
The Complexity of (Pk, Pℓ)-Arrowing

Zohair Raza Hassan, Edith Hemaspaandra, and Stanis law Radziszowski

Rochester Institute of Technology, Rochester NY 14623, USA
zh5337@rit.edu, {eh,spr}@cs.rit.edu

Abstract. For fixed nonnegative integers k and ℓ, the (Pk, Pℓ)-Arrowing
problem asks whether a given graph, G, has a red/blue coloring of E(G)
such that there are no red copies of Pk and no blue copies of Pℓ. The
problem is trivial when max(k, ℓ) ≤ 3, but has been shown to be coNP-
complete when k = ℓ = 4. In this work, we show that the problem
remains coNP-complete for all pairs of k and ℓ, except (3, 4), and when
max(k, ℓ) ≤ 3.
Our result is only the second hardness result for (F,H)-Arrowing for
an infinite family of graphs and the first for 1-connected graphs. Pre-
vious hardness results for (F,H)-Arrowing depended on constructing
graphs that avoided the creation of too many copies of F and H, al-
lowing easier analysis of the reduction. This is clearly unavoidable with
paths and thus requires a more careful approach. We define and prove
the existence of special graphs that we refer to as “transmitters.” Using
transmitters, we construct gadgets for three distinct cases: 1) k = 3 and
ℓ ≥ 5, 2) ℓ > k ≥ 4, and 3) ℓ = k ≥ 4. For (P3, P4)-Arrowing we show a
polynomial-time algorithm by reducing the problem to 2SAT, thus suc-
cessfully categorizing the complexity of all (Pk, Pℓ)-Arrowing problems.

Keywords: Graph arrowing · Ramsey theory · Complexity.

1 Introduction and Related Work

Often regarded as the study of how order emerges from randomness, Ramsey
theory has played an important role in mathematics and computer science; it
has applications in several diverse fields, including, but not limited to, game
theory, information theory, and approximation algorithms [16]. A key operator
within the field is the arrowing operator: given graphs F,G, and H, we say that
G → (F,H) (read, G arrows F,H) if every red/blue edge-coloring of G’s edge
contains a red F or a blue H. In this work, we categorize the computational
complexity of evaluating this operator when F and H are fixed path graphs.
The problem is defined formally as follows.

Problem 1 ((F,H)-Arrowing). Let F and H be fixed graphs. Given a graph G,
does G → (F,H)?

The problem is clearly in coNP; a red/blue coloring of G with no red F ’s
and no blue H’s forms a certificate that can be verified in polynomial time since

ar
X

iv
:2

30
7.

10
51

0v
1 

 [
cs

.C
C

] 
 2

0 
Ju

l 2
02

3



2 Z.R. Hassan, E. Hemaspaandra, S. Radziszowski

F and H are fixed graphs. We refer to such a coloring as an (F,H)-good col-
oring. The computational complexity of (F,H)-Arrowing has been categorized
for a number of pairs (F,H), with a significant amount of work done in the 80s
and 90s. Most relevant to our work is a result by Rutenburg, who showed that
(P4, P4)-Arrowing is coNP-complete [17], where Pn is the path graph on n ver-
tices. Burr showed that (F,H)-Arrowing is in P when F and H are star graphs
or when F is a matching [5]. Using “senders”—graphs with restricted (F,H)-
good colorings introduced a few years earlier by Burr et al. [6,7], Burr showed
that (F,H)-Arrowing is coNP-complete when F and H are members of Γ3, the
family of all 3-connected graphs and K3. The generalized (F,H)-Arrowing prob-
lem, where F and H are also part of the input, was shown to be Πp

2 -complete
by Schaefer [18].1 Aside from categorizing complexity, the primary research av-
enue concerned with the arrowing operator is focused on finding minimal—with
different possible definitions of minimal—graphs for which arrowing holds. The
smallest orders of such graphs are referred to as Ramsey numbers. Folkman
numbers are defined similarly for graphs with some extra structural constraints.
We refer the interested reader to surveys by Radziszowski [15] and Bikov [4] for
more information on Ramsey numbers and Folkman numbers, respectively.

Our work provides the first complexity result for (F,H)-Arrowing for an
infinite family of graphs since Burr’s Γ3 result from 1990. It is important to
note that Burr’s construction relies on that fact that contracting less than three
vertices between pairs of 3-connected graphs does not create new copies of said
graph. Let F be 3-connected and u, v ∈ V (F ). Construct G by taking two
copies of F and contracting u across both copies, then contracting v across
both copies. Observe that no new copies of F are constructed in this process;
if a new F is created then it must be disconnected by the removal of the two
contracted vertices, contradicting F ’s 3-connectivity. This process does not work
for paths since contracting two path graphs will always make several new paths
across the vertices of both paths. Thus, we require a more careful approach when
constructing the gadgets necessary for our reductions. We focus on the problem
defined below and prove a dichotomy theorem categorizing the problem to be in
P or be coNP-complete. We note that such theorems for other graph problems
exist in the literature, e.g., [1,8,10,13].

Problem 2 ((Pk, Pℓ)-Arrowing). Let k and ℓ be fixed integers such that 2 ≤ k ≤
ℓ. Given a graph G, does G → (Pk, Pℓ)?

Theorem 1. (Pk, Pℓ)-Arrowing is coNP-complete for all k and ℓ unless k = 2,
(k, ℓ) = (3, 3), or (k, ℓ) = (3, 4). For these exceptions, the problem is in P.

Before this, the only known coNP-complete case for paths was when k = ℓ =
4 [17]. Despite being intuitively likely, generalizing the hardness result to larger
paths proved to be an arduous task. Our proof relies on proving the existence
of graphs with special colorings—we rely heavily on work by Hook [11], who

1 Πp
2 = coNPNP, the class of all problems whose complements are solvable by a non-

deterministic polynomial-time Turing machine having access to an NP oracle [14].
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categorized the (Pk, Pℓ)-good colorings of the largest complete graphs which do
not arrow (Pk, Pℓ). After showing the existence of these graphs, the reduction
is straightforward. The polynomial-time cases are straightforward (Theorem 2)
apart from the case where (k, ℓ) = (3, 4), wherein we reduce the problem to
2SAT (Theorem 3).

The rest of this paper is organized as follows. We present the necessary
preliminaries in Section 2. The proof for Theorem 1 is split into Sections 3
(the polynomial-time cases) and 4 (the coNP-complete cases). We conclude in
Section 5.

