v, v′) p(v)dv

for all (Xt,Yt, vt) ∈ D do
Assign weight for each sample as wt ∝ c · p̃ (vt) (constant c as scaling factor)

end for
for all number of training iterations do

Sample a mini-batch {(Xb,Yb, wb)}Bb=1 from D
Forward {Xb}Bb=1 and get corresponding predictions {Ŷb}Bb=1

Do one training step using the weighted loss 1
B

∑B
b=1 Lwb(Ŷb,Yb)

end for

4 Experiments
This section demonstrates that our proposed framework consistently improves
existing time-series forecasting models regardless of the architectures. Dataset
analysis shows that our proposed framework brings larger performance gains as
the number of abrupt changes in a given dataset increases. We also provide other
experiments in the Supplementary, which include results on synthetic series, com-
putational cost of methods, qualitative results, and details for reproducibility.

4.1 Experiment Setting

Dataset descriptions As mainstream benchmarks, ETT are widely used to
evaluate long-term forecasting methods [29,25,17,30] ETT contains the crucial
indicators (e.g., oil temperature, load, etc) collected from the electricity trans-
formers over two years, and are categorized into four datasets depending on the
location (ETT1 and ETT2) and interval (15 minutes and one hour). Electricity
dataset contains the hourly electricity consumption of 321 customers from 2012
to 2014. Weather dataset is recorded every 10 minutes for a year, which contains
21 meteorological indicators (e.g., air temperature, humidity, etc). Pump dataset
is collected from 52 sensors monitoring the water pump. AirQuality dataset [6],
taken from the UCI repository, contains hourly averaged responses obtained from
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five metal oxide chemical sensors of an chemical multi-sensor. All dataset sources
can be found in Supplementary.
Forecasting models We applied it to 12 forecasting models and reported
the reduced forecasting errors by applying ReLD. The baselines are roughly
categorized into three groups: Transformer-based [30,17,25,29,12,15,22], CNN-
based [4], and RNN-based [3,14] models. We also include two univariate fore-
casting models: DeepAR [20] and N-BEATS [19].

Table 1. Multivariate results with different input length I and prediction lengths O.
A lower MSE indicates a better prediction and the best results in each row are bolded.
Imp. means averaged MSE reduction rate for a given model and dataset. Total denotes
the averaged MSE reduction rate of a given dataset across all baselines models. The
full results, which include other ETT datasets and confidence interval, are available in
Supplementary F.

Models FEDformer Pyraformer Autoformer Informer Reformer LSTNet LSTMa TCN

T
ot

al

I / O base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD base ReLD

E
T

T
m

1

96/96 0.359 0.357 0.536 0.471 0.524 0.455 0.640 0.543 0.777 0.641 0.548 0.536 0.705 0.592 0.676 0.594

-1
2.

91
%336/168 0.385 0.379 0.563 0.506 0.534 0.500 1.224 0.751 0.840 0.689 0.632 0.577 0.871 0.648 0.938 0.913

336/336 0.403 0.396 0.697 0.573 0.561 0.514 1.390 1.008 0.987 0.895 0.798 0.686 1.125 0.681 1.148 1.126
336/720 0.501 0.480 0.904 0.682 0.560 0.528 1.333 1.078 1.122 1.003 0.925 0.817 0.978 0.828 1.277 1.238

Imp. -1.99% -16.17% -8.42% -25.11% -13.88% -9.16% -24.14% -4.95%

E
T

T
m

2

96/96 0.189 0.184 0.371 0.248 0.293 0.221 0.445 0.286 0.743 0.449 0.443 0.343 0.381 0.280 0.554 0.384

-2
1.

42
%336/168 0.343 0.275 0.566 0.551 0.309 0.283 2.283 1.453 1.208 0.836 0.950 0.830 1.178 0.601 1.868 1.956

336/336 0.338 0.315 1.601 1.330 0.508 0.331 2.479 1.764 2.239 1.425 1.610 1.019 1.479 0.745 2.769 2.773
336/720 0.432 0.393 5.476 5.037 0.502 0.413 6.580 5.777 3.068 2.827 6.130 4.449 3.083 2.381 3.204 3.187

Imp. -9.47% -15.15% -21.39% -28.29% -28.65% -24.85% -36.96% -6.57

W
ea

th
er

-h

48/48 0.338 0.336 0.292 0.279 0.344 0.343 0.345 0.294 0.343 0.313 0.318 0.310 0.346 0.325 0.348 0.327

-4
.4

1%

48/96 0.403 0.400 0.393 0.358 0.464 0.446 0.453 0.443 0.526 0.416 0.414 0.386 0.409 0.387 0.450 0.424
96/192 0.458 0.447 0.421 0.398 0.516 0.491 0.530 0.498 0.659 0.673 0.464 0.461 0.420 0.416 1.018 1.005
168/336 0.510 0.516 0.454 0.440 0.612 0.566 0.592 0.568 0.841 0.782 0.490 0.473 0.473 0.452 1.147 1.209

Imp. -0.65% -5.55% -4.21% -6.79% -8.66% -3.41% -4.17% -1.88%

A
ir

Q
ua

lit
y 96/96 0.825 0.817 1.121 1.112 0.992 0.986 1.353 1.193 1.210 1.196 1.146 1.141 1.145 1.081 1.026 0.992

-3
.9

7%
336/168 0.811 0.808 1.193 1.115 0.911 0.922 1.796 1.595 1.473 1.345 1.231 1.156 1.644 1.376 1.246 1.163
336/336 0.892 0.872 1.224 1.214 0.962 0.933 1.758 1.706 1.473 1.396 1.399 1.388 1.352 1.206 1.301 1.284
336/720 0.997 0.953 2.196 1.982 1.129 1.079 2.914 2.985 1.723 1.671 1.826 1.921 2.475 2.333 1.442 1.426

Imp. -2.01% -4.47% -1.72% -5.87% -4.51% -0.52% -9.63% -3.09%

P
um

p

96/96 0.520 0.513 0.848 0.796 0.558 0.538 0.831 0.870 0.826 0.760 1.016 1.007 0.813 0.766 1.037 0.970

