
SiDiTeR: Similarity Discovering Techniques for Robotic

Process Automation

Petr Průcha1[0000-0003-2197-7825] Peter Madzík1[0000-0002-1655-6500]

1 Technical University of Liberec, Studentská 1402/2, Liberec, Czechia
petr.prucha@tul.cz

Abstract. Robotic Process Automation (RPA) has gained widespread adoption in corporate

organizations, streamlining work processes while also introducing additional maintenance

tasks. Effective governance of RPA can be achieved through the reusability of RPA compo-

nents. However, refactoring RPA processes poses challenges when dealing with larger devel-

opment teams, outsourcing, and staff turnover. This research aims to explore the possibility of

identifying similarities in RPA processes for refactoring. To address this issue, we have devel-

oped Similarity Discovering Techniques for RPA (SiDiTeR). SiDiTeR utilizes source code or

process logs from RPA automations to search for similar or identical parts within RPA process-

es. The techniques introduced are specifically tailored to the RPA domain. We have expanded

the potential matches by introducing a dictionary feature which helps identify different activi-

ties that produce the same output, and this has led to improved results in the RPA domain.

Through our analysis, we have discovered 655 matches across 156 processes, with the longest

match spanning 163 occurrences in 15 processes. Process similarity within the RPA domain

proves to be a viable solution for mitigating the maintenance burden associated with RPA. This

underscores the significance of process similarity in the RPA domain.

Keywords: Robotic Process Automation, process similarity, RPA governance,

RPA maintenance

1 Introduction

Robotic Process Automation is slowly becoming mainstream technology in various

corporate organizations. Unfortunately, even though RPA makes work easier in some

ways, it can generate additional work, especially during the running of RPA itself

[16]. Very often this happens with companies that cross a critical threshold and fall

into an RPA maintenance trap [27]. One way to prevent this, according to RPA de-

velopers, is to ensure the reusability of RPA components [8, 16, 26]. With a small

number of RPA robots and a small number of RPA developers, this can be easily

ensured. With a larger number of RPA robots, larger development teams, outsourcing

automation to different development teams in different parts of the world and with the

turnover of staff, ensuring the reusability of RPA components is very challenging.

Making sure that code quality complies with company norms during development is

also challenging. For this reason, software developers should refactor their code to be

more efficient and serviceable. Hence, it is advisable to refactor the RPA code as

mailto:petr.prucha@tul.cz

2

well, so that the code components are reusable. As in software development, refactor-

ing can be done backwards.

Aim of the research: To explore the possibility of finding similarities or identical

parts in an RPA process for refactoring if many automations were developed by peo-

ple who no longer work in a particular company, or if the development was out-

sourced.

There is an area in business process management that addresses a similar problem and

then tries to find identical processes within an organization, or across manufacturing

plants, or after a merger/acquisition. However, these techniques have focused on pro-

cesses that are not automated. The most commonly used sources for analysis are pro-

cess logs, natural language content, graph structures, Petri Nets, and BPMN notation

[11, 31]. None of these methods are primarily intended for the RPA area. Therefore,

input data, which for RPA may be the code of an RPA bot or possibly the log records

from RPA bots, are not considered. However, using the foundation of these tech-

niques can help answer our research question and achieve better maintainability by

finding parts from RPA code to refactor into reusable components.

The need for a new similarity algorithm comes from the desire to deal with the

maintenance trap. The current algorithms and solutions are not compatible with RPA

processes or logs. Many current discovery techniques are discussed in the section

titled Related Work. While these techniques propose interesting ideas which inspired

our solution here, they would be hard to use in the RPA domain or would not be espe-

cially effective. Firstly, all currently used algorithms would need a certain amount of

data preparation before their application. And then, after all of the transformations,

there could arise certain problems related to the specifics of RPA technologies and the

structure of process flow. For example, the process inquiry can deviate from reality.

