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Abstract. In 1991 Hébrard introduced a factorization of words that
turned out to be a powerful tool for the investigation of a word’s scattered
factors (also known as (scattered) subwords or subsequences). Based
on this, first Karandikar and Schnoebelen introduced the notion of k-
richness and later on Barker et al. the notion of k-universality. In 2022
Fleischmann et al. presented at DCFS a generalization of the arch fac-
torization by intersecting the arch factorization of a word and its reverse.
While the authors merely used this factorization for the investigation of
shortest absent scattered factors, in this work we investigate this new
α-β-factorization as such. We characterize the famous Simon congruence
of k-universal words in terms of 1-universal words. Moreover, we apply
these results to binary words. In this special case, we obtain a full charac-
terization of the classes and calculate the index of the congruence. Lastly,
we start investigating the ternary case, present a full list of possibilities
for αβα-factors, and characterize their congruence.

1 Introduction

A scattered factor, subsequence, subword or scattered subword of a word w is a
word that is obtained by deleting any number of letters from w while preserving
the order of the remaining letters. For example, oiaoi and cmbntrcs are both
scattered factors of combinatorics. In contrast to a factor, like combinat, a
scattered factor is not necessarily contiguous. Note that a scattered factor v can
occur in different ways inside a word w, for example, ab occurs in aab as aab and
aab as marked by the lines below the letters. The relation of u being a scattered
factor of v is a partial order on words.

In this paper, we focus on the congruence relation ∼k for k ∈ N0 which
is known as Simon’s congruence [22]. For two words, we have u ∼k v iff they
share all scattered factors up to length k. Unions of the congruence classes of
this relation are used to form the piecewise testable languages (first studied
by Simon [22]), which are a subclass of the regular languages (they are even
subregular).

A long-standing open question, posed by Sakarovitch and Simon [21], is the
exact structure of the congruence classes of ∼k and the index of the congruence
relation itself. Two existing results include a characterization of the congruence
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in terms of a special common upper bound of two words [23, Lemma 6], as well
as a characterization of the (not unique) shortest elements of the congruence
classes [21, Theorem 6.2.9] and [22,4,1]. The index of the relation is described
asymptotically by Karandikar et al. [12]. Currently, no exact formula is known.
One approach for studying scattered factors in words is based on the notion
of scattered factor universality. A word w is called ℓ-universal if it contains
all words of length ℓ over a given alphabet as scattered factors. For instance,
the word alfalfa3 is 2-universal since it contains all words of length two over
the alphabet {a, l, f} as scattered factors. Barker et al. and Fleischmann et
al. [1,5] study the universality of words, as well as how the universality of a word
changes when considering repetitions of a word. Fleischmann et al. [6] investigate
the classes of Simon’s congruence separated by the number of shortest absent
scattered factors, characterize the classes for arbitrary alphabets for some fixed
numbers of shortest absent scattered factors and give explicit formulas for these
subsets. The shortest absent scattered factors of alfalfa are fff, ffl lll, and
fll. A main tool in this line of research is a newly introduced factorization,
known as the α-β-factorization [6] which is based on the arch factorization by
Hébrard [9]. The arch factorization factorizes a word into factors of minimal
length containing the complete alphabet. The α-β-factorization takes also the
arch factorization of the reversed word into account. Kosche et al. [16] implicitly
used this factorization to determine shortest absent scattered factors in words.
In this paper, we study this factorization from a purely combinatorial point of
view. The most common algorithmic problems regarding Simon’s congruence
are SimK (testing whether two words u, v are congruent for a fixed k) and
MaxSimK (the optimization problem of finding the largest k such that they
are congruent). The former was approached by finding the (lexicographical least
element of the) minimal elements of the congruence classes of u and v. Results
regarding normal forms and the equation pwq ∼k r for given words p, q, r can
be found in [20,17]. The computation of the normal form was improved first
by Fleischer et al. [4] and later by Barker et al. [1]. The latter was approached
in the binary case by Hébrard [9], and was solved in linear time using a new
approach by Gawrychowski et al. [8]. A new perspective on ∼k was recently
given by Sungmin Kim et al. [14,15] when investigating the congruence’s closure
and pattern matching w.r.t. ∼k.

Our Contribution. We investigate the α-β-factorization as an object of inde-
pendent interest and give necessary and sufficient conditions for the congruence
of words in terms of their factors. We characterize ∼k in terms of 1-universal
words through their αβα-factors. We use these results to characterize the con-
gruence classes of binary words and their cardinality, as well as to calculate the
index in this special case. Moreover, we give a short and conceptually straight-
forward algorithm for MaxSimK for binary words. Lastly, we start to transfer
the previous results to the ternary alphabet.

Structure of the Work. First, in Section 2 we establish basic definitions and
notation. In Section 3, we give our results regarding the α-β-factorization for

3 Alfalfa (Medicago sativa) is a plant whose name means horse food in Old Persian.
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arbitrary alphabets, including the characterization of the congruence of words
w.r.t. ∼k in terms of their αβα-factors. Second, in Section 4, we present our
results regarding binary words. We characterize the congruence classes of binary
words in terms of their α- and β-factors, and apply them to calculate the index
of ∼k in this special case. Third, in Section 5, we consider a ternary alphabet
and investigate the cases for the β-factors. Last, in Section 6, we conclude and
give ideas for further research.

2 Preliminaries

We set N := {1, 2, 3, . . .} and N0 := {0} ∪ N as well as [m] := {1, . . . ,m} and
[m]0 := {0} ∪ [m]. We denote disjoint unions by ⊔. If there exists a bijection
between two sets A,B, then we write A ∼= B. An alphabet is a finite set Σ whose
elements are called letters. An alphabet of cardinality i ∈ N is abbreviated by
Σi. A word w is a finite sequence of letters from Σ where w[i] denotes the ith

letter of w. The set of all words over the alphabet Σ is denoted by Σ∗ and the
empty word by ε. Set Σ+ := Σ∗ \ {ε}. The length |w| of w is the number of
letters in w, i.e., |ε| = 0. We denote the set of all words of length k ∈ N0 by
Σk and set Σ≤k := {w ∈ Σ∗| |w| ≤ k}. Set alph(w) := {w[i] ∈ Σ | i ∈ [|w|]}.
Set |w|a := |{i ∈ [|w|] | w[i] = a}| for all a ∈ Σ. A word u ∈ Σ∗ is called factor
of w ∈ Σ∗ if there exist x, y ∈ Σ∗ with w = xuy. In the case that x = ε, u is
called prefix of w and suffix if y = ε. The factor of w from its ith letter to its jth

letter is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For j < i we define w[i..j] := ε.
If w = xy we write x−1w for y and wy−1 for x. For u ∈ Σ∗ we set u0 := ε and
inductively uℓ := uuℓ−1 for all ℓ ∈ N. For w ∈ Σ∗ define wR as w[|w|] · · ·w[1].
For more background information on combinatorics on words see [18].