-7
.7

4%

336/168 0.550 0.536 0.851 0.843 0.597 0.581 1.705 1.527 1.094 0.856 1.327 1.202 0.909 0.816 1.109 1.077
336/336 0.593 0.564 0.922 0.951 0.661 0.621 1.676 1.492 0.966 0.918 1.654 1.292 0.934 0.859 1.521 1.208
336/720 0.723 0.580 1.370 1.283 0.707 0.619 1.704 1.699 1.328 1.218 1.608 1.642 1.464 1.244 2.075 1.546

Imp. -7.10% -2.61% -6.17% -4.28% -10.73% -7.49% -9.77% -13.85%

4.2 Main Results

As shown in Table 1, applying our reweighting framework reduces the MSE con-
sistently in all existing time-series forecasting models across different datasets
and varying length-averaged settings. In addition, the lowest MSE in each setting
was generally achieved by the models which applied ReLD. We also observe that
the performance improvements vary depending on the datasets. For example,
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applying ReLD to the baselines achieves an average of 21.14% lower MSE com-
pared to the average of original errors on ETTm2. On the other hand, applying
ReLD achieves only 3.97% lower MSE on average with AirQuality dataset. We
analyze such an issue in Section 4.4. As for the univariate2 setting, similar to the
results observed in multivariate datasets, applying ReLD enhances the forecast-
ing performance consistently regardless of the model architectures compared to
baselines without ReLD.

4.3 Comparisons with other methods
Smoothing and outlier filtering methods Table 2 (a) compares our ReLD
with two smoothing and outlier filtering methods. Moving average (MA) and ex-
ponential MA (EMA) are widely used smoothing techniques that remove nois-
iness and reduce values of outliers, allowing meaningful temporal patterns to
stand out. Similarly, outlier filtering also mitigates the influence of outliers on
learning the normal patterns. However, we observe that adopting such methods
either shows insignificant performance improvement or rather aggravates the
time-series forecasting performance.
Error-aware loss We also compare our method with error-based reweight-
ing approaches for robust regression (L1, Huber [11], and IRLS [5]) and data
imbalance (Focal-R [16,26] and flip Focal-R). Focal-R, the regression version of
focal loss, allows a model to focus on samples with relatively large loss while
down-weighting loss on samples with small errors. It works in a way that is
contrary to our findings. We modified such an approach by putting negation on
the input of Focal-R, termed as flip Focal-R (Details in Supplementary C.2).
Table 2 (b) shows that the performance of Focal-R is rather degraded while that
of flip Focal-R improved. Such a result well demonstrates that our intuition,
de-emphasizing the samples with high loss, is valid. Also, we observe that utiliz-
ing other error-based approaches fails to outperform our proposed method. We
conjecture such superior performance of ReLD is mainly due to reflecting the
temporal changes and periodicity.
Ablation study of our reweighting framework We conduct the ablation
study of our proposed method by comparing our full framework ReLD and an
approach which considers the LD values only (invLD). Table 2 (c) shows that
our full framework is superior to invLD. Additionally, we observe that both
approaches outperform the methods in (a) and (b).
4.4 Dataset Analysis

Preserving the robustness on the abrupt changes Since we impose
less emphasis on the abrupt changes during the training phase, utilizing our
framework may limit the model’s ability to cope with the abrupt changes in
the test phase. Table 3 reports the MSE of test samples by categorizing them
into time series with abrupt changes and those without abrupt changes. For
the experiment, we generated synthetic time-series dataset and injected abrupt
changes into the series since the real-world dataset does not have labels for
abrupt changes. As originally intended, applying our framework achieves larger
2 Due to space limit, the univariate result are shown in Supplementary
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Table 2. Comparison with other methods which can deal with abrupt changes. We con-
duct experiments using ETTm2 dataset on two recent state-of-the-art time-forecasting
models. ‘↔’ indicates adopting the method in replace of the original L2 loss and ‘+’
indicates adding the method to the original L2 loss.

G
ro

up

Models FEDformer Autoformer

I→O 336 → 168 336 → 336 336 → 720 336 → 168 336 → 336 336 → 720

Methods MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE Imp.

Vanilla (L2) 0.343 0.406 0.338 0.387 0.432 0.461 0.309 0.371 0.508 0.490 0.502 0.478 -

(a)
+ MA 0.355 0.411 0.343 0.388 0.418 0.443 0.313 0.374 0.431 0.447 0.542 0.500 -0.85%
+ EMA 0.364 0.419 0.343 0.389 0.404 0.432 0.319 0.377 0.516 0.473 0.549 0.506 1.33%
+ Outlier 0.292 0.364 0.330 0.380 0.405 0.429 0.384 0.422 0.420 0.444 0.468 0.475 -3.26%

↔ L1 0.282 0.345 0.321 0.366 0.402 0.416 0.308 0.368 0.349 0.391 0.434 0.439 -11.24%

(b)
↔ Huber 0.285 0.353 0.322 0.369 0.418 0.432 0.307 0.369 0.398 0.424 0.452 0.456 -8.32%
↔ IRLS 0.281 0.345 0.322 0.368 0.398 0.416 0.292 0.356 0.350 0.387 0.435 0.433 -12.12%
↔ Focal-R 0.403 0.451 0.377 0.423 0.504 0.523 0.315 0.379 0.445 0.463 0.520 0.497 6.02%
↔ flip Focal-R 0.284 0.344 0.322 0.367 0.405 0.417 0.307 0.366 0.371 0.405 0.470 0.453 -9.70%

(c) + invLD 0.282 0.343 0.326 0.374 0.402 0.414 0.288 0.353 0.343 0.385 0.411 0.421 -12.82%
+ ReLD 0.275 0.339 0.315 0.361 0.393 0.409 0.283 0.348 0.331 0.377 0.413 0.422 -14.34%

MSE reduction rates (i.e., MSEN ) compared to the ones without ReLD. As for
the MSE of abrupt changes (i.e., MSEA), the MSEA of three models decreased,
and those of Pyraformer show competitive forecasting results. This result shows
that our ReLD improves the forecasting performance on normal samples while
preserving the robustness on the abrupt changes.