The RPA technology sometimes needs to add extra activities to the flow in order to

function properly, for example exceptions which account for a loading screen. These

extra activities would be problematic because in a standard graphical visualization as

a BPMN or a Petri Net, these activities would not be covered. Also, the structure of

the RPA code can be more problematic due to the fact that many activities are nested

inside other activities. Before the analysis, it is important to flatten the process struc-

ture in order to perform an analysis. Lastly, the effectiveness of non-RPA algorithms

can be lower, because in a computer environment, it is possible to perform the same

action a different way and get an identical output. Our dictionary feature can recog-

nize process activities which are different, even when the activities yield the same

output. This extends the pool of similar or same activities. This increases the number

of criteria for using algorithms from related work that can be used in the RPA domain

after minor or major changes. These criteria will be introduced in the Related Work

section.

In this article, we propose that Similarity Discovering Techniques for RPA pro-

cesses shall be identified as SiDiTeRs. A SiDiTeR is a technique for searching for

similar parts of RPA code which could be refactored into reusable components. A

SiDiTeR is specially designed for use with UiPath RPA processes, currently the most

3

used RPA tools [38]. The approach can be extended to other commercial RPA solu-

tions in order to discover similarities in RPA processes. Our techniques promise to

efficiently discover similar patterns in a sequence of activities to later maximize the

ability to leverage the benefit of reusability of the RPA components.

The main contributions of this new algorithm for identifying process similarity in

RPA processes are:

• Its ability to work on RPA designs or RPA process logs

• By design it works with the specifics of RPA technologies, like process structure

and process flow

• A dictionary feature is provided to extend potential matches and cover identical

outputs

In this article we first analyze the previous work related to our approach. Subsequent-

ly we describe the use of SiDiTeRs in detail as a method for RPA process similarity

discovery. We follow with an evaluation of the method and a conclusion of the work.

2 Related work

There are already other approaches for discovering process similarity. Therefore, in

this section we will analyze other approaches where a discovery approach is used,

what input data is needed, and also how much these approaches comply with our cri-

teria for RPA. We assume that after tuning all of the algorithms, they could at least

partly be used in the RPA domain. For example, after converting the RPA processes

to another format, a certain approach could be used. For the analysis of other ap-

proaches we will classify them based on the publication on process similarity by

Schoknecht et al. and Dijkman et al. [6, 29]. Most authors use more than one of these

approaches to compare process similarity. Process similarity approaches are:

Behavioural similarity methods usually use execution traces of process and then

analyze the change in execution states or the behaviour of the flow. That means that

they check individual states and their changes.

Natural language similarity methods use natural language to try to find similarity in

labels of activities. Many other approaches use both syntactic and semantic aspects of

language to analyze similarity.

Graph or structural similarity methods consider graph structure or business pro-

cess-aware control flow. Various techniques like the graph edit distance technique or

the block structure technique are used to measure the similarity between process

models based on their graph structure and control flow.

Attribute Similarity methods examine the similarity between the attributes of each

activity that are required for the successful execution of that activity in the process.

The criteria for determining if related algorithms (after the necessary changes) have

the ability to work effectively in the RPA domain can be summarized from the intro-

duction of this paper. The criteria are:

4

1. The ability to correctly interpret RPA processes from the RPA design or an RPA

log with all of the nested activities inside.

2. The ability to handle the extra activities in the RPA processes that will not be dis-

played in a graphical visualization of the process.

3. The ability to cover different activities with the same output.

An analysis of the criteria for a match is presented in the last column of Table 1. An

analysis of related works for determining which approaches and inputs could be ex-

ploited for this study was carried out according to Figure 1. Scopus and Web of Sci-

ence databases were used to search for related works. All non-BPM records were

excluded from the search results, including those from manufacturing, computer sci-

ence (CPU related), databases, web services, and psychology. We also excluded

works related to BPM if they were not relevant for generating similar processes or if

the records were not accessible. In this eligibility screening, we also excluded records

which did not provide a new method or algorithm for analyzing the process similarity

or if they had not yet been validated on any processes.

Fig. 1. Related work procedure

The result of the analysis of each approach is shown in Table 1. In Table 1 there are

only the publications that passed through the filter. Our search phrases are shown in

Fig 1. Schoknecht et al. [29] conducted a similar literature review and found 123 rele-

5

vant publications. However, they also used phrases and keywords which were older

and, according to them, no longer used today.