Now, we introduce the main notion of our work, the scattered factors also
known as (scattered) subwords or subsequence (also cf. [21]).

Definition 1. A word u ∈ Σ∗ of length n ∈ N0 is called a scattered factor of
w ∈ Σ∗ if there exist v0, . . . , vn ∈ Σ∗ with w = v0u[1]v1 · · · vn−1u[n]vn, denoted
by u � w. Let ScatFact(w) := {v ∈ Σ∗ | v � w} as well as ScatFactk(w) :=
ScatFact(w) ∩Σk and ScatFact≤k(w) := ScatFact(w) ∩Σ≤k.

For instance, we have and � agenda but nada 6� agenda. For comparing
words w.r.t. their scattered factors, Simon introduced a congruence relation
nowadays known as Simon’s congruence [22]. Two words are called Simon k-
congruent, if they have the same set of scattered factors up to length k. We refer
to this k as the level of the congruence. This set is the full k-spectrum of a word,
whereas the k-spectrum only contains all scattered factors of exactly length k.

Definition 2. Let k ∈ N. Two words u, v ∈ Σ∗ are called Simon k-congruent
(u ∼k v) iff ScatFact≤k(u) = ScatFact≤k(v). Let [u]∼k

denote the congruence
class of u w.r.t. ∼k.

For instance, over Σ = {a, b}, the words abaaba and baab are Simon 2-
congruent since both contain each all words up to length 2 as scattered factors.



On the other hand, they are not Simon 3-congruent since we have aaa � abaaba

but aaa 6� baab.
Starting in [12,13] and [11] special k-spectra were investigated in the context

of piecewise testable languages: the rich resp. k-rich words. This work was pur-
sued from the perspective of the universality problem for languages in [1,3,8,5]
with the new notion of k-universal words.

Definition 3. A word w ∈ Σ∗ is called k-universal w.r.t. Σ if ScatFactk(w) =
Σk. The maximal k such that w is k-universal is denoted by ιΣ(w) and called
w’s universality index.

Remark 4. If we investigate a single word w ∈ Σ∗, we assume Σ = alph(w)
implicitly and omit the Σ as index of ι.

In [6] the notion of universality was extended to m-nearly k-universal words,
which are words where exactly m scattered factors of length k are absent, i.e.,
| ScatFactk(w)| = |Σ|k −m. In the last section of their paper the authors intro-
duce a factorization of words based on the arch factorization (cf. [9]) in order to
characterize the 1-nearly k-universal words with ι(w) = k−1. This work is closely
related to the algorithmic investigation of shortest absent scattered factors [8].
Therefore, we introduce first the arch factorization and based on this the α-β-
factorization from [6]. An arch is a factor of minimal length (when read from left
to right) containing the whole alphabet. Consider the word w = abaccaabca.
This leads to the arch factorization (abac) · (caab) · ca where the arches are
visualized by the brackets.

Definition 5. For a word w ∈ Σ∗ the arch factorization is given by w =:
ar1(w) · · · ark(w) re(w) for k ∈ N0 with alph(ari(w)) = Σ for all i ∈ [k], the last
letter of ari(w) occurs exactly once in ari(w) for all i ∈ [k], and alph(re(w)) ⊂ Σ.
The words ari(w) are called arches of w and re(w) is the rest of w. Define the
modus of w as m(w) := ar1(w)[| ar1(w)|] · · · ark(w)[| ark(w)|] ∈ Σk. For abbrevi-
ation let ari..j(w) denote the concatenation from the ith arch to the jth arch.

The following remark is a direct consequence of the combination of the k-
universality and the arch factorization.

Remark 6. Let w,w′ ∈ Σ∗ such that w ∼k w′ for some k ∈ N0. Then either both
w,w′ have k or more arches or they both have less than k and the same number
of arches. Moreover, we have ι(w) = k iff w has exactly k arches.

A generalization of the arch factorization was introduced in [6] inspired by
[16]. In this factorization not only the arch factorization of a word w but also
the one of wR is taken into consideration. If both arch factorisations, i.e., the
one of w and the one of wR are considered simultaneously, we get overlaps of the
arches and special parts which start at a modus letter of a reverse arch and end
in a modus letter of an arch. For better readability, we use a specific notation
for the arch factorisation of wR where we read the parts from left to right: let
↼ari(w) := (arι(w)−i+1(w

R))R the ith reverse arch, let ↼re(w) := (re(wR))R the
reverse rest, and define the reverse modus ↼m(w) as m(wR)R.



Definition 7. For w ∈ Σ∗ define w’s α-β-factorization (cf. Figure 1) by w =:
α0β1α1 · · ·αι(w)−1βι(w)αι(w) with ari(w) = αi−1βi and ↼ari(w) = βiαi for all
i ∈ [ι(w)], ↼re(w) = α0, as well as re(w) = αι(w). Define corei := ε if |βi| ∈ {1, 2}
and corei = βi[2..|βi| − 1] otherwise, i.e., as the βi without the associated letters
of the modus and reverse modus.

For example, consider w = bakebananacake ∈ {a, b, c, k, e}∗. We get ar1(w) =
bakebananac, re(w) = ake and ↼ar1(w) = bananacake, ↼re(w) = bake. Thus, we
have α0 = bake, β1 = bananac and α1 = ake. Moreover, we have m(w) = c and
↼m(w) = b. This leads to core1 = anana.

re(w)ar1(w) ar2(w) ar3(w) ar4(w)

↼re(w) ↼ar1(w) ↼ar2(w) ↼ar3(w) ↼ar4(w)

α0w α1 α2 α3 α4β1 β2 β3 β4

Fig. 1. α-β-Factorization of a word w with 4 arches.

Remark 8. In contrast to the arch factorization, the α-β-factorization is left-
right-symmetric. Note that the ith reverse arch always starts inside the ith arch
since otherwise an arch or the rest would contain at least two reverse arches or
a complete arch and thus the arch would contain the complete alphabet more
than once or once.

For better readability, we do not parametrize the αi and βi by w. Instead,
we denote the factors according to the word’s name, i.e. α̃iβ̃i+1 is an arch of w̃.

Remark 9. Since | alph(αi)| ≤ |Σ| − 1 we can build the arch factorization of αi

w.r.t. some Ω with alph(αi) ⊆ Ω ∈
(

Σ
|Σ|−1

)
. This yields the same factorization

for all Ω because either alph(αi) = Ω or alph(αi) ⊂ Ω and thus re(αi) = αi.

Last, we recall three lemmata regarding Simon’s congruence which we need
for our results. The first lemma shows that if we prepend or append a sufficiently
universal word to two congruent words each, we obtain congruent words with an
increased level of congruence.