Table 3. Forecasting results by categorizing time-series sequences into normal states
and abrupt changes. We observe that our ReLD significantly reduces MSE on normal
states (MSEN ) while also showing comparable MSE on abrupt changes (MSEA).

Prediction length 48 96 168 336 720 Averaged Imp.

Model Metric Base ReLD Base ReLD Base ReLD Base ReLD Base ReLD Total

Pyraformer MSEN 0.0702 0.0305 0.0580 0.0232 0.0547 0.0221 0.0449 0.0326 0.0379 0.0247 -47.67% -27.38%MSEA 0.4289 0.4168 0.5525 0.5905 0.6093 0.5882 0.4300 0.4350 0.2555 0.2665 1.21%

Autoformer MSEN 0.2063 0.1473 0.2560 0.1430 0.2137 0.1261 0.3645 0.1857 0.5099 0.3950 -37.06% -33.25%MSEA 0.7385 0.6946 0.9878 0.7312 0.8152 0.6541 0.8185 0.6224 0.8230 0.6776 -18.66%

N-BEATS MSEN 0.0472 0.0345 0.0592 0.0401 0.0469 0.0355 0.0646 0.0411 0.0517 0.0394 -28.73% -17.84%MSEA 0.3331 0.3794 0.6109 0.5375 0.5989 0.5944 0.4597 0.4197 0.2853 0.2909 -1.12%

Informer MSEN 0.1350 0.0538 0.0819 0.0341 0.0762 0.0344 0.2954 0.0492 0.5564 0.1775 -64.96% -51.84%MSEA 0.5547 0.4746 0.5625 0.6031 0.6011 0.5810 0.7533 0.4694 0.7724 0.3619 -20.28%

Different performance gains across datasets From the multivariate re-
sults (Table 1) and univariate results, we found that the reduction rates of MSE
vary depending on the datasets. For an in-depth analysis, we present the correla-
tion between the average of reduction rate and the average of LD for each dataset
using the scatter plot in Figure 5. We observed that there exists a positive lin-
ear correlation between LD and the reduction rate, indicating that we obtain a
higher reduction rate of MSE as the average of LD increases in a given dataset.
To further demonstrate such a finding, we intentionally inject abrupt changes
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Fig. 5. Scatter plots showing the correlation between the averaged LD of each dataset
and MSE reduction rates of experiments on the multivarite and univariate settings.

into the Traffic and ECL, the datasets which showed the marginal improvements
in the univariate setting. We obtained a larger reduction rate of MSE with both
Traffic and ECL including intentional abrupt changes compared to the original
datasets. This demonstrates that the marginal performance gain in both Traffic
and ECL is due to the few number of abrupt changes in the dataset. Note that
datasets without such abrupt changes might be well estimated with existing
time-series forecasting models. However, we emphasize that using ReLD does
not degrade performance on such datasets, if not marginally improve it, due to
a few number of abrupt changes inevitably included in time-series datasets.

4.5 Computational cost of ReLD

Our reweighting framework requires a marginal amount of additional compu-
tational cost of calculating the weights for all input-output sequences before
training. As shown in Table 4, the cost of calculating the weights on datasets
with multiple settings is less than 1% of the time it takes to train with the
dataset during one epoch. The absolute time was mostly less than 1 second.

Table 4. The processing time of ReLD and training time of Autoformer during 1
epoch.

# of Windows Window size # of Series ReLD Preprocessing time (a) Training time (b) Ratio
Dataset (I + O) (seconds) (seconds per epoch) (a) / (a) + (b)

ETTh1 8449 192 (96 + 96) 7 0.18 38.12 0.47%
ETTh2 8449 192 (96 + 96) 7 0.17 39.11 0.43%
ETTm1 34369 192 (96 + 96) 7 0.69 154.68 0.44%
ETTm2 34369 192 (96 + 96) 7 0.68 160.31 0.42%

Weather-hour 5093 1056 (336 + 720) 21 0.63 121.19 0.52%
Pump 9610 672 (336 + 336) 35 1.22 125.30 0.96%
ECL 17741 672 (336 + 336) 1 0.08 94.67 0.08%

Traffic 11225 1056 (336 + 720) 1 0.07 99.05 0.07%

5 Discussion & Limitation

In this paper, we reveal that abrupt changes between adjacent sequences de-
teriorate the generalization performance of time-series forecasting models by
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occupying most of the losses despite their scarce occurrence in the training set.
To solve this problem, we propose a simple yet effective reweighting framework
that down-weights loss values of abrupt changes and up-weights those of nor-
mal states based on LD density. Although our ReLD consistently enhances the
performance on real-world datasets, there is a limitation we found. We assume
that an abrupt change is caused by unobserved external variables. However, if
we can have access to those variables, our framework may not show performance
improvement from the down-weighted losses of the abrupt changes.
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A Theoretical analysis of ReLD

As shown in Figure 3 of main paper, we can observe LD values oscillating within
a certain range similarly to original time series. We discuss the following points
about this observation.

1. When the time series is sampled from a periodic function, LD is also a
periodic function.

2. When the time series is sampled from a bounded periodic function, LD is
bounded.

First, we can easily prove that LD is also periodic when the time series is
sampled from a periodic function, which the model should learn from data (i.e.,
normal states).

Theorem 1. If f is a periodic function that satisfies f(t) = f(t+ p),

LD(a, a+ L) =
m(a)−m(a+ L)√

s(a)
N + s(a+L)

N

(4)

is also a periodic function with period p, where m(a) = 1
N

∑
t∈I(a) f(t), s(a) =

1
N

∑
t∈I(a)(f(t) − m(a))2, and I(a) = {a + L

N · i}N−1
i=0 for range [a, a + L] and

sampling interval L/N .
To prove Theorem 1, we prove and use Proposition 1 and 2 with respect to

the mean and the variance of the periodic function.