Table 1. Related work comparison table

Publication Type Similarity Format of input data Criteria match

Ye et al. [34] Graph similarity Connected Graph Low

Garcia et al. [11] Graph similarity (BPMN) 2.0.2 Medium

Pei et al. [25]

Behavioural simi-

larity

Petri Net Low

Niu et al. [24] Behavioural simi-

larity

Token Logs Very Low

Liu et al. [19] Behavioural and

graph similarity

DWF-nets Low

Sohail et al. [30] Natural language

and behavioural

similarity

XML Medium

Zeng et al. [35] Behavioural simi-

larity

Role relation network Very Low

Zhou et al. [37] Natural language

and behavioural

similarity

Business process graph

+ process

log

Very Low

Liu et al. [20] Behavioural simi-

larity

Business process graph Very Low

Valero [32] Behavioural simi-

larity

Petri Nets Low

Klinkmuller and

Weber [18]
Behavioural simi-

larity

Control flow log Very Low

Cao et al. [5] Graph and behav-

ioural similarity

Petri nets or BPMN Low

Amiri and Kou-

paee [3]
Structural, attribute

behavioural simi-

larity

BPMN Medium

Figueroa et al. [9] Natural language

and structural simi-

larity

Business process in

XML

Medium

Montani et al. [22] Structural similari-

ty

Process log Medium

Yan et al. [33] Attribute similarity BPMN notation Medium

Niemann et al. [23] Natural language

and graph similari-

ty

SAP reference model Very Low

Dijkman et al. [6] Behavioural, natu-

ral language and

graph similarity

SAP reference model Very Low

Zha et al. [36] Behavioural simi-

larity

Transition adjacency

relation set

Very Low

6

Lu et al. [21]

Structural, Behav-

ioural, and natural

language

Business process con-

straint network

(BPCN), and process

variant repository

(PVR)

Low

Jung et al. [15] Structural similari-

ty

Non specified process

model is converted to:

weighted Complete

Dependency Graph

(wCDG)

Very Low

Dijkman et al. [7] Natural language

and graph similari-

ty

SAP reference model Low

Jung and Bae

[14]
Behavioural simi-

larity

Weighted complete

dependency graphs,

Very Low

Huang et al.

[12]
Graph similarity Weighted complete

dependency graphs,

Very Low

As shown in Table 1, most of the authors used more than one type of similarity tech-

niques. None of the studies focused on RPAs, nor did they utilize RPA source codes

or log information. This is confirmed by Schoknecht et al. [29] in their literature re-

view. Most approaches would require transforming the RPA process into a specific

input format in order to be usable. For example, converting RPA code into BPMN has

already been proposed in some approaches: [10, 13, 28]. The transformation would

then be less demanding than with other approaches. The least amount of effort for

utilizing an existing method for finding similarity would be to use methods that utilize

process logs [22, 37], or other studies that did not appear in the searched results [1,
2].

In Table 1, the criteria match column shows a range of values from very low to

very high. These values indicate a match with the criteria presented earlier in this

paper. None of the techniques in Table 1 would fulfil all of the criteria. The closest

ones were the algorithms which used similar input data to RPAs such as process logs

or XML, or which made use of the BPMN format because of its easy transformation

from RPA code. Also, some algorithms were valued higher because of a natural lan-

guage similarity, attribute similarity or other similarity approaches which would be

useful in the RPA domain.

3 Description of method

Our proposed method SiDiTeR (Similarity Discovering Techniques for RPA) uses

natural language-based and graph similarity-based methods. The method is composed

of three main parts. The first part is the decomposition of the RPA process/design.

The second part of SiDiTeR focuses on natural language matching. The activities

from RPA process are compared with activities in a provided dictionary feature (later

referred as dictionary Δ), and this then produces an abstract (meta) process. The third

7

part of SiDiTeR is the use of the longest common sequence (LCS) algorithm to find

the longest sequences in the processes.