Lemma 10 ([12, Lemma 4.1][13, Lemma 3.5]). Let w, w̃ ∈ Σ∗ such that
w ∼k w̃, then for all u, v ∈ Σ∗ we have uwv ∼ι(u)+k+ι(v) uw̃v.

The next lemma characterizes the omittance of suffixes when considering
words up to ∼k.

Lemma 11 ([23, Lemma 3]). Let u, v ∈ Σ+ and x ∈ Σ. Then, uv ∼k u
iff there exists a factorization u = u1u2 · · ·uk such that alph(u1) ⊇ alph(u2) ⊇
. . . ⊇ alph(uk) ⊇ alph(v).



The last lemma characterizes letters which can be omitted when we consider
words up to ∼k. The last two of its conditions follow from the previous lemma.

Lemma 12 ([23, Lemma 4]). Let u, v ∈ Σ∗ and x ∈ Σ. Then, uv ∼k uxv iff
there exist p, p′ ∈ N0 with p+ p′ ≥ k and ux ∼p u and xv ∼p′ v.

3 α-β-Factorization

In this section, we investigate the α-β-factorization based on results of [12] in
the relatively new light of factorizing an arch into an α and a β part. The main
result states that it suffices to look at 1-universal words in order to gain the
information about the congruence classes of ∼k.

Remark 13. By the left-right symmetry of the α-β-factorisation, it suffices to
prove most of the claims only for one direction (reading the word from left to
right) and the other direction (reading the word from right to left) follows imme-
diately. Thus, these claims are only given for one direction and it is not always
mentioned explicitly that the analogous claim holds for the other direction.

Our first lemma shows that cutting of ℓ arches from two k-congruent words
each, leads to (k−ℓ)-congruence. Here, we use the α-β-factorization’s symmetry.

Lemma 14. Let w, w̃ ∈ Σ∗ with w ∼k w̃ and ι(w) = ι(w̃) < k. Then we have
αiβi+1αi+1 · · ·αj ∼k−ι(w)+j−i α̃iβ̃i+1α̃i+1 · · · α̃j for all 0 ≤ i ≤ j ≤ ι(w).

Proof. By symmetry, it suffices to show one inclusion of the (k− 1)-spectra. Let
v � ar−1

1 (w) · w = ar2..ι(w)(w) re(w) with |v| ≤ k − 1 and m1 := m(w̃)[1]. Then
m1 · v � w because m1 � ar1(w). Since w ∼k w̃, we have m1 · v � w̃ and therefore
v � ar−1

1 (w̃) · w̃. This proves the first claim.

w

w̃ m1

∼
k

ar1(w)

ar1(w̃)

ar2(w)

ar2(w̃)

m1 � v �

ar3..m(w)

ar3..m(w̃)

The second claim follows by left-right-symmetry and induction by repeatedly
cutting αβ-pairs from the left and βα-pairs form the right. ⊓⊔

The following proposition shows that two words having exactly the same β-
factors are k-congruent iff the corresponding α-factors are congruent at a smaller
level. The proof uses a similar idea to the one presented by Karandikar et al. [12,
Lemma 4.2].



Proposition 15. For all w, w̃ ∈ Σ∗ with m := ι(w) = ι(w̃) < k such that
βi = β̃i for all i ∈ [m], we have w ∼k w̃ iff αi ∼k−m α̃i for all i ∈ [m]0.

Proof. By Lemma 14, we directly obtain one direction. Therefore, let w, w̃ ∈ Σ∗

such that βi = β̃i for all i ∈ [m] and αi ∼k−m α̃i for all i ∈ [m]0. We obtain by
Lemma 10

α̃0β1α̃1 · · · α̃i−1βiαiβi+1 · · ·βι(w)αι(w) ∼k α̃0β1α̃1 · · · α̃i−1βiα̃iβi+1 · · ·βι(w)αι(w)

for all i ∈ [m]0. Thus, by transitivity of ∼k, we have w ∼k w̃. ⊓⊔

As an immediate corollary, we obtain the following statement which allows
us to normalize the α-factors when proving congruence of words.

Corollary 16. Let w, w̃ ∈ Σ∗ with m := ι(w) = ι(w̃) < k, then w ∼k w̃ iff
αi ∼k−m α̃i for all i ∈ [m]0 and for w′ := α0β̃1α1 · · · β̃mαm we have w ∼k w′.

Proof. Note that, w′ is in α-β-factorization because the exchanged αi are equiv-
alent, and thus they have the same alphabets. Assume w ∼k w̃. By Lemma 14
we have αi ∼k−m α̃i. Define w′ as above. We have w′ ∼k w̃ by Proposition 15
and therefore, by transitivity w ∼k w′.

Now assume the converse. By α′
i = αi ∼k−m α̃i and β′

j = β̃j for all i ∈
[m]0, j ∈ [m], we obtain by Proposition 15 that w̃ ∼k w′. By the assumption
and transitivity, we obtain w ∼k w̃. ⊓⊔

Next, we show the central result for this section. We can characterize the con-
gruence of words by the congruence of their αβα-factors. Therefore, it suffices
to consider 1-universal words in general. Again, the proof uses Lemma 10 and is
inspired by Karandikar et al. [12, Lemma 4.2] and repeatedly exchanges factors
up to k-Simon congruence.

Theorem 17. Let w, w̃ ∈ Σ∗ with m := ι(w) = ι(w̃) < k. Then, w ∼k w̃ iff
αi−1βiαi ∼k−m+1 α̃i−1β̃iα̃i for all i ∈ [m].

Proof. Assume w ∼k w̃, then the congruences follow directly by Lemma 14 for
i, j ∈ N0 with |j − i| = 1.

Assume αi−1βiαi ∼k−m+1 α̃i−1β̃iα̃i for all i ∈ [m]. By Lemma 14, we obtain
that αi ∼k−m α̃i for all i ∈ [m]0. By Corollary 16, we have αi−1βiαi ∼k−m+1

αi−1β̃iαi for all i ∈ [m], and it suffices to show that w ∼k α0β̃1α1 · · ·βmαm.
Now, we have by repeated applications of Lemma 10 that

α0β1α1 · β2α2 · · ·βmαm ∼k α0β̃1α1 · β2α2 · · ·βmαm ∼k . . . ∼k w̃. ⊓⊔

In the light of Theorem 17, in the following, we consider some special cases of
these triples w.r.t. the alphabet of both involved α. Hence, let w, w̃ ∈ Σ∗ with
1 = ι(w) = ι(w̃).

Proposition 18. Let α0 = α1 = α̃0 = α̃1 = ε. Then w ∼k w̃ iff k = 1 or k ≥ 2,
m(w) = m(w̃), ↼m(w) = ↼m(w̃), and core1 ∼k c̃ore1.