2 Preliminaries

All graphs discussed in this work are simple and undirected. V (G) and E(G)
denote the vertex and edge set of a graph G, respectively. We denote an edge
in E(G) between u, v ∈ V (G) as (u, v). For two disjoint subsets A,B ⊂ V (G),
E(A,B) refers to the edges with one vertex in A and one vertex in B. The
neighborhood of a vertex v ∈ V (G) is denoted as N(v) and d(v) := |N(v)|. The
path, cycle, and complete graphs on n vertices are denoted as Pn, Cn, and Kn,
respectively. The complete graph on n vertices missing an edge is denoted as
Kn − e. Vertex contraction is the process of replacing two vertices u and v with
a new vertex w such that w is adjacent to all remaining neighbors N(u)∪N(v).

An (F,H)-good coloring of a graph G is a red/blue coloring of E(G) where
the red subgraph is F -free, and the blue subgraph is H-free. We say that G
is (F,H)-good if it has at least one (F,H)-good coloring. When the context is
clear, we will omit (F,H) and refer to the coloring as a good coloring.

Formally, a coloring for G is defined as function c : E(G) → {red,blue} that
maps edges to the colors red and blue. For an edge (u, v) and coloring c, we
denote its color as c(u, v).

3 Polynomial-Time Cases

In this section, we prove the P cases from Theorem 1. Particularly, we describe
polynomial-time algorithms for (P2, Pℓ)-Arrowing and (P3, P3)-Arrowing (Theo-
rem 2) and provide a polynomial-time reduction from (P3, P4)-Arrowing to 2SAT
(Theorem 3).

Theorem 2. (Pk, Pℓ)-Arrowing is in P when k = 2 and when k = ℓ = 3.

Proof. Let G be the input graph. Without loss of generality, assume that G is
connected (for disconnected graphs, we run the algorithm on each connected
component).
Case 1 (k = 2). Coloring any edge in G red will form a red P2. Thereby, the
entire graph must be colored blue. Thus, a blue Pℓ is avoided if and only if G is
Pℓ-free, which can be checked by brute force, since ℓ is constant.
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Case 2 (k = ℓ = 3). Note that in any (P3, P3)-good coloring of G, edges of the
same color cannot be adjacent; otherwise, a red or blue P3 is formed. Thus, we
can check if G is (P3, P3)-good similarly to how we check if a graph is 2-colorable:
arbitrarily color an edge red and color all of its adjacent edges blue. For each
blue edge, color its neighbors red and for each red edge, color its neighbors blue.
Repeat this process until all edges are colored or a red or blue P3 is formed. This
algorithm is clearly polynomial-time. ⊓⊔

The proof that (P3, P4)-Arrowing is in P consists of two parts. A preprocess-
ing step to simplify the graph (using Lemmas 1 and 2), followed by a reduction
to 2SAT, which was proven to be in P by Krom in 1967 [12].

Problem 3 (2SAT). Let ϕ be a CNF formula where each clause has at most two
literals. Does there exist a satisfying assignment of ϕ?

Lemma 1. Suppose G is a graph and v ∈ V (G) is a vertex such that d(v) = 1
and v’s only neighbor has degree at most two. Then, G is (P3, P4)-good if and
only if G− v is (P3, P4)-good.

Proof. Let u be the neighbor of v. If d(u) = 1, the connected component of v is
a K2 and the statement is trivially true. If d(u) = 2, let w be the other neighbor
of u, i.e., the neighbor that is not v. Clearly, if G is (P3, P4)-good, then G− v is
(P3, P4)-good. We now prove the other direction. Suppose we have good coloring
of G − v. It is immediate that we can extend this to a good coloring of G by
coloring (v, u) (the only edge adjacent to v) red if (u,w) is colored blue, and
blue if (u,w) is colored red. ⊓⊔

Lemma 2. Suppose G is a graph and there is a P4 in G with edges (v1, v2), (v2, v3),
and (v3, v4) such that d(v1) = d(v2) = d(v3) = d(v4) = 2. Then, G is (P3, P4)-
good if and only if G− v2 is (P3, P4)-good.

Proof. If (v1, v4) is an edge, then the connected component of v2 is a C4 and
the statement is trivially true. If not, let v0, v5 ̸∈ {v1, v2, v3, v4} be such that
(v0, v1) and (v4, v5) are edges. Note that it is possible that v0 = v5. Clearly, if G
is (P3, P4)-good then G − v2 is (P3, P4)-good. For the other direction, suppose
c is a (P3, P4)-good coloring of G − v2. We now construct a coloring c′ of G.
We color all edges other than (v1, v2), (v2, v3), and (v3, v4) the same as c. The
colors of the remaining three edges are determined by the coloring of (v0, v1)
and (v4, v5) as follows.

– If c(v0, v1) = c(v4, v5) = red, then c′(v1, v2), c′(v2, v3), c′(v3, v4) = blue, red,
blue.

– If c(v0, v1) = c(v4, v5) = blue, then c′(v1, v2), c′(v2, v3), c′(v3, v4) = red, blue,
red.

– If c(v0, v1) = red and c(v4, v5) = blue, then c′(v1, v2), c′(v2, v3), c′(v3, v4) =
blue, blue, red.

– If c(v0, v1) = blue and c(v4, v5) = red, then c′(v1, v2), c′(v2, v3), c′(v3, v4) =
red, blue, blue.
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Since the cases above are mutually exhaustive, this completes the proof. ⊓⊔

Theorem 3. (P3, P4)-Arrowing is in P.

Proof. Let G be the input graph. Let G′ be the graph obtained by repeatedly
removing vertices v described in Lemma 1 and vertices v2 described in Lemma 2
until no more such vertices exist. As implied by said lemmas, G′ → (P3, P4) if
and only if G → (P3, P4). Thus, it suffices to construct a 2SAT formula ϕ such
that ϕ is satisfiable if and only if G′ is (P3, P4)-good.

Let re be a variable corresponding to the edge e ∈ E(G′), denoting that e is
colored red. We construct a formula ϕ, where a solution to ϕ corresponds to a
coloring of G′. For each P3 in G′, with edges (v1, v2) and (v2, v3), add the clause(
r(v1,v2) ∨ r(v2,v3)

)
. Note that this expresses “no red P3’s.” For each P4 in G′,

with edges (v1, v2), (v2, v3), and (v3, v4):

1. If (v2, v4) ∈ E(G′), add the clause
(
r(v1,v2) ∨ r(v3,v4)

)
.