3.1 SiDiTeR

In the first part, SiDiTeR decomposes the source code of the RPA process, referred to

then as the RPA design. From the design, we extract all of the activities with a name

α. We preserve the order of activities α in the RPA design. Technically, we extract the

activity names after the colon tag starting with <ui: from the XAML files. An exam-

ple is <ui:ReadRange. We extract just the name ReadRange from the text. Thanks to

the decomposition, we are able to have an RPA design activity list A for each process

that we decompose this way and save to a list of all activities Α.

SiDiTeR then creates a new activity list λ for each design. Then it searches through

all activities α in the activity list Α and looks for a match in the dictionary of identical

activities Δ (see Table 2). If no match is found, it adds the activity to the new list λ

with an original name. When a match is found between activity α and activity δ from

the dictionary Δ, activity α is assigned a more abstract description (a meta-action

name in Table 2) of activity δ that describes what the activity does. This results in a

more abstract process i.e. meta process of the activity, which is stored in the newly

created list λ. This results in a list of lists denoted as Λ. This process is visualized for

an example in Fig 2.

Fig. 2. Conversion to a meta process

The third part of SiDiTeR is a search for the longest common sequence for every meta

process λ saved in Λ. The longest common sequence algorithm finds identical se-

quences in all newly made meta processes. The found sequences have to be equal to

or longer than 3 activities in order to qualify for saving. The saved activities allow the

user to effectively search for similar processes activities which can be then refactored.

The user later has to make decisions if the component is the same and should be re-

factored into reusable components for another RPA process. An example of a found

common sequence in two processes is shown in Figure 3. For understanding this pro-

cess better, a description of the code is written below. See Code 1.

8

Fig. 3. Example of comparing meta processes

Code 1. Pseudocode of the SiDiTeR

list of activities A

list of lists Λ

for ‘Ἀ in A:

 new list λ

 for α in ‘Α:

 if α match δ in Δ:

 λ add δ

 else:

 λ add α

 Λ add λ

function LongestCommonSequence(Λ):

 return lcs > 3:

3.2 Dictionary creations for SiDiTeR

The dictionary in Table 2 was created based on activities that were available in Ui-

Path Studio, version 2023.4.0-beta.12241 with a community license, with the UiPath

packages for OCR, Excel, Word, Ui Automation, Mail and System Activities all in-

stalled. The dictionary was created as follows: we tried to find all activities that have

the same or similar output but can be achieved by different activities. We only looked

9

for activities that can be interchanged. We were not looking for sequences with the

same output. The only exception was for copy-paste activities called SetToClipboard

- NkeyboardShortcuts, which also work together as a sequence for writing. Using

these actions, SetToClipboard (setting text into the clipboard) and Nkeyboard-

Shortcuts (for pasting), are identical to how a user would use copy and paste on a PC,

i.e., Ctrl + C and Ctrl + V. In the second column of Table 2, the δ activities are

grouped by the same meta-action named in the first column. The activity names in the

second column come from the UiPath activity names. The same names can be seen in

the RPA process source code in the XAML file and also in the UiPath user interface.