Proof. If k = 1, the claim follows directly. If k ≥ 2, m(w) = m(w̃), ↼m(w) = ↼m(w̃)
and w[2..|w| − 1] = core1 ∼k c̃ore1 = w̃[2..|w̃| − 1], then w ∼k w̃ follows directly
from the fact that ∼k is a congruence.

Assume w ∼k w̃ and k ≥ 2. Suppose m(w) 6= m(w̃). Then m(w̃)m(w) �
w because alph(w) = Σ. By w ∼k w̃, we get m(w̃)m(w) � w̃ = ar1(w̃), a
contradiction. Therefore, m(w) = m(w̃) and by symmetry ↼m(w) = ↼m(w̃). Now
the claim follows because core1 = πΩ(w) ∼k πΩ(w̃) = c̃ore1 where Ω = Σ \
{m(w), ↼m(w)} = Σ \ {m(w̃), ↼m(w̃)}. ⊓⊔

Proposition 19. Let alph(α0) = alph(α1) = alph(α̃0) = alph(α̃1) ∈
(

Σ

|Σ|−1

)
.

We have w ∼k w̃ iff αi ∼k−1 α̃i for all i ∈ [1]0.

Proof. In both directions, we have β = β̃ ∈ Σ by uniqueness of their first and
last letter (which are identical). The claim follows from Proposition 15. ⊓⊔

In the last two propositions, we considered special cases of congruence classes,
where all words in such a congruence class have not only the same modus but
also the same reverse modus. This is not necessarily always the case witnessed
by w = ababeabab · abecd · cdcdcd ∼4 ababeabab · baedc · cdcdcd = w̃ with
m(w) = d 6= c = m(w̃) and ↼m(w) = a 6= b = ↼m(w̃). This case occurs if one of the
α satisfies α0x ∼k−1 α0 and the alphabet of α1 factor is missing at least x for
all x ∈ {↼m(w̃) | w̃ ∈ [w]∼k

}. The conditions for m(w) are analogous. In the last
proposition of this section, we show a necessary condition for the α-factors of
words which are congruent to words with a different modus. The proof uses the
same factorization as the proof of Lemma 11 (cf. [23, Lemma 3]). By identifying
permutable factors, similar ideas also appear when characterizing the shortest
elements in congruence classes (cf. [21, Theorem 6.2.9][4, Proposition 6]).

Proposition 20. Let w ∈ Σ∗ with ι(w) = 1, k ∈ N, and
↼

M := {↼m(w̃)[1] | w̃ ∈
[w]∼k

}, i.e., we capture all modus letters of words which are k-congruent to w.
If |

↼

M | ≥ 2 then there exists a factorization α0 =: u1 · · ·uk−1 with alph(u1) ⊇
. . . ⊇ alph(uk−1) ⊇

↼

M.

Proof. Let w,
↼

M be as above and assume |
↼

M | ≥ 2. We define the following
factorization inductively. Let z ∈ Σ∗. If

↼

M 6⊆ alph(z), the factorization of z
is v1 := z. Otherwise, set v1 as the shortest prefix of z containing

↼

M. Note
that the last letter of v1 is unique. By induction on the length z, there exists a
factorization v2 · · · vn of v−1

1 z. The factorisation of z is given by v1v2 · · · vn. Note
that the last letters of v1, . . . , vn−1 are unique and

↼

M 6⊆ alph(vn).
By factorizing α0 this way, we obtain a factorization v1v2 · · · vn. Note that we

have alph(vi) ⊇
↼

M exactly for i ∈ [n− 1]. If n ≥ k, define ui := vi for i ∈ [k− 2]
and uk−1 := vk−1 · · · vn, and the claim follows.

Therefore, suppose n < k. Define m := v1[|v1|] · · · vn−1[|vn−1|] ∈ Σ≤k−2 as
the unique last letters of v1, . . . , vn−1. Choose x, y ∈

↼

M distinct. Then there exist
wx, wy ∈ [w]∼k

with ↼m(wx) = x, ↼m(wy) = y and assume by Proposition 15 that
they have the same α-factors as w. By definition, mxy � wx. Since wx ∼k wy,
we have mxy � wy and thus mx � α0 = v1 · · · vn and thus x � vn. Because
y, x were chosen arbitrarily, we have

↼

M ⊆ alph(vn), a contradiction against the
construction of vn. This implies n ≥ k. ⊓⊔



4 The Binary Case of Simon’s Congruence

In this section, we apply our previous results to the special case of the binary
alphabet. Here, for x ∈ Σ, let x be the well defined other letter of Σ. First, we
characterize the congruence of binary words in terms of α- and β-factors. We
show that in this scenario in each congruence class of a word w with at most
k arches, we have |{↼m(w̃) | w̃ ∈ [w]∼k

}| = 1 (cf. Proposition 20). We present
results such that a full characterization of the structure of the classes in the
binary case is given, implying as a byproduct a simple algorithm for MaxSimK
in this special case (cf. [9]). Moreover, we can calculate |Σ∗

2/∼k|.

Proposition 21. For all w ∈ Σ∗
2 , we have for all i ∈ [ι(w)]

1. βi ∈ {a, b, ab, ba},
2. if βi = x, then αi−1, αi ∈ x+ with x ∈ Σ2,
3. if βi = xx, then αi−1 ∈ x∗ and αi ∈ x∗ with x ∈ Σ2.

Proof. By definition, the first and last letter of βi are unique. Therefore, if βi[1] =
βi[|βi|] we have |βi| = 1. Furthermore, if βi[1] 6= βi[|βi|] we have |βi| = 2 because
|Σ2| = 2.

Because alph(αi) ⊂ Σ2, the αi are unary words for all i ∈ [m]0. By symmetry,
we only have to show the claim for αi−1. The restrictions on the alphabet of
αi−1 follow directly from ari(w) = αi−1βi and the uniqueness of the last letter.
Furthermore, if βi = x ∈ Σ2 then αi−1 6= ε because x, x � ari(w) = αi−1βi. ⊓⊔

Thus, we get immediately that the αβα-factors are of the following forms:
aℓ1+1baℓ2+1, bℓ1+1abℓ2+1, bℓ3baaℓ4 , or aℓ3abbℓ4 for some ℓ1, ℓ2, ℓ3, ℓ4 ∈ N0. The
following lemma shows that in the binary case the k-congruence of two words
with identical universality less than k leads to the same modi and same β.

Lemma 22. Let w,w′ ∈ Σ∗
2 with w ∼k w′ and m := ι(w) = ι(w′) < k, then

m(w) = m(w′) and thus, βi = β′
i for all i ∈ [m].

Proof. By Theorem 17, without loss of generality, we only consider m = 1 < k.
Furthermore, it suffices to show that m(w) = m(w′) because then symmetry
implies ↼m(w) = ↼m(w′), and m(w) and ↼m(w) fully determine the β factors by
Proposition 21.

