
On Computing a Center Persistence Diagram
Yuya Higashikawa
School of Social Information Science, University of Hyogo, Kobe, Japan
higashikawa@sis.u-hyogo.ac.jp

Naoki Katoh
School of Social Information Science, University of Hyogo, Kobe, Japan
naoki.katoh@gmail.com

Guohui Lin
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
guohui@ualberta.ca

Eiji Miyano
Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, Japan
miyano@ces.kyutech.ac.jp

Suguru Tamaki
School of Social Information Science, University of Hyogo, Kobe, Japan
tamak@sis.u-hyogo.ac.jp

Junichi Teruyama
School of Social Information Science, University of Hyogo, Kobe, Japan
junichi.teruyama@sis.u-hyogo.ac.jp

Binhai Zhu
Gianforte School of Computing, Montana State University, Bozeman, MT 59717, USA
bhz@montana.edu

Abstract

Throughout this paper, a persistence diagram P is composed of a set P of planar points (each corresponding to
a topological feature) above the line Y = X , as well as the line Y = X itself, i.e., P = P ∪ {(x, y)|y = x}.
Given a set of persistence diagrams P1, ...,Pm, for the data reduction purpose, one way to summarize their
topological features is to compute the center C of them first under the bottleneck distance. Here we mainly focus
on the two discrete versions when points in C could be selected with or without replacement from Pi’s. (We
will briefly discuss the continuous case, i.e., points in C are arbitrary, which turns out to be closely related to the
3-dimensional geometric assignment problem). For technical reasons, we first focus on the case when |Pi|’s
are all the same (i.e., all have the same size n), and the problem is to compute a center point set C under the
bottleneck matching distance. We show, by a non-trivial reduction from the Planar 3D-Matching problem, that
this problem is NP-hard even when m = 3 diagrams are given. This implies that the general center problem
for persistence diagrams under the bottleneck distance, when Pi’s possibly have different sizes, is also NP-hard
when m ≥ 3. On the positive side, we show that this problem is polynomially solvable when m = 2 and admits
a factor-2 approximation for m ≥ 3. These positive results hold for any Lp metric when Pi’s are point sets of
the same size, and also hold for the case when Pi’s have different sizes in the L∞ metric (i.e., for the Center
Persistence Diagram problem). This is the best possible in polynomial time for the Center Persistence Diagram
under the bottleneck distance unless P = NP. All these results hold for both of the discrete versions as well as the
continuous version; in fact, the NP-hardness and approximation results also hold under the Wasserstein distance
for the continuous version.
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2 Computing a Center Persistence Diagram

1 Introduction

Computational topology has found a lot of applications in recent years [7]. Among them, persistence
diagrams, each being a set of (topological feature) points above and inclusive of the line Y = X in
the X-Y plane, have also found various applications, for instance in GIS [1], in neural science [12], in
wireless networks [20], and in prostate cancer research [19]. (Such a topological feature point (b, d)
in a persistence diagram, which we will simply call a point henceforth, indicates a topological feature
which appears at time b and disappears at time d. Hence b ≤ d. In the next section, we will present
some technical details.) A consequence is that practitioners gradually have a database of persistence
diagrams when processing the input data over certain period of time. It is not uncommon these days
that such a database has tens of thousands of persistence diagrams, each with up to several thousands
of points. How to process and search these diagrams becomes a new challenge for algorithm designers,
especially because the bottleneck distance is typically used to measure the similarity between two
persistence diagrams.

In [10] the following problem was studied: given a set of persistence diagrams P1, ...,Pm, each
with size at most n, how to preprocess them so that each has a key ki for i = 1, ...,m and for a query
persistence diagram Q with key k, an approximate nearest persistence diagram Pj can be returned
by searching the key k in the data structure for ki’s. A hierarchical data structure was built and
the keys are basically constructed using snap roundings on a grid with different resolutions. There
is a trade-off between the space complexity (i.e., number of keys stored) and the query time. For
instance, if one wants an efficient (polylogarithmic) query time, then he/she has to use an exponential
space; and with a linear or polynomial space, then he/she needs to spend an exponential query time.
Different from traditional problems of searching similar point sets [15], one of the main technical
difficulties is to handle points near the line Y = X .