Proposition 1. If f is a periodic function that satisfies f(t) = f(t+ p), m(a) =
1
N

∑
t∈I(a) f(t) is also a periodic function with period p where I(a) = {a + L

N ·
i}N−1

i=0 for range [a, a+ L] and sampling interval L/N .

Proposition 2. If f is a periodic function that satisfies f(t) = f(t + p), s(a) =
1
N

∑
x∈I(a)(f(t)−m(a))2 is also a periodic function with period p where I(a) =

{a+ L
N · i}N−1

i=0 for range [a, a+ L] and sampling interval L/N .
By proposition 1 and 2, we prove Theorem 1 as follows:

LD(a+ p, a+ p+ L) =
m(a+ p)−m(a+ p+ L)√

s(a+p)
N + s(a+p+L)

N

=
m(a)−m(a+ L)√

s(a)
N + s(a+L)

N

= LD(a, a+ L)

Regarding the bound of LD, if we define LD by ignoring the variances (i.e.,
LD(a, a+ L) = m(a)−m(a+ L)), we can obtain the bound 2 · B given that f
is bounded function that satisfies |f(t)| ≤ B for all t.
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However, since we use the variance of input and output, LD can diverge when
both variances of input sequence and output sequence are equal to zero. There
are two cases when the variance equals to zero.

1. f is a constant function.
2. The window size L is N ·p for data points, which are sampled from a periodic

function f with the period p and sampling interval L/N .

In the first case, since the time-series dataset has a constant target value, the
prediction also remains as the constant value, leading to a trivial solution. In
the second case, the variance is no longer zero if the window size L is adjusted.

In practice, we use epsilon ϵ as a numerical stabilizer to solve the case where
variances are zero as shown in Equation 1. Note that we do not use these bounds
as thresholds in the proposed method.

Proofs for the Proposition 1 and 2 are as follows.

Proposition 1. If f is periodic function that satisfy f(t) = f(t + p), m(a) =
1
N

∑
t∈I(a) f(t) is also periodic function with period p where I(a) = {a+ L

N ·i}N−1
i=0

for range [a, a+ L] and sampling interval L/N .

Proof:

m(a+ p) =
1

N

∑
t∈I(a+p)

f(t)

=
1

N

{
f(a+ p) + f(a+ p+

L

N
) + · · ·+ f(a+ p+ L− L

N
)

}
=

1

N

{
f(a) + f(a+

L

N
) + · · ·+ f(a+ L− L

N
)

}
= m(a)

Proposition 2. If f is periodic function that satisfy f(t) = f(t + p), s(a) =
1
N

∑
t∈I(a)(f(t) − m(a))2 is also periodic function with period p where I(a) =

{a+ L
N · i}N−1

i=0 for range [a, a+ L] and sampling interval L/N .

Proof:

s(a+ p) =
1

N

∑
t∈I(a+p)

{f(t)−m(a+ p)}2

=
1

N

{
(f(a+ p)−m(a+ p))2 + (f(a+ p+

L

N
)−m(a+ p))2

+ · · ·+ (f(a+ p+ L− L

N
)−m(a+ p))2

}
=

1

N

{
(f(a)−m(a))2 + (f(a+

L

N
)−m(a))2 + · · ·+ (f(a+ L− L

N
)−m(a))2

}
= s(a)
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B In-Depth Analysis on ReLD

This section provides various analysis for our reweighting framework.

B.1 Abrupt change with external variables

We assumed that an abrupt change can be caused by unobserved and external
events as we mentioned in Section 1 and Section 5. If the abrupt change can
be predicted using an external variable, down-weighting the loss of the abrupt
change would get in the way of learning such correlation for the model. However,
utilizing additional variables without thorough verification causes the model to
learn a spurious correlation between variables, which worsens the generalization
ability. Moreover, some abrupt changes have unknown causes (e.g., sensor mal-
function), which cannot be addressed by simply collecting external variables. In
fact, as shown in the Table 5, we observed that training baseline models with
external variables (i.e., Multivariate to Univariate denoted as Mul2Uni setting)
rather shows lower performance than training those with the target time series
only (i.e., Univariate to Univariate denoted as Uni2Uni setting). These results
indicate that simply adding covariates does not guarantee performance gains.
Note that multivariate forecasting we mentioned in main paper is multivariate
to multivariate setting (i.e., Mul2Mul), which is different with Mul2Uni setting.
In addition, applying our method on Mul2Uni outperformed the Uni2Uni in
several cases (see Autoformer 96/96 and 336/168 of Table 5).

Table 5. Comparison between Mul2Uni and Uni2Uni forecasting on ETTm1 dataset.

Model Pyraformer Autoformer

Setting I → O 96 → 96 336 → 168 336 → 336 96 → 96 336 → 168 336 → 336

Uni2Uni 0.0821 ± 0.0289 0.1286 ± 0.0346 0.1941 ± 0.0523 0.0577 ± 0.0081 0.0881 ± 0.0284 0.0903 ± 0.0096
Uni2Uni + Ours 0.0576 ± 0.0079 0.1218 ± 0.0395 0.1843 ± 0.0507 0.0522 ± 0.0035 0.0723 ± 0.0068 0.0847 ± 0.0084
Mul2Uni 0.1757 ± 0.0372 0.2926 ± 0.0778 0.5920 ± 0.0591 0.0619 ± 0.0090 0.0799 ± 0.0188 0.1367 ± 0.0392
Mul2Uni + Ours 0.1137 ± 0.0295 0.2984 ± 0.1246 0.5533 ± 0.0761 0.0496 ± 0.0021 0.0674 ± 0.0071 0.1193 ± 0.0267