We know that the α-factors are unary or empty by Proposition 21. Lemma 14
implies alph(αi) = alph(α′

i) for i ∈ [1]0 since we have w ∼k w′. If alph(α0) 6= ∅,
then the arches α0β1 and α′

0β
′
1 start with the same letter and thus m(w) =

m(w′).
For the second case, assume α0 = α′

0 = ε. If β1 = β′
1, then in particular

m(w) = m(w′), and the claim follows. Thus, suppose β1 = yy and β′
1 = yy for

some y ∈ Σ2 by Proposition 21. Thus, α1 ∈ y∗ and α′
1 ∈ y∗. Hence, α1 = α′

1 = ε
because y /∈ alph(α1) = alph(α′

1) 6∋ y. This contradicts w ∼k w′ because w =
yy 6∼2 yy = w′. ⊓⊔

Combining the Lemmata 22, 14 and Proposition 15 yields the following char-
acterization of ∼k for binary words in terms of unary words and factors.



Theorem 23. Let w,w′ ∈ Σ∗
2 such that m := ι(w) = ι(w′) < k, then w ∼k w′

iff βi = β′
i for all i ∈ [m] and αi ∼k−m α′

i for all i ∈ [m]0.

Using the characterization, we can also give an O(|u|+|v|)-time algorithm for
finding the largest k with u ∼k v for u, v ∈ Σ∗

2 . This special case was originally
solved by Hébrard [9] just considering arches. Recently, a linear time algorithm
for arbitrary alphabets was presented by Gawrychowski et al. [8]. Nonetheless,
we give Algorithm 1, as it is a conceptually simple algorithm exploiting that αi

factors can be treated similar to re(w) in the arch factorization.

Algorithm 1: MaxSimK for binary words

Input: u, ũ ∈ Σ∗

2

Result: if u = u′ then ∞ and otherwise the maximum k such that u ∼k ũ

1 (α0, β1, . . . , αι(u)) := α-β-Fact(u); // w.r.t. Σ2

2 (α̃0, β̃1, . . . , α̃ι(ũ)) := α-β-Fact(ũ);

3 if ι(u) 6= ι(ũ)∨ alph(u) 6= alph(ũ) then // 2nd condition for u = xi, ũ = xj

4 return min(ι(u), ι(ũ));

5 else if β1 = β̃1 ∧ · · · ∧ βι(u) = β̃ι(ũ) then

6 for i ∈ [ι(u)]0 do // solve MaxSimK for unary α pairs

7 ei := if |αi| = |α̃i| then ∞ else min(|αi|, |α̃i|);
8 return ι(u) + min{ei | i ∈ [ι(u)]0};

9 else

10 return ι(u);

We can use Theorem 23 to answer a number of questions regarding the
structure of the congruence classes of Σ∗

2/∼k. For instance, for each w with
|[w]∼k

| = ∞, we have xk � w for some x ∈ Σ by the pigeonhole-principle. The
contrary is not true in general witnessed by the word v = bbabb with respect
to ∼4. Its scattered factors of length four are bbab, babb and bbbb. Therefore,
each word in its class contains exactly one a (aa 6� v but a � v is), at least
two b succeeding and preceding the a (bba, abb � v) but not more than two b

(bbba, abbb 6� v). Therefore, bbabb is the only word in this class, but it contains
b4. By a famous result of Simon [21, Corollary 6.2.8], all congruence classes of ∼k

are either infinite or singletons. In the binary case, we can give a straightforward
characterization of the finite/singleton and infinite classes.

Theorem 24. Let w ∈ Σ∗
2 , then |[w]∼k

| < ∞. In particular, we have |[w]∼k
| = 1

iff ι(w) < k and |αi| < k − ι(w) for all i ∈ [ι(w)]0.

Proof. Let w ∈ Σ∗
2 with ι(w) < k, |αi| ≤ k − ι(w) for all i ∈ [ι(w)]0, and

w̃ ∈ [w]∼k
. By Remark 6, we have ι(w) = ι(w̃) = m. By Theorem 23, we get

βi = β̃i for all i ∈ [ι(w)] and [αi]∼k−m
= [α̃i]∼k−m

for all i ∈ [ι(w)]0. Additionally,
we have by Proposition 21 and the fact that for u, v ∈ Σ∗

1 we have u ∼ℓ v, if
and only if, min(|u|, ℓ) = min(|v|, ℓ) exactly [αi]∼k−m

= [α̃i]∼k−m
= {x|αi|} for

all i ∈ [ι(w)]0. Thus, |[w]∼k
| = 1.



Table 1. Index of ∼k restricted to binary words with a fixed number of arches

Number of Arches

0 1 2 3 4 5 6 7 m

S
ca
t
F
a
ct

L
en

g
th

1 3 1
2 5 10 1
3 7 26 34 1
4 9 50 136 116 1
5 11 82 358 712 396 1
6 13 122 748 2 564 3 728 1 352 1
7 15 170 1 354 6 824 18 364 19 520 4 616 1

k 2k + 1

Now let w ∈ Σ∗
2 such that ι(w) ≥ k or |αi| ≥ k− ι(w) for some i ∈ [ι(w)]0. If

ι(w) ≥ k, then Σ≤k
2 = ScatFact≤k(w) ⊆ ScatFact≤k(wv) and thus wv ∈ [w]∼k

for all v ∈ Σ∗
2 . This implies |[w]∼k

| 6= 1. On the other hand, if ι(w) < k and
there exists i ∈ [ι(w)]0 with |αi| ≥ k−ι(w) ≥ 1, then αi ∼k−ι(w) α

j
i for all j ∈ N.

Thus, we have α0β1α1 · · ·βiα
j
iβi+1 · · ·αι(w)−1βι(w)αι(w) ∼k w for all j ∈ N and

we have again |[w]∼k
| 6= 1. ⊓⊔

In the following, we will use Theorem 23 to derive a formula for the precise
value of |Σ∗

2/∼k|. Note that in the unary case, we have |Σ∗
1/∼k| = k+1 because

the empty word has its own class. By Remark 6, we know that there exists exactly
one class w.r.t. ∼k of words with k arches. We can consider the other classes
by the common number of arches of their elements. By Theorem 23, we can
count classes based on the valid combinations of β-factors and number of classes
for each α-factors. Because the α are unary, we already know their number of
classes. These valid combinations are exactly given by Proposition 21. The first
values for the number of classes separated by the number of arches are given in
Table 1.

Theorem 25. The number of congruence classes of Σ∗
2/∼k of words with m < k

arches (the entries of Table 1) is given by

∥∥∥∥∥∥



k −m k −m k −m

1 2 1
k −m k −m k −m



m

·



k −m

1
k −m



∥∥∥∥∥∥
1

= cmk

where c−1
k

:= 1, c0k := 2k+1, and cmk := 2 · (k−m+1) · cm−1
k−1 − 2 · (k−m) · cm−2

k−2

where ‖·‖1 denotes the 1-norm.