In prostate cancer research, one important part is to determine how the cancer progresses over
certain period of time. In [19], a method is to use a persistence diagram for each of the histopathology
images (taken over certain period of time). Naturally, for the data collected over some time interval,
one could consider packing a corresponding set of persistence diagrams with a center, which could be
considered as a median persistence diagram summarizing these persistence diagrams. A sequence
of such centers over a longer time period would give a rough estimate on how the prostate cancer
progresses. This motivates our research. On the other hand, while the traditional center concept (and
the corresponding algorithms) has been used for planar point sets (under the Euclidean distance) [23]
and on binary strings (under the Hamming distance) [21]; recently we have also seen its applications
in more complex objects, like polygonal chains (under the discrete Frechet distance) [17, 2]. In this
sense, this paper is also along this line.

Formally, in this paper we consider a way to pack persistence diagrams. Namely, given a set of
persistence diagrams P1, ...,Pm, how to compute a center persistence diagram? Here the distance
measure used is the traditional bottleneck distance and Wasserstein distance (where we first focus on
the former). We first describe the case when all Pi’s have the same size n, and later we show how
to withdraw this constraint (by slightly increasing the running time of the algorithms). It turns out
that the continuous case, i.e., when the points in the center can be arbitrary, is very similar to the
geometric 3-dimensional assignment problem: Given three points sets Pi of the same size n and each
colored with color-i for i = 1..3, divide points in Pi’s into n 3-clusters (or triangles) such that points
in each cluster or triangle have different colors, and some geometric quantity (like the maximum area
or perimeter of these triangles) is minimized [25, 13]. For our application, we need to investigate
discrete versions where points in the center persistence diagram must come from the input diagrams
(might be from more than one diagrams). We show that the problem is NP-hard even when m = 3
diagrams are given. On the other hand, we show that the problem is polynomially solvable when
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m = 2 and the problem admits a 2-approximation for m ≥ 3. At the end, we briefly discuss how to
adapt the results to Wasserstein distance for the continuous case. The following table summarizes the
main results in this paper.

Table 1 Results for the Center Persistence Diagram problems under the bottleneck (dB) and Wasserstein
(Wp) distances when m ≥ 3 diagrams are given.

Hardness Inapproximability bound Approximation factor
dB , with no replacement NP-complete 2− ε 2
dB , with replacement NP-complete 2− ε 2
dB , continuous NP-hard 2− ε 2
Wp, with no replacement ? ? 2
Wp, with replacement ? ? 2
Wp, continuous NP-hard ? 2

This paper is organized as follows. In Section 2, we give some necessary definitions and we also
show, as a warm-up, that the case when m = 2 is polynomially solvable. In Section 3, we prove that
the Center Persistence Diagram problem under the bottleneck distance is NP-hard when m = 3 via a
non-trivial reduction from the Planar three-dimensional Matching (Planar 3DM) problem. In Section
4, we present the factor-2 approximation algorithm for the problem (when m ≥ 3). In Section 5, we
briefly discuss how to modify the proofs to the continuous Center Persistence Diagram under the
Wasserstein distance. In Section 6, we conclude the paper with some open questions.

2 Preliminaries

We assume that the readers are familiar with standard terms in algorithms, like approximation
algorithms [4], and NP-completeness [11].

2.1 Persistence Diagram

Homology is a machinery from algebraic topology which gives the ability to count the number of
holes in a k-dimensional simplicial complex. For instance, let X be a simplicial complex, and let the
corresponding k-dimensional homology be Hk(X), then the dimension of H0(X) is the number of
path connected components of X and H1(X) consists of loops in X , each is a ‘hole’ in X . It is clear
that these numbers are invariant under rigid motions (and almost invariant under small numerical
perturbations) on the original data, which is important in many applications. For further details on
classical homology theory, the readers are referred to [14], and to [7, 24] for additional information on
computational homology. It is well known that the k-dimensional homology of X can be computed
in polynomial time [7, 8, 24].