2. If (v2, v4) ̸∈ E(G′) and d(v2) > 2, then add the clause
(
r(v2,v3) ∨ r(v3,v4)

)
.

It is easy to see that the conditions specified above must be satisfied by
each good coloring of G′, and thus G′ being (P3, P4)-good implies that ϕ is
satisfiable. We now prove the other direction by contradiction. Suppose ϕ is
satisfied, but the corresponding coloring c is not (P3, P4)-good. It is immediate
that red P3’s cannot occur in c, so we assume that there exists a blue P4, with
edges e = (v1, v2), f = (v2, v3), and g = (v3, v4) such that re = rf = rg =
false in the satisfying assignment of ϕ. Without loss of generality, assume that
d(v2) ≥ d(v3).

– If d(v2) > 2, ϕ would contain clause re ∨ rg or rf ∨ rg. It follows that
d(v2) = d(v3) = 2.

– If d(v1) = 1, v1 would have been deleted by applying Lemma 1. It follows
that d(v1) > 1. Similarly, d(v4) > 1.

– If d(v1) > 2, then there exists a vertex v0 such that (v0, v1), (v1, v2), (v2, v3)
are a P4 in G′, d(v1) > 2 and (v1, v3) ̸∈ E(G′) (since d(v3) = 2). This
implies that ϕ contains clause re ∨ rf , which is a contradiction. It follows
that d(v1) = 2. Similarly, d(v4) = 2.

– So, we are in the situation that d(v1) = d(v2) = d(v3) = d(v4) = 2. But then
v2 would have been deleted by Lemma 2.

Since the cases above are mutually exhaustive, this completes the proof. ⊓⊔

4 coNP-Complete Cases

In this section, we discuss the coNP-complete cases in Theorem 1. In Sec-
tion 4.1, we describe how NP-complete SAT variants can be reduced to (Pk, Pℓ)-
Nonarrowing (the complement of (Pk, Pℓ)-Arrowing: does there exist a (Pk, Pℓ)-
good coloring of G?). The NP-complete SAT variants are defined below.
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Fig. 1. The variable gadget for (Pk, Pℓ)-Nonarrowing when 4 ≤ k < ℓ is shown on the
left. The output vertices are filled in. Red jagged lines and blue spring lines represent
(k, ℓ, x)-red- and (k, ℓ, x)-blue-transmitters, respectively, where the value of x is shown
on the top, and the vertex the lines are connected to are the strict endpoints of the
monochromatic paths. Observe that when (a, b) is red, other edges adjacent to b must
be blue to avoid a red Pk. This, in turn, causes neighbors p and q to have incoming
blue Pℓ−1’s, and vertices marked U are now strict endpoints of red Pk−1’s. Moreover,
edges adjacent to d (except (b, d)) must be red to avoid blue Pℓ’s. Thus, r and s are
strict endpoints of red Pk−1’s, causing the vertices marked N to be strict endpoints of
blue P3’s. A similar pattern is observed when (a, b) is blue. Note that for k ≤ 4, the
(k, ℓ, k−3)-red-transmitter can be ignored. On the right, the two kinds of (Pk, Pℓ)-good
colorings of the gadget are shown.

Problem 4 ((2, 2)-3SAT [3]). Let ϕ be a CNF formula where each clause contains
exactly three distinct variables, and each variable appears only four times: twice
unnegated and twice negated. Does there exist a satisfying assignment for ϕ?

Problem 5 (Positive NAE E3SAT-4 [2]). Let ϕ be a CNF formula where each
clause is an NAE-clause (a clause that is satisfied when its literals are not all
true or all false) containing exactly three (not necessarily distinct) variables,
and each variable appears at most four times, only unnegated. Does there exist
a satisfying assignment for ϕ?

Our proofs depend on the existence of graphs we refer to as “transmitters,”
defined below. These graphs enforce behavior on special vertices which are strict
endpoints of red or blue paths. For a graph G and coloring c, we say that v is
a strict endpoint of a red (resp., blue) Pk in c if k is the length of the longest
red (resp., blue) path that v is the endpoint of. We prove the existence of these
graphs in Section 4.2.
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Fig. 2. The clause gadget for (Pk, Pℓ)-Nonarrowing when 4 ≤ k < ℓ is shown on top.
The input vertices are filled in. Below it, we show the eight possible combinations of
inputs that can be given to the gadget. Observe that a (Pk, Pℓ)-good coloring is always
possible unless the input is three red Pk−1’s (top left). As in Figure 1, jagged and spring
lines represent transmitters. We use this representation of transmitters to depict the
two forms of input to the gadget. For ℓ ≤ 5, the (k, ℓ, ℓ − 4)-blue-transmitter can be
ignored.

Definition 1. Let 3 ≤ k < ℓ. For an integer x ∈ {2, 3, . . . , k − 1} (resp., x ∈
{2, 3, . . . , ℓ− 1}) a (k, ℓ, x)-red-transmitter (resp., (k, ℓ, x)-blue-transmitter) is a
(Pk, Pℓ)-good graph G with a vertex v ∈ V (G) such that in every (Pk, Pℓ)-good
coloring of G, v is the strict endpoint of a red (resp., blue) Px, and is not adjacent
to any blue (resp., red) edge.

Definition 2. Let k ≥ 3 and x ∈ {2, 3, . . . , k − 1}. A (k, x)-transmitter is a
(Pk, Pk)-good graph G with a vertex v ∈ V (G) such that in every (Pk, Pk)-good
coloring of G, v is either (1) the strict endpoint of a red Px and not adjacent to
any blue edge, or (2) the strict endpoint of a blue Px and not adjacent to any
red edge.

4.1 Reductions

We present three theorems that describe gadgets to reduce NP-complete variants
of SAT to (Pk, Pℓ)-Nonarrowing.

Theorem 4. (Pk, Pℓ)-Arrowing is coNP-complete for all 4 ≤ k < ℓ.