Table 2. Dictionary Δ

Meta Action Name Activity Name

Write in UI NTypeInto, SetToClipboard - NKeyboardShortcuts, CVTyp-

eIntoWithDescriptor

Write to Text File WriteTextFile, WordAppendText, DocumentAppendText,

AppendLine, DocumentReplaceText, WriteText-

File,NTypeInto

Write to Spreadsheet WriteCSVFile, WriteCellX, AppendCsvFile, WriteRangeX,

AutoFillX, ExportExcelToCsvX, In-

vokeVBAX,CopyPasteRangeX, AppendRangeX, AutoFitX,

FindReplaceValueX, AppendRange, WriteCell, WriteRange,

ExecuteMacroX, OutputDataTable, AddDataRow, Updat-

eRowItem, NTypeInto

Creation of Data

Objects

BuildCollection<Object>, CreateList<Object>,

BuildDataTable

Write to Data Ob-

jects

AppendItemToCollection<Object>, Ap-

pendItemToList<Object>, UpdateListItem<Object>, AddDa-

taRow, UpdateRowItem

SAP login Login, Logon,

OCR GoogleCloudOCR, MicrosoftAzureComputerVisionOCR,

CjkOCR, GoogleOCR, UiPathDocumentOCR, Ui-

PathScreenOCR

Send Mail SendMail, SendOutlookMail, SendMailX

Receive Mail GetPOP3MailMessages, GetOutlookMailMessages,

GetIMAPMailMessages

Save Mail SaveMail, SaveOutlookMailMessage, SaveMailX

User Message LogMessage, WriteLine

Get text CVGetTextWithDescriptor, NGetText, GetOCRText

Click CVClickWithDescriptor, Nclick, ClickOCRText

Hover CVHoverWithDescriptor, Nhover, HoverOCRText

Highlight CVHighlightWithDescirptor, Nhighlight

Extract DataTable CvExtractDataTableWithDescriptor, NExtractData

Read File Text DocumentReadText, WordTextRead, ReadTextFile

Save to clipboard SetToClipboard, CopySelectedText

Loop ForEach<Object>, InterruptibleWhile,InterruptibleDoWhile,

ParallelForEach<Int32>

10

Condition If, IfElseIf, Switch<Int32>

4 Evaluation

Our SiDiTeR approach, as presented in the previous section, was tested on a real RPA

process made for UiPath. We programmed SiDiTeR in Python 3.11 to evaluate our

approach. The repository with the sample processes is publicly available1. We evalu-

ated the effectiveness of SiDiTeR on 156 UiPath process designs. Among the pro-

cesses were 120 various sample processes, such as setting up an email account, calcu-

lator, robotic enterprise framework, executing commands in PowerShell and many

others. The processes were in .xaml format and came from public repositories from

GitHub or UiPath. In the dataset there were also 36 corporate automations from the

banking industry which are not publicly available, and they are under a non-disclosure

agreement. The corporate process comes from one banking company, and their pro-

cess is used in the UiPath Robotic Enterprise Framework for building RPA processes.

This is nicely presented in the results, where 15 files from 36 corporate process files

have the longest common sequence of 163 same activities in the files. The second

longest common sequence is 36 activities, and it comes from a different version of

robotic enterprise framework files. The rest of the sequence is much shorter, and it

would be important go through the activities manually and evaluate them. All of the

results from SiDiTeR are presented in Table 3. In total, we were able to discover 655

matches among the tested xaml files.

Table 3. Results

Length of longest sequence Number of found values

3 481

4 125

5 30

6 2

9 1

36 1

163 15

At the outset, we proposed the following research aim:

To explore the possibility of finding similarities or identical parts in an RPA process

for refactoring if many automations were developed by people who no longer work in

a particular company, or if the development was outsourced.

1 Available on Github: https://github.com/Scherifow/SiDiTar or Zenodo:

https://zenodo.org/badge/latestdoi/644473852

11

This research paper demonstrates that it is possible to identify similar or identical

parts in an RPA process. The results show that SiDiTeR can identify the same or

similar activities across RPA processes and help the RPA developers or RPA mainte-

nance team identify the activities which are candidates for refactoring.

5 Discussion and Limitations

We have proposed a new method for discovering similarity in RPA processes

(SiDiTeR). SiDiTeR uses an RPA design for the analysis of similar parts of different

processes. This helps to refactor RPA code into reusable components more easily.

The results show that SiDiTeR is able to find candidates among RPA processes for

refactoring. As mentioned in the introduction, this is one of the solutions for overcom-

ing an RPA maintenance trap, as the whole portfolio of RPA bots will then be more

easily governed [16]. To find out which part of an RPA process should be refactored

into components, process similarity techniques can be used.

In the field of process similarity, there has been a decline in the number of new

works published [29]. The use of process equivalence and process similarity tech-

niques in the field of RPA can be a new spark for more research and publications in

the field. With a higher number of RPA automations, there will be a higher demand

for making the automations sustainable and avoiding the RPA maintenance trap. As

seen from the related works, no technique has addressed this topic yet. Thus, this

could be an impulse for using process similarity in another practical application.