Ignoring the details for topology, the central part of persistent homology is to track the birth
and death of the topological features when computing Hk(X). These features give a persistence
diagram (containing the birth and death times of features as pairs (b, d) in the extended plane). See
Figure 1 for an example. Note that as a convention, the line Y = X is included in each persistence
diagram, where points on the line Y = X provide infinite multiplicity, i.e., a point (t, t) on it could be
considered as a dummy feature which is born at time t then immediately dies. Formally, a persistence
diagram P is composed of a set P of planar points (each corresponding to a topological feature)
above the line Y = X , as well as the line Y = X itself, i.e., P = P ∪ {(x, y)|y = x}. Due to the
infinite multiplicity on Y = X , there is always a bijection between Pi and Pj , even if Pi and Pj have
different sizes.
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Figure 1 Two persistence diagrams P and Q, with feature point sets P = {p1, p2, p3} and Q =
{q1, q2} respectively. A point p1 = (b, d) means that it is born at time b and it dies at time d. The
projection of p1 on Y = X gives p′.

Given two persistent diagrams Pi and Pj , each with O(n) points, the bottleneck distance between
them is defined as follows:

dB(Pi,Pj) = inf
φ
{ sup
x∈Pi

‖x− φ(x)‖∞, φ : Pi → Pj is a bijection}.

Similarly, the p-Wasserstein distance is defined as

Wp(Pi,Pj) =
(

inf
φ

∑
x∈Pi

‖x− φ(x)‖p∞

)1/p

, φ : Pi → Pj is a bijection.

We refer the readers to [7] for further information regarding persistence diagrams. Our extended
results regarding Wasserstein distance will be discussed solely in Section 5, and until then we focus
only on the bottleneck distance.

For point sets P1, P2 of the same size, we will also use dpB(P1, P2) to represent their bottleneck
matching distance, i.e., let β be a bijection between P1 and P2,

dpB(P1, P2) = min
β

max
a∈P1

dp(a, β(a)).

Here, dp(−) is the distance under the Lp metric. As we mainly cover the case p = 2, we will use
dB(Pi, Pj) instead of d2

B(Pi, Pj) henceforth. Note that in comparing persistence diagrams, the L∞
metric is always used. For our hardness constructions, all the valid clusters form either horizontal or
vertical segments, hence the distances under L2 and L∞ metrics are all equal in our constructions.

While the bottleneck distance between two persistence diagrams is continuous in its original
form, it was shown that it can be computed using a discrete method [7], i.e., the traditional geometric
bottleneck matching [9], in O(n1.5 logn) time. In fact, it was shown that the multiplicity property of
the line Y = X can be used to compute the bottleneck matching between two diagrams P1 and P2
more conveniently — regardless of their sizes [7]. This can be done as follows. Let Pi be the set of
feature points in Pi. Then project points in Pi perpendicularly on Y = X to have P ′i respectively, for
i = 1, 2. (See also Figure 1.) It was shown that the bottleneck distance between two diagrams P1
and P2 is exactly equal to the bottleneck (bipartite) matching distance, in the L∞ metric, between
P1 ∪ P ′2 and P2 ∪ P ′1. Here the weight or cost of an edge c(u, v), with u ∈ P ′2 and v ∈ P ′1, is set to
zero; while c(u, v) = ‖u− v‖∞, if u ∈ P1 or v ∈ P2. The p-Wasserstein distance can be computed
similarly, using a min-sum bipartite matching between P1 ∪ P ′2 and P2 ∪ P ′1, with all edge costs
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raised to cp. (Kerber, et al. showed that several steps of the bottleneck matching algorithm can be
further simplified [18].) Later, we will extend this construction for more than two diagrams.