B.2 ReLD on repeated changes

To further understand our ReLD, we present a rectangular time series as a
special case, which generally includes a large shift during a short period of time
and shows increasing amplitude (see 1st row of Figure 6). Although this series
includes large shifts, we do not regard those as abrupt changes defined in our
paper since rectangular patterns are repeated (i.e., seasonal component). Also,
the increasing amplitude (i.e., trend component) is considered one of the trend
types. Since we calculate LD by sliding the window, the increasing amplitude
does not change the LD values. For example, the LD value of the window, which
of size is large enough to cover period, has a value less than 0 (greater than 0 if
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Fig. 6. Two rectangular time series which include large shift in a short time. As in the
first row, if a rectangular pattern with a large change exists several times, ReLD learns
it normally without down-weighting it. However, if the periodicity is broken by sensor
malfunctions in the third row, ReLD mitigates impact of anomaly pattern in training
phase.

the amplitude decreases) regardless of time. In this case, since the LD values of all
windows are similar, they will be given the same weights. Therefore, even if our
method is applied, we would observe more or less the same performance as shown
in Rect-Normal dataset of Table 6. Additionally, we conducted experiments by
removing rectangles randomly from the dataset (see 3rd row of Figure 6). This
can be considered abrupt changes (e.g., broken periodicity). We observe that our
ReLD brings performance gain in such cases (see Rect-Broken of Table 6). This
again demonstrates that our proposed method promotes the model to be robust
to abrupt changes.

B.3 Impact of the in-output ratio

We conducted an experiment by fixing the output length and changing the input
length from 48 to 720 to explore the performance change according to the I/O
ratio. We conducted experiments on the three datasets, ETTh1, ETTh2, and
ETTm1. Applying our method brings consistent performance improvements, al-
though there exists different performance gains depending on the input lengths
as shown in Table 7.
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Table 6. Rectangular Time Series with the increasing amplitude and the randomly
broken periodicity.

Models Pyraformer Autoformer Informer

MSE base our base our base our

R
ec

t-
N

or
m

al 96 0.2405 ± 0.0211 0.2468 ± 0.0243 0.9748 ± 0.4805 0.9131 ± 0.4100 0.5409 ± 0.0280 0.5480 ± 0.0316
168 0.2614 ± 0.0115 0.2652 ± 0.0102 1.4711 ± 0.9902 1.7147 ± 0.7723 1.3573 ± 0.1377 1.3556 ± 0.1068
336 0.3179 ± 0.0075 0.3193 ± 0.0062 0.5271 ± 0.2047 0.4492 ± 0.1558 1.2945 ± 0.0874 1.2764 ± 0.0891
720 0.4034 ± 0.0084 0.4088 ± 0.0089 2.7076 ± 0.4390 2.6447 ± 0.6276 1.6796 ± 0.0450 1.7306 ± 0.0614

Imp. 1.46% -1.72% 0.71%

R
ec

t-
B

ro
ke

n 96 0.4028 ± 0.0434 0.2343 ± 0.0061 0.9883 ± 0.1790 1.1399 ± 0.4871 0.5781 ± 0.0558 0.3912 ± 0.0463
168 0.3261 ± 0.0138 0.3020 ± 0.0174 1.7361 ± 0.8130 1.2914 ± 0.3595 0.5622 ± 0.0386 0.5227 ± 0.0178
336 0.2548 ± 0.0112 0.2579 ± 0.0155 0.7678 ± 0.1225 0.5648 ± 0.1603 0.5144 ± 0.0394 0.4988 ± 0.0494
720 0.3098 ± 0.0617 0.3037 ± 0.0427 2.0861 ± 0.1504 1.8670 ± 0.3713 0.5936 ± 0.0473 0.5569 ± 0.0390

Imp. -12.49% -11.80% -12.14%

Table 7. Impact of the ratio I/O on multivariate time series forecasting.

Models Pyraformer Autoformer Informer

Output-96 Input base our base our base our Imp.

ETTh1

48 0.6314 ± 0.0371 0.5166 ± 0.0104 0.4748 ± 0.0328 0.4675 ± 0.0504 1.0632 ± 0.2707 0.8125 ± 0.0679 -23.58%
96 0.6453 ± 0.0583 0.5345 ± 0.0073 0.4531 ± 0.0282 0.4452 ± 0.0153 0.9075 ± 0.0479 0.8476 ± 0.0532 -6.6%
168 0.6330 ± 0.0241 0.5604 ± 0.0145 0.4477 ± 0.0247 0.4594 ± 0.0426 0.8997 ± 0.0738 0.7928 ± 0.0698 -11.88%
336 0.7195 ± 0.0206 0.6310 ± 0.0293 0.4667 ± 0.0240 0.4826 ± 0.0188 1.1695 ± 0.2012 1.0384 ± 0.1830 -11.21%
720 0.7290 ± 0.0757 0.6540 ± 0.0191 0.6354 ± 0.0386 0.5057 ± 0.0673 1.6608 ± 0.1402 1.3866 ± 0.1341 -16.51%

ETTh2

48 1.5411 ± 0.1880 1.0982 ± 0.1702 0.3637 ± 0.0091 0.3394 ± 0.0051 1.7225 ± 0.1508 1.1461 ± 0.0743 -22.96%
96 1.6090 ± 0.0866 1.1733 ± 0.2271 0.3731 ± 0.0294 0.3464 ± 0.0102 3.4245 ± 0.4814 2.4505 ± 0.4804 -20.89%
168 1.7787 ± 0.2003 1.3081 ± 0.2461 0.4414 ± 0.0271 0.3833 ± 0.0069 5.6370 ± 0.8005 2.9705 ± 0.4835 -28.97%
336 1.7924 ± 0.2872 1.5560 ± 0.1676 0.4897 ± 0.0565 0.4174 ± 0.0517 6.2992 ± 0.9310 3.9496 ± 0.8050 -21.75%
720 2.0959 ± 0.1960 1.9368 ± 0.2612 0.6769 ± 0.1552 0.4701 ± 0.0869 9.1387 ± 2.0638 6.9792 ± 1.5690 -20.59%