We are aware of certain limitations that our approach currently has. One of the

concerns is that SiDiTeR works only with UiPath designs, and the dictionary is made

for UiPath activities. This limitation concerning UiPath designs is easily addressable,

at least partially, and it would be enough to decompose the activity names from the

source code of another platform. The limitation concerning the dictionary is more

complicated, as partial knowledge of the platform is needed to create a similar dic-

tionary. It is likely that the size of the dictionary will be different for different plat-

forms. In certain cases, such as writing vs copying and pasting text, these activities

can be adopted one to one for other platforms. When creating the dictionary for our

study, only activities that had identical or similar resulting actions were used. The

dictionary could be extended to include sequences where the output of the activities is

also identical, but the result achieved is made up of multiple actions such as: clicking

in the UI vs using a keyboard shortcut; or, for example, using the UI instead of using

the API. Experienced programmers are likely to use the most efficient path, but for

junior development or citizen development, inefficient sequences are likely to occur

[17, 27].

SiDiTeR can also raise questions about why we use process similarity techniques

for processes instead of techniques from the computer science field, even though RPA

is software. This is a justified question because there are already techniques for code

refactoring. For example, a systematic literature review from 2020 [4], analyzed 41

techniques concerning automatic software refactoring. But we focused more on pro-

12

cess similarity due to the fact that RPA process (code) can also be analyzed as a pro-

cess. RPA as a process is more understandable to non-technical users, citizen devel-

opers and process owners. The understanding by stakeholders of a process can by

crucial for the additional validation of refactoring of the correct part of a process. The

main advantage of SiDiTeR techniques is that they can be used on the source code of

RPA or also on the process log to analyze the RPA as a process.

Another limitation may be the accuracy of SiDiTeR, where in some cases the activ-

ities are not identical but will still be included, even though they are different process-

es i.e. false positives. Accuracy could be increased by using parameters and incorpo-

rating attribute similarity into SiDiTeR. This approach would then be even more effi-

cient for users who will evaluate the results. There is an opportunity for extending this

research further, for the purpose of identifying the right candidates for refactoring

among RPA processes more precisely.

6 Conclusion

Finding similarity in the RPA domain is very useful, because it can be used for refac-

toring. The refactoring of RPA processes will be one of the crucial components for

future RPA governance, since the same parts of RPA code can be refactored into

components and shared across a portfolio of RPA bots. We have presented a new

approach for detecting identical or similar parts in RPA processes called SiDiTeR.

SiDiTeR is designed with RPAs in mind, and can easily read RPA code or process

logs with nested activities and handle extra activities in processes. It can also deal

with different activities with the same output, which is crucial for complex refactor-

ing. Our approach was tested on 156 RPA processes. The longest match we discov-

ered was with 163 activities across 15 processes and 655 matches among RPA pro-

cesses. These results challenge future researchers to find ways to identify parts of

RPA which could be more precise, and thus allow for a more convenient search

method for suitable components for refactorization.

Acknowledgment: This research was made possible thanks to the Technical Uni-

versity of Liberec and the SGS grant number: SGS-2023-1328. This research was

conducted with the help of Pointee.

References

[1] W.M.P. van der Aalst, A.K.A. de Medeiros, A.J.M.M. Weijters, Process Equivalence:

Comparing Two Process Models Based on Observed Behavior, in: S. Dustdar, J.L. Fia-

deiro, A.P. Sheth (Eds.), Business Process Management, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006: pp. 129–144.

[2] A.K. Alves de Medeiros, W.M.P. van der Aalst, A.J.M.M. Weijters, Quantifying process

equivalence based on observed behavior, Data & Knowledge Engineering. 64 (2008)

55–74.

13

[3] M. Amiri, M. Koupaee, Data-driven business process similarity, IET SOFTWARE. 11

(2017) 309–318.

[4] A.A.B. Baqais, M. Alshayeb, Automatic software refactoring: a systematic literature

review, Software Qual J. 28 (2020) 459–502.

[5] B. Cao, J. Wang, J. Fan, J. Yin, T. Dong, Querying Similar Process Models Based on the

Hungarian Algorithm, IEEE TRANSACTIONS ON SERVICES COMPUTING. 10

(2017) 121–135.

[6] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, J. Mendling, Similarity of business

process models: Metrics and evaluation, Information Systems. 36 (2011) 498–516.