Proof. First, we show that the matrix representation produces the correct values,
then we show the characterization as recurrence. Note that k − m is fixed on
the diagonals of Table 1. Therefore, increasing both, increases just the exponent
of the matrix. We show that the first column is correct and then proceed by
induction along the diagonals. Denote the above matrix by Dk,m.



Let k ∈ N0 and w ∈ Σ∗ with m := ι(w) < k. For i ∈ [m]0, all elements
v ∈ [w]∼k

have k−m congruent αi by Theorem 23. By definition, their alphabets
are proper subsets of Σ2. Therefore, they are either empty or non-empty unary
words consisting of just a or b. We separate the choice of αi into these three
cases. Let M ℓ

ε := {[w] ∈ Σ∗
2/∼(k−m)+ℓ | ι(w) = ℓ, α0 ∼k−m ε} and M ℓ

x :=
{[w] ∈ Σ∗

2/∼(k−m)+ℓ | ι(w) = ℓ, α0 ∼k−m xr, r ∈ N} for x ∈ Σ2 be sets of
ℓ+(k−m) congruence classes of words with ℓ arches, separated by the alphabet
of α0. Denote by ek,m := (|M0

a |, |M
0
ε |, |M

0
b |)

⊺ = (k −m, 1, k −m)⊺ the number
of classes for zero arches. We show ‖Dℓ

k,m · ek,m‖1 = (|M ℓ
a |, |M

ℓ
ε |, |M

ℓ
b |)

⊺. There
are four choices for βi which are given by Proposition 21. Each choice of βi+1

depends on the preceding αi and limits the choices for the succeeding αi+1.
These are given by Proposition 21, and correspond to the entries of the matrix
because for ℓ ≥ 1 we have

M ℓ
ε = {[w]∼(k−m)+ℓ

∈ M ℓ
ε | x ∈ Σ2, β1(w) = xx, α1(w) ∼k−m ε}

⊔ {[w]∼(k−m)+ℓ
∈ M ℓ

ε | x ∈ Σ2, β1(w) = xx, α1(w) ∼k−m xr, r ∈ N}

∼= {ab, ba} ×M ℓ−1
ε ⊔ {ab} ×M ℓ−1

b ⊔ {ba} ×M ℓ−1
a

M ℓ
x = {[w]∼(k−m)+ℓ

∈ M ℓ
x | β1(w) = x}

⊔ {[w]∼(k−m)+ℓ
∈ M ℓ

x | β1(w) = xx, α1(w) ∼k−m xr, r ∈ N}

⊔ {[w]∼(k−m)+ℓ
∈ M ℓ

x | β1(w) = xx, α1(w) ∼k−m ε}

∼= [k −m]×
(
{x} ×M ℓ−1

x ⊔ {xx} ×M ℓ−1
x ⊔ {xx} ×M ℓ−1

ε

)
.

Therefore, each multiplication with the matrix increases the number ℓ of arches
by one. Thus, for m = ℓ we have the desired value as Mm

ε and Mm
x are sets of k

congruence classes with m arches. Therefore, ‖Dm
k,m · ek,m‖1 corresponds to the

number of classes with respect to ∼k of words with m arches.
The equivalence of the two formulas is left to show. The characteristic poly-

nomial of Dk,m is given by χDk,m
= det(Dk,m − λI) = −λ3 + 2λ2 + 2(k −

m)λ2 − 2(k − m)λ. By the Cayley-Hamilton theorem [7], Dk,m is a root of its
characteristic polynomial and thus satisfies the recurrence

Dℓ+2
k,m = 2 ·Dℓ+1

k,m + 2 · (k −m) ·Dℓ+1
k,m − 2 · (k −m) ·Dℓ

k,m

= 2 · (k −m+ 1) ·Dℓ+1
k,m − 2 · (k −m) ·Dℓ

k,m

for ℓ ∈ N. Note that ek,m = ek+ℓ,m+ℓ for all ℓ ∈ N0. Now we conclude by
induction that

∥∥Dm+2
k+2,m+2 · ek+2,m+2

∥∥
1
=

∥∥Dm+2
k,m · ek,m

∥∥
1

=
∥∥(2 · (k −m+ 1) ·Dm+1

k,m − 2 · (k −m) ·Dm
k,m) · ek,m

∥∥
1

= 2 · (k −m+ 1) ·
∥∥Dm+1

k,m · ek,m
∥∥
1
− 2 · (k −m) ·

∥∥Dm
k,m · ek,m

∥∥
1

= 2 · (k −m+ 1) · cm+1
k+1 − 2 · (k −m) · cmk = cm+2

k+2 ,

because ‖u±v‖1 = ‖u‖1±‖v‖1 for all u = (ui), v = (vi) ∈ Rn for which ujvj ≥ 0
for all j ∈ [n]. ⊓⊔



Table 2. Number of classes of perfect universal binary words restricted to a fixed
number of arches

Number of Arches

0 1 2 3 4 5 6 7 8 m

S
ca
t
F
a
ct

L
en

g
th

2 1 4 1
3 1 6 14 1
4 1 8 32 48 1
5 1 10 58 168 164 1
6 1 12 92 416 880 560 1
7 1 14 134 840 2 980 4 608 1 912 1
8 1 16 184 1 488 7 664 21 344 24 344 6 528 1

k 1 2k

Remark 26. Note that by setting ∆ := k−m, the family of recurrences depends
only on one variable ∆, because k −m = (k − ℓ)− (m− ℓ) holds for all ℓ ∈ N.

Remark 27. Some sequences in Table 1 are known sequences. The first and sec-
ond diagonal are A007052 and A018903 resp. in [19]. Both sequences are investi-
gated in the work of Janjic [10]. There, the two sequences appear as the number
of compositions of n ∈ N, considering three (resp. five) differently colored 1s.
Furthermore, the sequences cmk seem to be equivalent to the family of sequences
(sn) where s0 = 1 and s1 is fixed and sn+2 is the smallest number such that
sn+2

sn+1
> sn+1

sn
. These sequences where studied by Boyd [2].

By Remark 6, we can count the number of classes separated by the univer-
sality of words with less than k arches. This leads to the following immediate
corollary which allows us to efficently calculate |Σ∗

2/∼k|.

Corollary 28. Let k ∈ N0. Over a binary alphabet, the number of congruence
classes of ∼k is given by |Σ∗

2/∼k| = 1+
∑k−1

m=0 c
m
k .

The first values of the sequence, some of which are already given in [12], are

1, 4, 16, 68, 312, 1560, 8528, 50864, 329248, 2298592, 17203264, 137289920,

1162805376, 10409679744, 98146601216, 971532333824, 10068845515264, . . .