Proof. We reduce (2, 2)-3SAT to (Pk, Pℓ)-Nonarrowing. Let ϕ be the input to
(2, 2)-3SAT. We construct Gϕ such that Gϕ is (Pk, Pℓ)-good if and only if ϕ
is satisfiable. Let V G and CG be the variable and clause gadgets shown in
Figures 1 and 2. V G has four output vertices that emulate the role of sending a
truth signal from a variable to a clause. We first look at Figure 1. The vertices
labeled U (resp., N) correspond to unnegated (resp., negated) signals. Being the
strict endpoint of a blue P3 corresponds to a true signal while being the strict
endpoint of a red Pk−1 corresponds to a false signal. We now look at Figure 2.
When three red Pk−1 signals are sent to the clause gadget, it forces the entire
graph to be blue, forming a blue Pℓ. When at least one blue P3 is present, a
good coloring of CG is possible.
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Fig. 3. The variable gadget for (P3, Pℓ)-Nonarrowing where ℓ ≥ 6 (top) and its two
good colorings (bottom). The variable gadget is a combination of two H’s, whose
properties we discuss in the proof of Theorem 5. Note that when (a, b) is red in H,
then (a′, b′) is blue in H’s copy, and vice versa; if both copies have the same coloring
of (a, b), then a red P3 is formed at y, or a blue Pℓ is formed from the path from x to
x′ and the (3, ℓ, ℓ− 6)-blue-transmitter that x′ is connected to. When ℓ = 5, the edge
(a, d) is added in H, in lieu of the ℓ− 5 vertices connected to (3, ℓ, 2)-red-transmitters.
Note that for ℓ ≤ 8, the (3, ℓ, ℓ− 6)-blue-transmitter can be ignored.

We construct Gϕ like so. For each variable (resp., clause) in ϕ, we add a copy
of V G (resp., CG) to Gϕ. If a variable appears unnegated (resp., negated) in a
clause, a U -vertex (resp., N -vertex) from the corresponding V G is contracted
with a previously uncontracted input vertex of the CG corresponding to said
clause. The correspondence between satisfying assignments of ϕ and good color-
ings of Gϕ is easy to see. ⊓⊔

Theorem 5. (P3, Pℓ)-Arrowing is coNP-complete for all ℓ ≥ 5.

Proof. We proceed as in the proof of Theorem 4. The variable gadget is shown in
Figure 3. Blue (resp., red) P2’s incident to vertices marked U and N correspond
to true (resp., false) signals. The clause gadget is the same as Theorem 4’s, but
the good colorings are different since the inputs are red/blue P2’s instead. These
colorings are shown in the appendix in Figure 10.

Suppose ℓ ≥ 6. Let H be the graph circled with a dotted line in Figure 3. We
first discuss the properties of H. Note that any edge adjacent to a red P2 must
be colored blue to avoid a red P3. Let v1, v2, . . . , vℓ−5 be the vertices connected
to (3, ℓ, 2)-red-transmitters such that v1 is adjacent to a. Observe that (a, b) and
(c, d) must always be the same color; if, without loss of generality, (a, b) is red
and (c, d) is blue, a blue Pℓ is formed via the sequence a, v1, . . . , vℓ−5, d, c, b, x.
In the coloring where (a, b) and (c, d) are blue, the vertices a, v1, . . . , vℓ−5, d, c, b
form a blue Cℓ−1, and all edges going out from the cycle must be colored red to
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Fig. 4. The clause gadget for (Pk, Pk)-Nonarrowing. The format is similar to Figure 2.

v

a

b

c

d

Fig. 5. The variable gadget for (Pk, Pk)-Nonarrowing. Observe that the transmitters
connected to v must have different colors; otherwise, a red or blue Pk−1+k−2−1 is
formed, which is forbidden when k ≥ 4. When the (k, k − 1)-transmitter is red, v’s
other neighboring edges must be blue. Thus, vertices a, b, c, and d are strict endpoints
of blue Pk−1’s, causing the output vertices (filled) to be strict endpoints of red Pk−1’s.
A similar situation occurs when the (k, k − 1)-transmitter is blue. Both (Pk, Pk)-good
colorings are shown on the right.

avoid blue Pℓ’s. This forces the vertices marked U to be strict endpoints of blue
P2’s. If (a, b) and (c, d) are red, w, a, v1, . . . , vℓ−5, d, z forms a blue Pℓ−1, forcing
the vertices marked U to be strict endpoints of red P2’s. Moreover, (x, b) and
(y, c) must also be blue.

With these properties of H in mind, the functionality of the variable gadget
described in Figure 3’s caption is easy to follow. The ℓ = 5 case uses a slightly
different H, also described in the caption. ⊓⊔

Theorem 6. (Pk, Pk)-Arrowing is coNP-complete for all k ≥ 4.

Proof. For k = 4, Rutenburg showed that the problem is coNP-complete by
providing gadgets that reduce from an NAE SAT variant [17]. For k ≥ 5, we take
a similar approach and reduce Positive NAE E3SAT-4 to (Pk, Pk)-Nonarrowing
using the clause and variable gadgets described in Figures 4 and 5. The variable
gadget has four output vertices, all of which are unnegated. Without loss of
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Type 1
Type 1a

Type 2
Type 2a

Type 3
Type 1b Type 2b

Fig. 6. Illustrations of (Pk, Pℓ)-good colorings of KR(Pk,Pℓ)−1.

generality, we assume that blue Pk−1’s correspond to true signals. The graph Gϕ

is constructed as in the proofs of Theorems 4 and 5. Our variable gadget is still
valid when k = 4, but the clause gadget does not admit a (P4, P4)-good coloring
for all the required inputs. In Figure 11 in the appendix, we show a different
clause gadget that can be used to show the hardness of (P4, P4)-Arrowing using
our reduction. ⊓⊔

4.2 Existence of Transmitters

Our proofs for the existence of transmitters are corollaries of the following.

Lemma 3. For integers k, ℓ, where 3 ≤ k < ℓ, (k, ℓ, k−1)-red-transmitters exist.

Lemma 4. For all k ≥ 3, (k, k − 1)-transmitters exist.

In the interest of saving space, we only present the proof of one case (when
k is even) of Lemma 3 in our main text, and defer the rest to the appendix. We
construct these transmitters by carefully combining copies of complete graphs.
The Ramsey number R(Pk, Pℓ) is defined as the smallest number n such that
Kn → (Pk, Pℓ). We know that R(Pk, Pℓ) = ℓ+ ⌊k/2⌋− 1, where 2 ≤ k ≤ ℓ [9]. In
2015, Hook characterized the (Pk, Pℓ)-good colorings of all “critical” complete
graphs: KR(Pk,Pℓ)−1. We summarize Hook’s results below.2

Theorem 7 (Hook [11]). Let 4 ≤ k < ℓ and r = R(Pk, Pℓ) − 1. The possible
(Pk, Pℓ)-good colorings of Kr can be categorized into three types. In each case,
V (G) is partitioned into sets A and B. The types are defined as follows:

– Type 1. Let |A| = ⌊k/2⌋−1 and |B| = ℓ−1. Each edge in E(B) must be blue,
and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

– Type 2. Let |A| = ⌊k/2⌋− 1 and |B| = ℓ− 1, and let b ∈ E(B). Each edge in
E(B) \ {b} must be blue, and each edge in E(A,B) ∪ {b} must be red. Any
coloring of E(A) is allowed.