ETTm1

48 0.5559 ± 0.0225 0.4922 ± 0.0134 0.5673 ± 0.0542 0.5182 ± 0.0396 0.6389 ± 0.0270 0.5925 ± 0.0348 -9.13%
96 0.5364 ± 0.0318 0.4713 ± 0.0299 0.5128 ± 0.0635 0.4545 ± 0.0410 0.6438 ± 0.0596 0.5367 ± 0.0439 -13.38%
168 0.5015 ± 0.0431 0.4174 ± 0.0176 0.4987 ± 0.0241 0.4603 ± 0.0636 0.6907 ± 0.0578 0.5677 ± 0.0281 -14.09%
336 0.4876 ± 0.0325 0.4316 ± 0.0171 0.5374 ± 0.0361 0.5053 ± 0.0462 0.8487 ± 0.0578 0.6078 ± 0.0541 -15.28%
720 0.4841 ± 0.0381 0.4546 ± 0.0224 0.5799 ± 0.0914 0.4988 ± 0.0384 1.0951 ± 0.1741 0.8007 ± 0.1602 -15.65%
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C Comparison with other methods

C.1 Comparison with smoothing and outlier filtering

We compared our proposed method with 1) smoothing and 2) outlier filtering
which are expected to perform well with drastic changes (e.g., fluke) in time-
series datasets. Smoothing techniques are used to remove nosiness and reduce
outliers, allowing meaningful temporal patterns to stand out. Conventional meth-
ods include moving average (MA) smoothing as follows:

st =
(xt−k+1 + xt−k+2 + . . .+ xt)

k
(5)

where st is the smoothed observation at t and xt is the original observation.
The other method is exponential (EMA) smoothing calculated by Equation as
follows:

st = α · xt + (1− α) · st−1 (6)

where α ∈ (0, 1). We smoothed the training time series and train forecasting
models. To use outlier filtering method for forecasting task, a simple way to
detect outliers is to assume that the target value follows a Gaussian and remove
values that exceed a certain range of values. We train forecasters after removing
outliers which exceed a certain value.

C.2 Comparison with error-based reweighting

As we mentioned in the main paper, we observed that abrupt changes signif-
icantly contribute to the total loss in the training phase. In this situation, we
can simply reweight a loss of sample that have large error while considering the
sample including abrupt change. Reweighting inversely to the error may down-
weight the loss of the abrupt change without additional LD calculation. In the
main paper, we presented two error-based methods: Focal-R and filp Focal-R.
Focal-R loss is calculated as σ (β |ei|)γ Li where ei is error of i-th sample, Li

is loss of i-th sample, and σ(·) is sigmoid function. β and γ are hyperparaters.
In case of filp Focal-R, β is negative to flip the sigmoid function along the y
axis. Additionally, we provide L2 error-based reweighting results, namely invL2
which is written as Li

ei+ϵ . In case of invL2, as the model forecasts accurately and
thus the error of the normal states is close to zero, the parameter moves with
larger steps by up-weighted loss. Table 8 shows the performance in the case of
reweighting inversely to the error of each window.

C.3 Variants for Local Discrepancy

We propose the Local Discrepancy (LD) based on the statistics formulated
by a statistical test, Welch’s t-test [24], in order to measure how two adja-
cent in-output sequences, Xt and Yt, are different from each other. There may
exist other metrics to measure the local discrepancy such as multivariate t-
statistic [9] (i.e., Hotelling’s t-squared statistic) and stationarity tests (e.g.,
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Table 8. Comparison with error-based reweighting (invL2) in the multivariate fore-
casting (Top) and in the univariate forecasting (Bottom) using ETTh1 dataset.

Multivariate Pyraformer Autoformer Informer

I / O base invL2 ReLD base invL2 ReLD base invL2 ReLD

96 / 96 0.6453 ± 0.0583 0.6083 ± 0.0149 0.5345 ± 0.0073 0.4422 ± 0.0242 0.4458 ± 0.0212 0.4438 ± 0.0143 0.9084 ± 0.0485 0.8506 ± 0.0280 0.8031 ± 0.0317
336 / 168 0.8644 ± 0.0905 0.7842 ± 0.0250 0.7415 ± 0.0399 0.5042 ± 0.0515 0.4772 ± 0.0144 0.4906 ± 0.0263 1.3720 ± 0.2422 1.2150 ± 0.1333 0.8858 ± 0.0258
336 / 336 0.9328 ± 0.0341 0.9643 ± 0.0404 0.8895 ± 0.0548 0.5694 ± 0.1115 0.5450 ± 0.0886 0.5110 ± 0.0990 1.3425 ± 0.0725 1.2857 ± 0.0710 0.9850 ± 0.0308
336 / 720 0.9843 ± 0.0213 1.0003 ± 0.0228 0.9781 ± 0.0196 0.5348 ± 0.0212 0.5589 ± 0.0613 0.5207 ± 0.0106 1.3933 ± 0.0892 1.3735 ± 0.0386 1.1994 ± 0.0597

Imp. - -2.50% -9.17% - -1.08% -3.81% - -5.86% -21.89%

Univariate Pyraformer Autoformer Informer

I / O base invL2 ReLD base invL2 ReLD base invL2 ReLD

96 / 96 0.2074 ± 0.0728 0.1928 ± 0.0365 0.1831 ± 0.0533 0.0859 ± 0.0063 0.0861 ± 0.0031 0.0841 ± 0.0067 0.1203 ± 0.0730 0.1132 ± 0.0441 0.1020 ± 0.0472
336 / 168 0.1819 ± 0.0257 0.1750 ± 0.0581 0.1725 ± 0.0406 0.1077 ± 0.0130 0.0949 ± 0.0109 0.0999 ± 0.0072 0.0862 ± 0.0292 0.0946 ± 0.0244 0.0848 ± 0.0297
336 / 336 0.1716 ± 0.0597 0.1853 ± 0.0622 0.1649 ± 0.0426 0.1055 ± 0.0219 0.1135 ± 0.0198 0.1008 ± 0.0157 0.0862 ± 0.0025 0.0870 ± 0.0084 0.0897 ± 0.0165
336 / 720 0.1974 ± 0.0415 0.1746 ± 0.0312 0.1667 ± 0.0298 0.1352 ± 0.0207 0.1251 ± 0.0110 0.1244 ± 0.0270 0.2025 ± 0.0961 0.1800 ± 0.0945 0.1550 ± 0.0237