We can use the idea of Theorem 25 to count the number of perfect k-universal
words, i.e., k-universal words with an empty rest (cf. [5]). We can count them by
replacing the vector from Theorem 25 with the initial distribution of αi values
with (0, 1, 0)⊺. Thus, the formula counts words starting or ending with an empty
α. Because the matrix does not change, we obtain the same recurrence with
different initial values. The kth diagonal, shifted by one, is now given by the
Lucas sequence of the first kind U(2 · k + 2, 2 · k), where Un(P,Q) is given by
U0(P,Q) = 0, U1(P,Q) = 1, Un(P,Q) = P · Un−1(P,Q) − Q · Un−2(P,Q). The
first calculated values are given in Table 2. The first three diagonals of the table
are the known integer sequences A007070, A084326, and A190978 in [19].

https://oeis.org/A007052
https://oeis.org/A018903
https://oeis.org/A007070
https://oeis.org/A084326
https://oeis.org/A190978


5 Towards The Ternary Case of Simon’s Congruence

In the following, we will consider cases for the ternary alphabet based on the al-
phabets of the α-factors with the goal of proving similar results to Proposition 21
and Theorem 23 for ternary words, leading to Theorem 30. By Theorem 17, it
suffices to consider αβα-factors for characterizing congruence classes. In Sec-
tion 3 we already considered some cases for αβα-factors for arbitrary alphabets.
Note that if m1(w) =

↼m1(w) then core1 = ε. Otherwise, if m1(w) 6=
↼m1(w), then

core1 ∈ (Σ \ {m1(w),
↼m1(w)})∗. Thus, cores of ternary words are unary, and we

denote the well-defined letter of the core by y ∈ Σ3.
We use a variant of the Kronecker-δ for a boolean predicate P as δP (x) = 1 if

P (x) is true and 0 otherwise to express a condition on the alphabet of the rest
of a binary α-factor (cf. Figure 2). If an α0’s rest contains the letter y different
from the reverse modus x := ↼m(w), then re(α0)

↼m(w) builds another arch ending
before the core (left). This lowers the level of congruence, up to which we can
determine the core, by one. If y � re(α0) the next y is in the core (right).

u y x y

ar1(u)

↼ar1(u)α0

v x xy

ar1(v)

α0 ↼ar1(v)

Fig. 2. Factorization of α in the ternary case assuming core ∈ y+.

We always assume that k ≥ 2 because we characterize the congruence of
1-universal words. Moreover, let w, w̃ ∈ Σ∗

3 with 1 = ι(w) = ι(w̃).
First, we prove a useful lemma which characterizes the congruence of two

ternary words with the same modus and reverse modus. Together with Proposi-
tion 20, this immediately implies several cases.

Lemma 29. Let m(w) = m(w̃) and ↼m(w) = ↼m(w̃), we have w ∼k w̃ iff αi ∼k−1

α̃i for all i ∈ [1]0 and core1 ∼k−c c̃ore1 ∈ y∗ where c := ι(α0) + δy�re(α0) +
ι(α1) + δy� ↼re(α1).

Proof. Assume without loss of generality β = 01ℓ2 and β̃ = 01ℓ̃2 for some
ℓ, ℓ̃ ∈ N0 and ℓ ≤ ℓ̃.

Further, assume αi ∼k−1 α̃i for all i ∈ [1]0 and min(k − c, ℓ) = min(k − c, ℓ̃)
as above. By Corollary 16, we can assume that αi = α̃i for all i ∈ [1]0. If
ℓ = ℓ̃ or if ℓ < k − c and we thus have ℓ = ℓ̃, we have w = w̃. Hence, assume
k − c ≤ ℓ < ℓ̃. We show that α0 · 01ℓ2 · α1 ∼k α0 · 01ℓ+12 · α1 using Lemma 12,
then the claim follows by repeated application of the lemma. Note that k − ℓ ≤
c = ι{0,1}(α00) + ι{1,2}(2α1). Therefore, we can factorize α00 and 2α1 into at
least c factors with binary alphabet each. The claim follows with c+ ℓ ≥ k.



Because αi ∼k−1 α̃i is a necessary condition for w ∼k w̃ by Lemma 14,
assume this condition holds and min(k − c, ℓ) 6= min(k − c, ℓ̃). Again, by Corol-
lary 16 assume that αi = α̃i for all i ∈ [1]0. Thus, ℓ < k − c and ℓ < ℓ̃. Define

v := m{0,1}(α00) · 1min(k−c,ℓ̃) · ↼m{1,2}(2α1) ∈ Σ≤k
3 . By construction, we have

v � w because ℓ < min(k − c, ℓ̃) and v � w̃ because ℓ̃ ≥ min(k − c, ℓ̃). Thus,
w ≁k w̃. ⊓⊔

Since in the ternary case, there are congruent words having different modi
or reverse modi, Lemma 29 does not imply a full characterization. This leads
to two cases in the following classification (case 3 and 5 out of the 9 cases in
Table 3). These two cases correspond to the first case in the following theorem.

Theorem 30. For w, w̃ ∈ Σ∗
3 we have w ∼k w̃ iff αi ∼k−1 α̃i for all i ∈ [1]0,

and one of the following
1. | alph(αi)| = 2, alph(α1−i)∩alph(αi) = ∅, and ι(αi) ≥ k−1 for some i ∈ [1]0,
2. m(w) = m(w̃), ↼m(w) = ↼m(w̃), core ∼k−c c̃ore with c := ι(α0)+δy�α0+ι(α1)+
δy∈α1 .
For all possibilities distinguishing the β-factors, see Table 3.

Proof. Above, we already considered the cases α0 = α1 = ε (Proposition 18) and
alph(α0) = alph(α1) ∈

(
Σ

|Σ|−1

)
(Proposition 19). Next we cover the case of the

two alphabets of size two intersecting, finishing the 2 = | alph(α0)| = | alph(α1)|
case. Notice that in the case where both α-factors are binary, we only have
| alph(α0) ∩ alph(α1)| = 1 left to consider.

Claim 1. Let | alph(α0)| = | alph(α1)| = 2. We have w ∼k w̃ iff αi ∼k−1 α̃i for
all i ∈ [1]0 and core1 ∼k−c c̃ore1, where c := ι(α0)+ δy�re(α0)+ ι(α1)+ δy� ↼re(α1).

Proof. Because | alph(αi)| = 2 and in both directions we have alph(αi) =
alph(α̃i) for all i ∈ [1]0, the claim follows by Lemma 29. ⊓⊔

The case described in Claim 1 is problematic for the enumeration of classes,
because the choices of β depend on the universality and the rests’ alphabets of
the surrounding α-factors. This is in contrast to the binary case, where we only
had to distinguish between empty and the two types of unary α-factors.