2 We note that Hook’s ordering convention differs from ours, i.e., they look at (Pℓ, Pk)-
good colorings. Moreover, they use m and n in lieu of k and ℓ.
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Fig. 7. An (H,u,m)-thread as described in Definition 3.

– Type 3. Let |A| = ⌊ℓ/2⌋−1 and |B| = k−1. Each edge in E(B) must be blue,
and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

Moreover, the types of colorings allowed vary according to the parity of k. If k
is even, then Kr can only have Type 1 colorings. If k is odd and ℓ > k + 1, then
Kr can only have Type 1 and 2 colorings. If k is odd and ℓ = k+ 1, then Kr can
have all types of colorings.

For the case where k = ℓ, Kr can have Type 1 and 2 colorings as described
in the theorem above. Due to symmetry, the colors in these can be swapped and
are referred to as Type 1a, 1b, 2a, and 2b colorings. The colorings described
have been illustrated in Figure 6. We note the following useful observation.

Observation 1 Suppose ℓ > k ≥ 4 and r = R(Pk, Pℓ) − 1.

– In Type 1 (Pk, Pℓ)-good colorings of Kr: (1) each vertex in B is a strict
endpoint of a blue Pℓ−1, (2) when k is even (resp., odd), each vertex in B is
a strict endpoint of a red Pk−1 (resp., Pk−2), and (3) when k is even (resp.,
odd), each vertex in A is a strict endpoint of a red Pk−2 (resp., Pk−3).

– In Type 2 (Pk, Pℓ)-good colorings of Kr: (1) each vertex in B is a strict
endpoint of a blue Pℓ−1, (2) each vertex in B is a strict endpoint of a red
Pk−1, and (3) each vertex in A is a strict endpoint of a red Pk−2.

– In Type 3 (Pk, Pℓ)-good colorings of Kr: (1) each vertex in B is a strict
endpoint of a red Pk−1, (2) each vertex in B is a strict endpoint of a blue
Pℓ−1, and (3) each vertex in A is a strict endpoint of a blue Pℓ−2.

We justify these claims in the appendix, wherein we also formally define the
colorings Kr when k = ℓ and justify a similar observation. Finally, we define a
special graph that we will use throughout our proofs.

Definition 3 ((H,u,m)-thread). Let H be a graph, u ∈ V (H), and m ≥ 1 be
an integer. An (H,u,m)-thread G, is a graph on m|V (H)|+1 vertices constructed
as follows. Add m copies of H to G. Let Ui ⊂ V (G) be the vertex set of the ith

copy of H, and ui be the vertex u in H’s ith copy. Connect each ui to ui+1 for
each i ∈ {1, 2, . . . ,m − 1}. Finally, add a vertex v to G and connect it to um.
We refer to v as the thread-end of G. This graph is illustrated in Figure 7.

Using Theorem 7, Observation 1, and Definition 3 we are ready to prove the
existence of (k, ℓ, k−1)-red-transmitters and (k, k−1)-transmitters via construc-
tion. Transmitters for various cases are shown in Figures 8 and 9. We present
the proof for one case below and the remaining in the appendix.
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Fig. 8. (k, ℓ, k − 1)-red-transmitters for even k with ℓ > k, odd k with ℓ > k + 1, and
odd k with ℓ = k+1 are shown on the top-left, bottom-left, and top-right, respectively.
The latter construction does not work for the case where k = 5, so an alternative
construction for a (5, 6, 4)-red-transmitter is shown on the bottom-right. The graphs
(H and F ) described in each case are circled so that the proofs are easier to follow. A
good coloring is shown for each transmitter.

Proof of Lemma 3 when k is even. Let k ≥ 4 be an even integer and r =
R(Pk, Pℓ)− 1. In this case, by Theorem 7, only Type 1 colorings are allowed for
Kr. The term A1-vertex (resp., B1-vertex) is used to refer to vertices belonging
to set A (resp., B) in a Kr with a Type 1 coloring, as defined in Theorem 7. We
first make an observation about the graph H, constructed by adding an edge
(u, v) between two disjoint Kr’s. Note that u must be an A1-vertex, otherwise
the edge (u, v) would form a red Pk−1 or blue Pℓ−1 when colored red or blue,
respectively (Observation 1). Similarly, v must also be an A1-vertex. Note that
(u, v) must be blue; otherwise, by Observation 1, a red Pk−2+k−2 is formed,
which cannot exist in a good coloring when k ≥ 4.

We define the (k, ℓ, k − 1)-red-transmitter, G, as the (Kr, u, ℓ − 1)-thread
graph, where u is an arbitrary vertex in V (Kr). The thread-end v of G is a
strict endpoint of a red Pk−1. Let Ui and ui be the sets and vertices of G as
described in Definition 3. From our observation about H, we know that each
edge (ui, ui+1) must be blue. Thus, uℓ−1 must be the strict endpoint of a blue
Pℓ−1, implying that (uℓ−1, v) must be red. Since uℓ−1 is also a strict endpoint
of a red Pk−2 (Observation 1), v must be the strict endpoint of a red Pk−1.

For completeness, we must also show that G is (Pk, Pℓ)-good. Let Ai and Bi

be the sets A and B as defined in Theorem 7 for each Ui. Note that the only
edges whose coloring we have not discussed are the edges in each E(Ai). It is
easy to see that if each edge in each E(Ai) is colored red, the resulting coloring
is (Pk, Pℓ)-good. This is because introducing a red edge in E(Ai) cannot form
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u

v

......

u

v

Fig. 9. (k, k − 1)-transmitters for even k (left) and odd k (right).

a longer red path than is already present in the graph, i.e., any path going
through an edge (p, q) ∈ E(Ai) can be increased in length by selecting a vertex
from r ∈ E(Bi) using the edges (p, r) and (r, q) instead. This is always possible
since |E(Bi)| is sufficiently larger than |E(Ai)|. ⊓⊔

Finally, we show how constructing (red-)transmitters where x = k − 1 is
sufficient to show the existence of all defined transmitters.