Imp. - -3.60% -9.09% - -2.88% -5.45% - -1.59% -9.06%

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests [13]). We also report the per-
formance of our reweighting framework using a different metric other than t-
statistics for measuring the local discrepancy in Table 9. Hotelling’s t-squared
statistic is a generalization of Student’s t-statistic that is used in multivariate
hypothesis testing. We can naturally utilize t-squared statistic as LD for multi-
variate forecasting (i.e., s ∈ Rm and m > 1) as follows:

LocalDis(Xt,Yt) =
I ·O
I +O

(X̄t − Ȳt)
′Σ̂−1(X̄t − Ȳt) := v2t (7)

where the mean and covariance are defined as follows:

X̄t =
1

I

I∑
i=1

st−i, Ȳt =
1

O

O−1∑
i=0

st+i, Σ̂ =
(I − 1) Σ̂X̄ + (O − 1) Σ̂Ȳ

I +O − 2
,

Σ̂X̄ =
1

I − 1

I∑
i=1

(
st−i − X̄t

) (
st−i − X̄t

)′
, Σ̂Ȳ =

1

O − 1

O−1∑
i=1

(
st+i − Ȳ

) (
st+i − Ȳ

)′
.

We can interpret the time-series data in terms of stochastic processes. KPSS tests
are used for testing a null hypothesis that an observable time series is stationary
around a deterministic trend (i.e., trend-stationary) against the alternative of a
unit root. When the given time series is trend stationary, the KPSS statistic has
small value, which is close to zero. Thus, to measure the degree of abruptness of
a change in a given period of time, we leverage the KPSS statistic as LD:

LocalDis(concat(Xt,Yt)) =
1

(I +O)2
·
O−1∑
i=−I

E2
t+i

σ̂2
:= vt (8)

where Et is partial sum of the residuals and σ̂2 is the estimate of the long-run
variance of the residuals as follows:

Ek =

t∑
k=1

ei, e = (et−I , et−I+1, . . . , eO−1)
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where e means OLS residuals when regressing the concated in-output sequence
(i.e., concat(Xt,Yt)). We observe that our reweighting framework consistently

Table 9. Ablation study on variants of local discrepancy used in our reweighting
framework. We compare models which uses 1) KPSS, 2) t-squared, and 3) t-statistic.
The t-statistic shows more consistent and superior results compared to other statistics
in the multivariate setting.

Dataset ETTh1 ETTh2 ETTm1

Model Predict-O 96 168 336 96 168 336 96 168 336 Imp.

Pyraformer 0.645 0.864 0.933 1.609 5.014 4.356 0.536 0.563 0.697 -
Pyraformer + KPSS 0.554 0.782 0.909 1.482 4.590 5.327 0.470 0.527 0.604 -5.84%
Pyraformer + t-squared 0.640 0.809 0.898 1.440 3.112 3.912 0.490 0.557 0.632 -9.84%
Pyraformer + t-statistic 0.534 0.742 0.889 1.173 3.976 3.281 0.471 0.506 0.573 -16.51%

Autoformer 0.442 0.504 0.569 0.386 0.439 0.494 0.524 0.534 0.561 -
Autoformer + KPSS 0.446 0.528 0.486 0.358 0.436 0.516 0.456 0.538 0.513 -3.68%
Autoformer + t-squared 0.454 0.521 0.515 0.357 0.403 0.436 0.503 0.548 0.512 -4.60%
Autoformer + t-statistic 0.444 0.491 0.511 0.351 0.413 0.424 0.455 0.500 0.514 -7.74%

Informer 0.908 1.372 1.343 3.400 5.796 3.901 0.640 1.224 1.390 -
Informer + KPSS 0.850 1.215 1.215 3.050 5.593 4.202 0.535 0.844 1.087 -11.41%
Informer + t-squared 0.871 1.262 1.234 2.796 4.393 3.419 0.594 0.992 1.195 -12.76%
Informer + t-statistic 0.856 1.113 1.151 2.462 4.723 3.788 0.543 0.751 1.008 -18.81%

outperforms the ones without our framework regardless of the statistics used
for measuring the local discrepancy. While we empirically confirmed that using
t-statistic is more suitable for LD compared to KPSS or t-Squared statistic, such
result demonstrates that our framework can be used with any statistics measure
the user deems appropriate.

D Our Framework Details

D.1 Implementation details

We include 12 baselines to validate our ReLD. All models were implemented with
PyTorch. As for recent models (i.e., FEDformer3, Pyraformer4, Autoformer5,
and Informer6), we used the official code released by the original authors, rather
than implementing from scratch. For a fair comparison between ReLD and the
existing framework, we set the same hyperparameters found in each work. We
trained all models from scratch to 10 epochs. To assign weights to all training
samples in ReLD, the LD is computed only once before training, and it takes only
3 https://github.com/MAZiqing/FEDformer
4 https://github.com/alipay/Pyraformer
5 https://github.com/thuml/Autoformer
6 https://github.com/zhouhaoyi/Informer2020
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a negligible amount of time compared to the training time. Most models, which
leverage a generative decoding, take an average of less than an hour to train on
a TITAN-Xp GPU except for LSTMa which uses auto-regressive decoding.

D.2 Dataset details

In this work, we reported the results on eight datasets. ETT are widely used to
evaluate long-term forecasting methods [29,25,17,30] ETT contains the crucial
indicators (e.g., oil temperature, load, etc) collected from the electricity trans-
formers over two years, and are categorized into four datasets depending on the
location (ETT1 and ETT2) and interval (15 minutes and one hour). Electricity 7

dataset contains the hourly electricity consumption of 321 customers from 2012
to 2014. Weather dataset 8 is recorded every 10 minutes for a year, which con-
tains 21 meteorological indicators (e.g., air temperature, humidity, etc). Pump
dataset 9 is collected from 52 sensors monitoring the water pump. AirQuality
dataset 10, taken from the UCI repository, contains hourly averaged responses
obtained from five metal oxide chemical sensors of an air quality chemical multi-
sensor device.