Next, we consider the general case 2 = | alph(α0)|, 1 = | alph(α1)|. Due
to symmetry, it suffices to consider only the cases of the form | alph(α0)| ≥
| alph(α1)|. The first cases is similar to the one of Claim 1 because the modi are
fixed by the structure of the α-factors.

Claim 2. Let | alph(α0)| = 2, | alph(α1)| = 1 and alph(α0) ∩ alph(α1) 6= ∅.
Then, w ∼k w̃ iff k = 1 or αi ∼k−1 α̃i for all i ∈ [1]0 and core1 ∼k−c c̃ore1,
where c := ι(α0) + δy�re(α0) + δy� ↼re(α1).

It is left to consider the case where the two binary alphabets intersect.

Claim 3. Let | alph(α0)| = 2, | alph(α1)| = 1 and alph(α0) ∩ alph(α1) = ∅.
Then, w ∼k w̃ iff either ι(α0) = k − 1 = ι(α̃0), α1 ∼k−1 α̃1, or αi ∼k−1 α̃i

for all i ∈ [1]0, ι(α0) < k − 1, ↼m(w) = ↼m(w̃), core1 ∼k−c c̃ore1 ∈ y+ where
c := ι(α0) + δy�↼re(α0).



Proof. Let w, w̃ ∈ Σ∗
3 as above and assume w ∼k w̃ and without loss of generality

that α0 ∈ {0, 1}∗, m(w) = m(w̃) = 2 and α1 ∈ 2+. By Lemma 14, we have
αi ∼k−1 α̃i for all i ∈ [1]0. If ι(α1) ≥ k − 1, then we are done. Thus, assume
ι(α1) < k − 1. We cannot have ↼m(w) 6= ↼m(w̃) by Proposition 20. Thus, we have
↼m(w) = ↼m(w̃) as well as m(w) = m(w̃) and the claim follows by Lemma 29.

Now, for the other direction assume αi ∼k−1 α̃i for all i ∈ [1]0. First, we
consider ι(α0) = k − 1 = ι(α̃0). We have β = v2 and β̃ = ṽ2 for v, ṽ ∈ {0, 1}∗.
Because α0 ∼k−1 α̃0 ∼k−1 (01)k−1 we have α0v ∼k α0ṽ ∼k α̃0ṽ by Lemma 10
for {0, 1}. Therefore, we have w = α0v2α1 ∼k α̃0ṽ2α̃1 = w̃ because ∼k is a
congruence. The other case follows again from Lemma 29. ⊓⊔

The next lemma examines the case 2 = | alph(α0)|, 0 = | alph(α1)|. This case
is similar to the one above. If α1 has at least k− 1 arches, then we can permute
the modi. Otherwise, everything is fixed and the level of congruence of the cores
is determined by the structure of the α-factors. The proof is analogous to the
one of Claim 3 because in the proof we do not use the fact that α0 is non-empty.

Claim 4. Let | alph(α0)| = 2, and α1 = ε. Then, w ∼k w̃ iff either ι(α0) =
k − 1 = ι(α̃0), or α0 ∼k−1 α̃0, ι(α0) < k − 1, ↼m(w) = ↼m(w̃), and core1 ∼k−c

c̃ore1 ∈ y+ where c := ι(α0) + δy� ↼re(α0).

With Claim 4 the case distinction for one of the α containing two letters,
is completed. In the following cases we investigate the situation, where both α
have maximal 1-letter alphabets.

Claim 5. Let | alph(α0)| = 1, and α1 = ε. Then, w ∼k w̃ iff α1 ∼k−1 α̃1,
m(w) = m(w̃), ↼m(w) = ↼m(w̃) and core1 ∼k−c c̃ore1 ∈ y+ where c := δy�α1 .

Proof. Assume w ∼k w̃. By Proposition 20, we can assume that the modi are the
same. Now the claim, as well as, the other direction follow from Lemma 29. ⊓⊔

The last two cases follow analogously to Claim 5.

Claim 6. Let alph(α1) = alph(α0) ∈ Σ3. Then, w ∼k w̃ iff α1 ∼k−1 α̃1, m(w) =
m(w̃), ↼m(w) = ↼m(w̃) and core1 ∼k−c c̃ore1 ∈ y+ where c := δy�α0 + δy∈α1 .

Claim 7. Let alph(α1) 6= alph(α0) and | alph(α1)| = | alph(α0)| = 1. Then,
w ∼k w̃ iff α1 ∼k−1 α̃1, m(w) = m(w̃), ↼m(w) = ↼m(w̃) and core1 ∼k−c c̃ore1 ∈ y+

where c := δy�α0 + δy∈α1 .

This concludes the proof. ⊓⊔

6 Conclusion

In 2021, Kosche et al. [16] first implicitly used a new factorization to find ab-
sent scattered factors in words algorithmically. Later, in 2022, Fleischmann et
al. [6] introduced this factorization as α-β-factorization and used it to investigate



Table 3. The possibilities for the β-factor of w = α0βα1, assuming a, b, c ∈ Σ3 differ-
ent. Note that in the cases (1,1), (1,0), (0,0) the letters not fixed by the α-factors can
be chosen arbitrarily but differently from Σ3.

|alph(α0)|,|alph(α1)| alph(α0) alph(α1) β RegExp Stated In

2,2
{a, b} {a, c} ba∗c Prop. 19
{a, b} {a, b} c

2,1
{a, b} {c} (ab+ | ba+)c
{a, b} {a} ba∗c

2,0 {a, b} ∅ (ab+ | b+a)c

1,1
{a} {b} ab+c | ac+b | ca+b
{a} {a} ba∗c

1,0 {a} ∅ ba∗c | ab+c

0,0 ∅ ∅ ab+c Prop. 18

the classes of Simon’s congruence separated by the number of shortest absent
scattered factors, to characterize the classes for arbitrary alphabets for some
fixed numbers of shortest absent scattered factors and to give explicit formu-
las for these subsets. In this paper, we investigated the α-β-factorization as an
object of intrinsic interest. This leads to a result characterizing k-congruence of
m-universal words in terms of their 1-universal αβα-factors. In the case of the
binary and ternary alphabet, we fully characterized the congruence of words in
terms of their single factors. Moreover, using this characterization, we gave a
formula for the number of classes of binary words for each k, characterized the
finite classes, and gave a conceptually simple linear time algorithm for testing
MaxSimK for binary words.

The modus of the layered arch factorizations used in the proof of Proposi-
tion 20 and throughout the literature [23,21,4], can be regarded as the optimal
word to jump to certain letters in certain parts of the word. The α-β-factorization
encapsulates the first layer (arches w.r.t.Σ) of these factorizations for all indicies.
For small alphabets (this paper) and shortest abscent scattered factors (c.f. [6])
this allows the characterization and enumeration of classes. Extending this idea
to lower layers (arches w.r.t. some Ω ⊂ Σ), is left as future work.
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