Corollary 1. For valid k, ℓ, and x, (k, ℓ, x)-blue-transmitters and (k, ℓ, x)-red-
transmitters exist.

Proof. Let H be a (k, ℓ, k − 1)-red-transmitter where u ∈ V (H) is the strict
endpoint of a red Pk−1 in all of H’s good colorings. For valid x, the (H,u, x−1)-
thread graph G is a (k, ℓ, x)-blue-transmitter, where the thread-end v is the strict
endpoint of a blue Px in all good colorings of G; to avoid constructing red Pk’s
each edge along the path of ui’s is forced to be blue by the red Pk−1 from H,
where ui is the vertex u in the ith copy of H as defined in Definition 3.

To construct a (k, ℓ, x)-red-transmitter, we use a similar construction. Let H
be a (k, ℓ, ℓ − 1)-blue-transmitter where u ∈ V (H) is the strict endpoint of a
blue Pℓ−1 in all good colorings of H. For valid x, the (H,u, x)-thread graph G
is a (k, ℓ, x− 1)-red-transmitter, where the thread-end v is the strict endpoint of
a red Px in all good colorings of G. ⊓⊔

Corollary 2. For valid k and x, (k, x)-transmitters exist.

Proof. Let H be a (k, k−1)-transmitter where u ∈ V (H) is the strict endpoint of
a red/blue Pk−1 in all of H’s good colorings. For valid x, the (k, u, x− 1)-thread
graph G is a (k, x)-transmitter, where the thread-end v is the strict endpoint of
a red or blue Px in all good colorings of G. Let ui be the vertex as defined in
Definition 3. Each ui is the strict endpoint of Pk−1 of the same color; otherwise,
the edge between two u’s cannot be colored without forming a red or blue Pk.
Thus, each such edge must be colored red (resp., blue) by the blue (resp., red)
Pk−1 coming from H. ⊓⊔

5 Conclusion and Future Work

A major and very difficult goal is to classify the complexity for (F,H)-Arrowing
for all fixed F and H. We conjecture that in this much more general case a
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dichotomy theorem still holds, with these problems being either in P or coNP-
complete. This seems exceptionally difficult to prove. To our knowledge, all
known dichotomy theorems for graphs classify the problem according to one
fixed graph, and the polynomial-time characterizations are much simpler than
in our case. We see this paper as an important first step in accomplishing this
goal.
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Appendix

Clause Gadget for (P3, Pℓ)- and (P4, P4)-Nonarrowing

In Figure 10, we present the clause gadget for (P3, Pℓ)-Nonarrowing. In Figure 11,
we present the clause gadget for (P4, P4)-Nonarrowing, inspired by the gadget
used in Rutenburg’s hardness proof [17] for the same problem.

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

Fig. 10. The clause gadget for (P3, Pℓ)-Nonarrowing. The format is similar to Figure 2.
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3 33
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Fig. 11. The clause gadget for (P4, P4)-Nonarrowing. This is similar to the gadget used
in Rutenburg’s hardness proof [17], wherein the clause gadget was just the C4.

Existence of Transmitters

We first state Hook’s theorem for the symmetric case (where k = ℓ) and state
an observation about the properties of said colorings.
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Theorem 8 (Hook [11]). Let k ≥ 4 and r = R(Pk, Pk) − 1. The possible
(Pk, Pk)-good colorings of Kr can be categorized into two types. In each case,
V (G) is partitioned into sets A and B. The types are defined as follows:

– Type 1a. Let |A| = ⌊k/2⌋ − 1 and |B| = k − 1. Each edge in E(B) must be
blue, and each edge in E(A,B) must be red. Any coloring of E(A) is allowed.

– Type 1b. Like Type 1a, but E(B) is red, and E(A,B) is blue.
– Type 2a. Let |A| = ⌊k/2⌋ − 1 and |B| = k − 1, and let b ∈ E(B). Each edge

in E(B)\{b} must be blue, and each edge in E(A,B)∪{b} must be red. Any
coloring of E(A) is allowed.

– Type 2b. Like Type 2a, but E(B) \ b is red, and E(A,B) ∪ b is blue.

If k is even, then Kr can only have Type 1a/b colorings. If k is odd, then Kr

can have all types of colorings.

Observation 2 Let k ≥ 4 and r = R(Pk, Pk) − 1.

– In Type 1a/1b (Pk, Pk)-good colorings of Kr: (1) each vertex in B is a strict
endpoint of a blue/red Pk−1, (2) when k is even (resp., odd), each vertex in
B is a strict endpoint of a red/blue Pk−1 (resp., Pk−2), and (3) when k is
even (resp., odd), each vertex in A is a strict endpoint of a red/blue Pk−2

(resp., Pk−3).
– In Type 2a/2b (Pk, Pk)-good colorings of Kr: (1) each vertex in B is a strict

endpoint of a blue/red Pk−1, (2) each vertex in B is a strict endpoint of a
red/blue Pk−1, and (3) each vertex in A is a strict endpoint of a red/blue
Pk−2.

We now present the proofs of Lemmas 3 and 4. The term Ai-vertex (resp.,
Bi-vertex) for i ∈ {1, 2, 3} is used to refer to vertices belonging to set A (resp.,
B) in a Kr with a Type i coloring, as defined in Theorem 7.

Proof of Lemma 3. We first consider the case where k = 3. Let G be the graph
constructed by attaching a leaf vertex, v, to a Kℓ−1. It is easy to see that every
vertex in a (P3, Pℓ)-good coloring of Kℓ−1 is the strict endpoint of blue Pℓ−1.
Thus, the leaf edge must be red, and v is the strict endpoint of a red P2 is all
good coloring of G. Now, suppose k ≥ 4. Let r = R(Pk, Pℓ) − 1. We consider
three cases.

Case 1 (k is even). Covered in the main text.