D.3 Pseudo code for ReLD

Algorithm 2 ReLD: Reweighting framework based on Local Discrepancy
Density
Require: Training set D = {(Xt,Yt)}Nt=1, bin size ∆b, symmetric kernel distribution

k(v, v′)

Compute Local Discrepancy LD (Xt,Yt) =
X̄t−Ȳt√

s2
X̄t
I

+
s2
Ȳt
O

+ε

:= vt

Compute the empirical label density distribution p(v) based on ∆b and D
Compute the effective label density distribution p̃ (v′) :=

∫
V k (v, v′) p(v)dv

for all (Xt,Yt, vt) ∈ D do
Assign weight for each sample as wt ∝ c · p̃ (vt) (constant c as scaling factor)

end for
for all number of training iterations do

Sample a mini-batch {(Xb,Yb, wb)}Bb=1 from D
Forward {Xb}Bb=1 and get corresponding predictions {Ŷb}Bb=1

Do one training step using the weighted loss 1
B

∑B
b=1 Lwb(Ŷb,Yb)

end for

We illustrate the pseudo code of the ReLD in Algorithm 2.
7 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
8 https://www.bgc-jena.mpg.de/wetter/
9 https://www.kaggle.com/datasets/nphantawee/pump-sensor-data

10 https://archive.ics.uci.edu/ml/datasets/air+quality



24 Park et al.

D.4 Hyperparameter Sensitivity

We used KDE to smooth the LD distribution. Related parameters include the
bin size that determines how many sections continuous LD is divided into, KDE’s
kernel type, kernel size and kernel sigma. In our experiment, we set the bin size to
200, kernel type to Gaussian, and kernel size and sigma to 5 and 2, respectively,
as default parameters. We conducted experiments on ETTh1 and ETTh2 to
observe the variance of performance according to each parameter. As shown
in Table 11, Table 12, Table 13, and Table 14, we observe that our proposed
method is robust to the hyper-parameters while showing consistent performance
improvements.

Input-336-Output-720

Input-336-Output-168Input-48-Output-48

Time

O
il 

Te
m

p
er
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re

Fig. 7. Forecasting results of Autoformer trained on ETTm1 with three different length
settings: Input-48-Output-48, Input-336-Output-168, and Input-336-Output-720. The
blue line indicates the forecasting results of the baselines without our ReLD and the
red line indicates those with our ReLD.

E Qualitative Results

This section visualizes the forecasting results using three criteria: in-output
length (Figure 7), dataset (Figure 8), and model architecture (Figure 9). All
samples are from the test set of each dataset. The solid black line denotes the
input series and the dotted black line denotes the ground truth series that a
model should predict. For a reliable comparison, we plot the averaged forecasting
results of the independent models trained from different random initializations.
The shaded part of the forecasting result indicates the forecasting variation at
a given time stamp. In Figure 7, we only report the mean of forecasting results
without the forecasting variation for better clarity.
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Table 10. Performance change according to the number of bins.

Dataset ETTh1 ETTh2

Model # bins 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD 40 0.5245 ± 0.1543 0.3529 ± 0.0262 -8.55%

120 0.4907 ± 0.0337 0.3455 ± 0.0229 -10.47%
200 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%
300 0.4881 ± 0.0413 0.3472 ± 0.0072 -10.03%
500 0.5130 ± 0.0529 0.3485 ± 0.0142 -9.69%

Table 11. Performance change according to the KDE kernel types.

Dataset ETTh1 ETTh2

Model KDE kernel 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD Gaussian 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%

Triangle 0.4792 ± 0.0171 0.3453 ± 0.0232 -10.52%
Laplace 0.4786 ± 0.0380 0.3496 ± 0.0087 -9.41%

Table 12. Performance changes according to the KDE kernel size.

Dataset ETTh1 ETTh2

Model KDE kernel size 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD 5 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%

10 0.4896 ± 0.0728 0.3466 ± 0.0018 -10.18%
15 0.4836 ± 0.0189 0.3567 ± 0.0293 -7.57%
20 0.4841 ± 0.0444 0.3482 ± 0.0383 -9.77%
25 0.4835 ± 0.0317 0.3490 ± 0.0166 -9.56%

Table 13. Performance change according to the KDE kernel sigma.

Dataset ETTh1 ETTh2

Model KDE kernel sigma 336 → 336 96 → 96 Imp.

Autoformer - 0.5694 ± 0.1115 0.3859 ± 0.0260 -
Autoformer + ReLD 1 0.5545 ± 0.1916 0.3521 ± 0.0189 -8.76%

2 0.4903 ± 0.0610 0.3501 ± 0.0168 -9.28%
4 0.5218 ± 0.1632 0.3586 ± 0.0567 -7.07%
8 0.4767 ± 0.0307 0.3435 ± 0.0172 -10.99%
16 0.4836 ± 0.0318 0.3494 ± 0.0310 -9.46%
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ETTm2

Time

ETTm1 Weather

Fig. 8. Forecasting results of Autoformer on three datasets: ETTm1, ETTm2, and
Weather. The first row shows the forecasting results of the baseline without our ReLD
and the second row shows those with our ReLD.

Autoformer

Time

Pyraformer SCINet

Fig. 9. Forecasting results of the recent three models on the same sample in HULL
series of ETTm2. The first row shows the forecasting results of the baselines without
our ReLD and the second row shows those with our ReLD.

As shown in Figure 7, our ReLD demonstrated enhanced forecasting results
in both short-term and long-term settings. We observe that applying ReLD sig-
nificantly reduces the MSE loss regardless of datasets (see Figure 8) and model
architectures (Figure 9). For example, by applying ReLD on Weather dataset
(see Figure 8), the prediction variations (red-shaded regions) are fitted to the
fluctuations of the target times series which was underfitted without applying
ReLD (blue-shaded regions).

F Full Benchmark on the Real-World Datasets
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