[7] R. Dijkman, M. Dumas, L. García-Bañuelos, Graph Matching Algorithms for Business

Process Model Similarity Search, in: U. Dayal, J. Eder, J. Koehler, H.A. Reijers (Eds.),

Business Process Management, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009:

pp. 48–63.

[8] R. Dijkman, M.L. Rosa, H.A. Reijers, Managing large collections of business process

models—Current techniques and challenges, Computers in Industry. 63 (2012) 91–97.

[9] C. Figueroa, H. Ordonez, J. Corrales, C. Cobos, L. Wives, E. Herrera-Viedma, Improv-

ing business process retrieval using categorization and multimodal search,

KNOWLEDGE-BASED SYSTEMS. 110 (2016) 49–59.

[10] C. Flechsig, F. Anslinger, R. Lasch, Robotic Process Automation in purchasing and

supply management: A multiple case study on potentials, barriers, and implementation,

Journal of Purchasing and Supply Management. 28 (2022) 100718.

[11] M.T. Garcia, M.M. Nunes, M. Fantinato, S.M. Peres, L.H. Thom, BPMN-Sim: A multi-

level structural similarity technique for BPMN process models, Information Systems.

116 (2023) 102211.

[12] K. Huang, Z. Zhou, Y. Han, G. Li, J. Wang, An algorithm for calculating process simi-

larity to cluster open-source process designs, in: H. JIn, Y. Pan, N. Xiao, J. Sun (Eds.),

GRID AND COOPERATIVE COMPUTING GCC 2004 WORKSHOPS,

PROCEEDINGS, 2004: pp. 107–114.

[13] L. Hüller, K.E. Jenß, S. Speh, D. Woelki, M. Völker, M. Weske, Ark Automate — an

Open-Source Platform for Robotic Process Automation, in: Proceedings of the Demon-

stration & Resources Track, Best BPM Dissertation Award, and Doctoral Consortium at

BPM 2021 Co-Located with the 19th International Conference on Business Process

Management, CEUR Workshop Proceedings, Rome Italy, 2021.

[14] J. Jung, J. Bae, Workflow clustering method based on process similarity, in: M. Gavrilo-

va, O. Gervasi, V. Kumar, C. Tan, D. Taniar, A. Lagana, Y. Mun, H. Choo (Eds.),

COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 2,

2006: pp. 379–389.

[15] J. Jung, J. Bae, L. Liu, HIERARCHICAL CLUSTERING OF BUSINESS PROCESS

MODELS, INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING

INFORMATION AND CONTROL. 5 (2009) 4501–4511.

[16] D. Kedziora, E. Penttinen, Governance models for robotic process automation: The case

of Nordea Bank, Journal of Information Technology Teaching Cases. 11 (2021) 20–29.

[17] D. Klimkeit, M. Reihlen, No longer second-class citizens: Redefining organizational

identity as a response to digitalization in accounting shared services, J. Prof. Organ. 9

(2022) 115–138.

14

[18] C. Klinkmuller, I. Weber, Analyzing control flow information to improve the effective-

ness of process model matching techniques, DECISION SUPPORT SYSTEMS. 100

(2017) 6–14.

[19] C. Liu, Q. Zeng, L. Cheng, H. Duan, J. Cheng, Measuring Similarity for Data-Aware

Business Processes, IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND

ENGINEERING. 19 (2022) 1070–1082.

[20] C. Liu, Q. Zeng, H. Duan, S. Gao, C. Zhou, Towards Comprehensive Support for Busi-

ness Process Behavior Similarity Measure, IEICE TRANSACTIONS ON

INFORMATION AND SYSTEMS. E102D (2019) 588–597.

[21] R. Lu, S. Sadiq, G. Governatori, On managing business processes variants, DATA &

KNOWLEDGE ENGINEERING. 68 (2009) 642–664.

[22] S. Montani, G. Leonardi, S. Quaglini, A. Cavallini, G. Micieli, Stroke Unit Network

SUN Collaborat, A knowledge-intensive approach to process similarity calculation,

EXPERT SYSTEMS WITH APPLICATIONS. 42 (2015) 4207–4215.

[23] M. Niemann, M. Siebenhaar, S. Schulte, R. Steinmetz, Comparison and retrieval of

process models using related cluster pairs, COMPUTERS IN INDUSTRY. 63 (2012)

168–180.