Case 2 (k is odd and ℓ > k + 1). Type 1 and 2 colorings of Kr are allowed
in this case. Let H be the graph constructed by attaching a leaf node to ⌊k/2⌋
vertices of a Kr. We refer to these leaf vertices as L-vertices. We now analyze the
properties of H. First, note that at least one vertex in B must be an L-vertex,
since |A| = ⌊k/2⌋− 1. Recall that in both Type 1 and 2 colorings, a Bi-vertex is
a strict endpoint of blue Pℓ−1. Thus, the leaf edge must be red to avoid making a
blue Pℓ. This implies that the Kr in H must have a Type 1 coloring; otherwise,
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the red leaf edge and red Pk−1 from the Type 2 coloring would form a red Pk.
Note that if at least two L-vertices were adjacent to vertices in B, then two red
leaf edges and the red Pk−2 would form a red Pk. Thus, there is exactly one
L-vertex adjacent to a vertex in B. The red leaf edge adjacent to a B-vertex,
along with the red Pk−3 (formed using edges in E(A,B)), makes each vertex in
A the strict endpoint of a red Pk−2. H can now emulate the role of Kr with
Type 1 colorings as in the previous case.

Let H ′ be the graph constructed by attaching a leaf node to ⌊k/2⌋−1 vertices
of an Kr. Consider the graph F , where two disjoint H ′’s are connected by a single
edge (u, v), where u and v are members of a Kr and not adjacent to L-vertices.
As in the previous case, it is easy to see that u and v must be A1-vertices, and
(u, v) must be blue.

We define the (k, ℓ, k − 1)-red-transmitter, G, as the (H ′, u, ℓ − 1)-thread
graph, where u is a member of a Kr not adjacent to any L-vertex. The argument
from the previous case shows that the thread-end of G is the strict endpoint of a
red Pk−1. Moreover, the coloring where each E(A) is colored red and each edge
between an L-vertex and an A1-vertex is colored blue is a (Pk, Pℓ)-good coloring.

Case 3 (k is odd and ℓ = k+1). Note that in this case, all three types of colorings
of Kr are allowed. We consider two subcases.

Case 3.i (k ≥ 7). Consider the graph H where two Kr’s share a single vertex, p,
and q is a leaf vertex connected to p. Let X and Y refer to the vertex set of each
Kr. We first show that p cannot be a Bi-vertex for any i ∈ {1, 2, 3} in both X
and Y . We prove via contradiction: assume without loss of generality that p is a
Bi-vertex in X. Recall that a Bi-vertex is the endpoint of a blue Pℓ−1 and red
Pk−2. Thus, p must be an Aj-vertex in Y , for some j ∈ {1, 2, 3}. However, A1-
and A2-vertices are endpoints of red Pk−3’s, and A3-vertices are endpoints of
blue Pℓ−2’s. If p is an A1- or A2-vertex, then a red Pk−3+k−2−1 is formed, which
is forbidden when k ≥ 6, or a blue Pℓ−2+ℓ−1−1 is formed, which is forbidden
when ℓ ≥ 4. Thus, p cannot be a Bi-vertex in X or Y . Also note that if p is an
A1- or A2-vertex in both X and Y , then a red Pk−3+k−3−1 is formed, which is
forbidden when k ≥ 7. Similarly, p cannot be an A3-vertex in both X and Y
otherwise a blue Pℓ−2+ℓ−2−1 is formed. Thus, p must be an A1- or A2-vertex in
X, and an A3-vertex in Y , or vice versa. This implies that p must be the strict
endpoint of a red Pk−3 (or Pk−2) and a blue Pℓ−2.

Let G be the graph constructed as follows. Take two copies of H and contract
the vertices labeled q. Then, attach a leaf vertex, v, to the contracted vertex.
Let p1 and p2 be the vertices in the intersection of two Kr’s. Observe that
(p1, q) and (p2, q) must be different colors, otherwise a red Pk−3+k−3+1 or a blue
Pℓ−2+ℓ−2+1 is formed when both are red or blue, respectively. Assume without
loss of generality that (p1, q) is red and (p2, q) is blue. Since p1 and p2 are the
strict endpoints of blue Pℓ−2’s, q must be the strict endpoint of a blue Pℓ−1,
forcing (q, v) to be red. Observe that (p1, q) is the strict endpoint of a red Pk−2

or Pk−1 depending on whether p1 is an A1 or A2-vertex in one of the Kr’s.
Clearly, p1 must be an A1-vertex, otherwise a red Pk is formed with (q, v).
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Therefore, v must be the strict endpoint of a red Pk−1. Finally, we describe a
good coloring of G: color E(A) red if the Kr has a Type 1 coloring, and blue if
it has a Type 3 coloring.

Case 3.ii (k < 7). Note that k = 5 and ℓ = 6 is the only possibility in this case.
The transmitter for this is shown in Figure 8. Let X,Y, and Z be the vertex
sets of the Kr’s as in Figure 8. First, note that Z cannot have a Type 1 or
Type 2 coloring. We prove via contradiction. Assume that Z has a Type 1 or
2 coloring. Since k = 5, |A| = ⌊5/2⌋ = 1 for Type 1 and 2 colorings, at least
one vertex in {a, t} must be a B1- or B2-vertex in Z. Assume without loss of
generality that a is a B1 or B2-vertex. Note that a is the strict endpoint of a
blue Pℓ−1 from Z (Observation 1). Thus, each edge connected to a in X must be
red. Since a is not adjacent to any blue edge, it can only be an A1 or A2-vertex
in X. Since |A| = 1 in Type 1 and 2 colorings, b must be a B1 or B2-vertex
and be the strict endpoint of a blue Pℓ−1, implying that (b, c) is red. Since a
is also a strict endpoint of a red Pk−2 from Z, the edges (a, b) and (b, c) would
form a red Pk. Thus, Z must have a Type 3 coloring. Note that a and t must
be A3-vertices in Z, otherwise the edges (a, b) and (t, u) would form red Pk’s or
blue Pℓ’s. a (resp., t) must be an A1- or A2-vertex in X (resp., Y ) because every
other type of vertex is the strict endpoint of a blue Pℓ−2 in X (resp., Y ). This
would form a blue Pℓ−2+ℓ−2 with the Pℓ−2 from Z. Since |A| = 1 in Type 1 and
2 colorings, b and u must be in B1- or B2-vertices. X and Y must have Type
1 colorings otherwise (b, c) and (u, v) make red Pk’s, on account of B2-vertices
being strict endpoints of red Pk−1’s and the leaf edges being red. Thus, b and
u are A1-vertices and are strict endpoints of red Pk−2’s, making c and v strict
endpoints of red Pk−1’s. Finally, (a, t) must be colored blue to obtain a good
coloring of G. ⊓⊔

We now prove Lemma 4. Since the constructions are similar to that of the
previous lemma, some details are skipped since the same arguments can be
applied mutatis mutandis.

Proof of Lemma 4. When k = 3, K2 is trivially a transmitter. Suppose k ≥ 4.
Let r = R(Pk, Pk) − 1. We consider two cases.

Case 1 (k is even). Recall that only Type 1a and 1b colorings are allowed in this
case. As in Case 3.i of Lemma 3’s proof, consider the graph G where two Kr’s
share a single vertex, u, and v is a leaf vertex connected to p. Let X and Y refer
to the vertex set of each Kr. Note that p cannot be a B1-vertex in either Kr; a
B1-vertex is the strict endpoint of a red and blue Pk−1 (Observation 2), and this
would form a red/blue Pk with (p, q). Thus, q is a Type 1 vertex in X and Y .
Also, note that q must be a Type 1a vertex in X and a Type 1b vertex in Y (or
vice versa). Otherwise, if both X and Y are of the same type, then a red/blue
Pk−2+k−2 is formed, which is forbidden when k ≥ 4. Thereby, q is the strict
endpoint of a red and blue Pk−2 in all good colorings of G. Moreover, v is the
strict endpoint of a red/blue Pk−1 depending on the color of (p, v). Thus, G is a
(k, k−1)-transmitter where v is the strict endpoint of a red/blue Pk−1 in all good
colorings of G. Finally, note that G is (Pk, Pk)-good since all edges in E(A) can



The Complexity of (Pk, Pℓ)-Arrowing 19

be colored red (resp., blue) in the Kr with the Type 1a (resp., Type 1b) coloring.

Case 2 (k is odd). Let H be the graph constructed by attaching a leaf node to
⌊k/2⌋ − 1 vertices of a Kr. Consider the graph G, constructed by taking two
copies of H, contracting two vertices not adjacent to L-vertices, and attaching a
leaf vertex, v, to the contracted vertex, denoted as u. Let X and Y refer to the
vertex set of each Kr. As argued in Case 2 of Lemma 3’s proof, both Kr’s in G
must have Type 1 colorings. Moreover, v is the strict endpoint red/blue Pk−2

from both Kr’s. As argued in the even case, X and Y must have different types
of colorings to avoid a red/blue Pk going across both H’s. Thus, G is (k, k− 1)-
transmitter, and v is the strict endpoint of a red/blue Pk−1 in all good colorings
of G. Finally, note that G is (Pk, Pk)-good using the coloring from the previous
case. ⊓⊔

Proofs for Observations 1 and 2

The observations are simple corollaries of the following lemmas.

Lemma 5. Let G be a graph whose vertices are partitioned into M and N such
that (1) |M | = k and |N | ≥ k + 1, (2) E(M,N) includes all possible edges, and
(3) N is an independent set. Then, each vertex in N is an endpoint of a P2k+1.
Moreover, this is the largest path in G that each n ∈ N is the endpoint of.

Proof. Let mi ∈ M and ni ∈ N . We first show that each ni ∈ N is the endpoint
of P2k+1. Consider the path n1,m1, n2, . . . ,mk, nk+1, which alternates between
vertices in M and N . Clearly this path is of size 2k + 1, and must exist because
|M | ≥ k + 1 and all edges in E(M,N) exist. It is easy to see that the vertices
may be relabeled so that any vertex in N can be the endpoint of this P2k+1.
We now show that no path larger than 2k + 1 exists in G, via contradiction.
Assume there exists a path Q on 2k + 2 vertices in G. Since |M | = k, at least
2k + 2− |M | = k + 2 vertices of Q must be in N . Recall that in any Pℓ there are
two vertices of degree one and ℓ− 2 vertices of degree two, and there are a total
of ℓ− 1 edges. If at least k+ 2 vertices in N are in Q, then 1 + 1 + 2k edges of Q
must be in E(M,N), since N is an independent set. However, this implies that
Q = P2k+2 has at least 2k + 2 edges, which is a contradiction.

Lemma 6. Let G be a graph who vertices are partitioned into M and N such
that (1) |M | = k and |N | ≥ k, (2) E(M,N) includes all possible edges, and
(3) N is an independent set. Then, each vertex in M is an endpoint of a P2k.
Moreover, this is the largest path in G that each m ∈ M is the endpoint of.

Proof. Let mi ∈ M and ni ∈ N . We first show that each mi ∈ M is the endpoint
of P2k. Consider the path n1,m1, n2,m2, . . . , nk,mk, which alternates between
vertices in M and N . Clearly this path is of length 2k, and must exist because
|M | = k and all edges in E(M,N) exist. It is easy to see that the vertices may be
relabeled so that any vertex in M can be the endpoint of this P2k. We now show
that no path larger than 2k with an endpoint in M exists in G, via contradiction.
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Assume there exists a path Q on 2k + 1 vertices in G, with one endpoint in M .
Since |M | = k, at least 2k + 1 − |M | = k + 1 vertices of Q must be in N . Recall
that in any Pℓ there are two vertices of degree one and ℓ − 2 vertices of degree
two, and there are a total of ℓ − 1 edges. If at least k + 1 vertices in N are in
Q and at most one of them may be an endpoint of Q, then 1 + 2k edges of Q
must be in E(M,N), since N is an independent set. However, this implies that
Q = P2k+1 has at least 2k + 1 edges, which is a contradiction.

Lemma 7. For all k ≥ 1, each vertex in Kk is an endpoint of a Pk.

Proof. The statement is trivially true for k = 1. Assume it is true for all k < n.
For k = n, let v be any vertex in V (Kn). By the inductive hypothesis, there
must be a Pn−1 in V (Kn) \ {v}. v must be connected to an endpoint of said
Pn−1, implying that v is an endpoint of a Pn.

Lemma 8. For all k ≥ 4, every vertex in Kk − e is an endpoint of a Pk.

Proof. Let v and w be the only two vertices in Kk−e that do not share an edge.
Let u be any vertex in V (Kk − e) \ {v, w}. Let V ′ = V (Kk − e) \ {u, v, w}. Since
k ≥ 4, |V ′| ≥ 1 and G[V ′] is the complete graph Kk−3. Clearly, Kk−3 must have
a Pk−3. Observe that w, the Pk−3 in G[V ′], u, and v form a Pk with endpoints
w and v. Moreover, u, v, the Pk−3, and w form a Pk with endpoints u and w.

In Type 1/1a/1b and Type 3 colorings, the observations made are simple
applications of the lemmas above. For Type 2/2a/2b colorings, it is easy to see
that the extra red edge in E(B) increases the length of the red paths in Kr.
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