[24] F. Niu, C. Li, J. Ge, L. Wen, Z. Li, B. Luo, Measuring Business Process Behavioral

Similarity Based on Token Log Profile, IEEE TRANSACTIONS ON SERVICES

COMPUTING. 15 (2022) 3344–3357.

[25] J. Pei, L. Wen, X. Ye, A. Kumar, Efficient Transition Adjacency Relation Computation

for Process Model Similarity, IEEE TRANSACTIONS ON SERVICES COMPUTING.

15 (2022) 1295–1308.

[26] P. Průcha, Aspect Optimalization of Robotic Process Automation, in: ICPM 2021 Doc-

toral Consortium and Demo Track 2021, CEUR Workshop Proceedings, Eindhoven, The

Netherlands, 2021.

[27] P. Prucha, J. Skrbek, API as Method for Improving Robotic Process Automation, in: A.

Marrella, R. Matulevicius, R. Gabryelczyk, B. Axmann, V.B. Vuksic, W. Gaaloul, M.I.

Stemberger, A. Ko, Q. Lu (Eds.), Business Process Management: Blockchain, Robotic

Process Automation, and Central and Eastern Europe Forum, Springer International

Publishing Ag, Cham, 2022: pp. 260–273.

[28] F. Rybinski, S. Schueler, Process Discovery Analysis for Generating RPA Flowcharts,

in: A. Marrella, R. Matulevicius, R. Gabryelczyk, B. Axmann, V.B. Vuksic, W. Gaaloul,

M.I. Stemberger, A. Ko, Q. Lu (Eds.), Business Process Management: Blockchain, Ro-

botic Process Automation, and Central and Eastern Europe Forum, Springer Internation-

al Publishing Ag, Cham, 2022: pp. 231–245.

[29] A. Schoknecht, T. Thaler, P. Fettke, A. Oberweis, R. Laue, Similarity of Business Pro-

cess Models-A State-of-the-Art Analysis, ACM COMPUTING SURVEYS. 50 (2017).

[30] A. Sohail, A. Haseeb, M. Rehman, D. Dominic, M. Butt, An Intelligent Graph Edit

Distance-Based Approach for Finding Business Process Similarities, CMC-

COMPUTERS MATERIALS & CONTINUA. 69 (2021) 3603–3618.

[31] T. Thaler, A. Schoknecht, P. Fettke, A. Oberweis, R. Laue, A Comparative Analysis of

Business Process Model Similarity Measures, in: M. Dumas, M. Fantinato (Eds.), Busi-

ness Process Management Workshops, Springer International Publishing, Cham, 2017:

pp. 310–322.

15

[32] V. Valero, Strong behavioral similarities in timed-arc Petri nets, APPLIED

MATHEMATICS AND COMPUTATION. 333 (2018) 401–415.

[33] Z. Yan, R. Dijkman, P. Grefen, Fast business process similarity search, DISTRIBUTED

AND PARALLEL DATABASES. 30 (2012) 105–144.

[34] Z. Ye, X. Huang, C. Wu, X. Xue, L. Sun, Synthesis of contracted graph for planar non-

fractionated simple-jointed kinematic chain based on similarity information,

MECHANISM AND MACHINE THEORY. 181 (2023).

[35] Q. Zeng, J. Liu, C. Zhou, C. Liu, H. Duan, A Novel Approach for Business Process

Similarity Measure Based on Role Relation Network Mining, IEEE ACCESS. 8 (2020)

60918–60928.

[36] H. Zha, J. Wang, L. Wen, C. Wang, J. Sun, A workflow net similarity measure based on

transition adjacency relations, COMPUTERS IN INDUSTRY. 61 (2010) 463–471.

[37] C. Zhou, C. Liu, Q. Zeng, Z. Lin, H. Duan, A Comprehensive Process Similarity Meas-

ure Based on Models and Logs, IEEE ACCESS. 7 (2019) 69257–69273.

[38] Robotic Process Automation (RPA) Software Reviews 2023 | Gartner Peer Insights,

(n.d.).