2.2 Problem Definition

Throughout this paper, for two points p1 = (x1, y1) and p2 = (x2, y2), we use dp(p1, p2) to represent
the Lp distance between p1 and p2, which is dp(p1, p2) = (|x1 − x2|p + |y1 − y2|p)1/p, for p <∞.
When p = ∞, d∞(p1, p2) = ‖p1 − p2‖∞ = max{|x1 − x2|, |y1 − y2|}. We will mainly focus on
L2 and L∞ metrics, for the former, we simplify it as d(p1, p2).

I Definition 1. The Center Persistence Diagram Problem under the Bottleneck Distance
(CPD-B)

Instance: A set of m persistence diagrams P1, ...,Pm with the corresponding feature point sets
P1, ..., Pm respectively, and a real value r.

Question: Is there a persistence diagram Q such that maxi dB(Q,Pi) ≤ r?

Note that we could have three versions, depending on Q. We mainly focus on the discrete version
when the points in Q are selected with no replacement from the multiset ∪i=1..mPi. It turns out that
the other discrete version, i.e., the points in Q are selected with replacement from the set ∪i=1..mPi,
is different from the first version but all the results can be carried over with some simple twist. We
will briefly cover the continuous case, i.e., when points Q are arbitrary; as we covered earlier in the
introduction, when m = 3, this version is very similar to the geometric three-dimensional assignment
problem [25, 13].

We will firstly consider two simplified versions of the corresponding problem.

I Definition 2. The m-Bottleneck Matching Without Replacement Problem
Instance: A set of m planar point sets P1, ..., Pm such that |P1| = · · · = |Pm| = n, and a real

value r.
Question: Is there a point set Q, with |Q| = n, such that any q ∈ Q is selected from the multiset

∪iPi with no replacement and maxi dB(Q,Pi) ≤ r?

I Definition 3. The m-Bottleneck Matching With Replacement Problem
Instance: A set of m planar point sets P1, ..., Pm such that |P1| = · · · = |Pm| = n, and a real

value r.
Question: Is there a point set Q, with |Q| = n, such that any q ∈ Q is selected from the set ∪iPi

with replacement and maxi dB(Q,Pi) ≤ r?

It turns out that these two problems are really to find center points in Q to cover m-clusters
with an optimal covering radius r, with each cluster being composed of m points, one each from
Pi. For m = 3, this is similar to the geometric three-dimensional assignment problem which aims
at finding m-clusters with certain criteria [25, 13]. However, the two versions of the problem are
slightly different from the geometric three-dimensional assignment problem. The main difference
is that in these discrete versions a cluster could be covered by a center point which does not belong
to the cluster. See Figure 2 for an example. Also, note that the two versions themselves are slightly
different; in fact, their solution values could differ by a factor of 2 (see Figure 3).

Note that we could define a continuous version in which the condition on q is withdrawn and this
will be briefly covered at the end of each section. In fact, we focus more on the optimization versions
of these problems. We will show that 3-Bottleneck Matching, for both the discrete versions, is
NP-hard, immediately implying CPD-B is NP-hard form ≥ 3. We then present a 2-approximation for
the m-Bottleneck Matching Problem and later we will show how to make some simple generalization
so the ‘equal size’ condition can be withdrawn for persistence diagrams — this implies that CPD-B
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b

c

e

d

f

a

Figure 2 An example with P1 = {a, b}, P2 = {c, d} and P3 = {e, f}, with all the points (except b)
on a unit circle and b being the center of the circle. For the ‘without replacement’ version, the optimal
solution is Q1 = {b, c}, where b covers the 3-cluster {a, d, e}, c covers the 3-cluster {b, c, f} and the
optimal covering radius is 1. For the ‘with replacement’ version, the optimal solution could be the same,
but could also be {b, b}.

also admits a 2-approximation for m ≥ 3. We will focus on the ‘without replacement’ version in our
writing, and later we will show how to generalize it to the ‘with replacement’ version at the end of
each section. Henceforth, we will refer to the ’without replacement’ version simply as m-Bottleneck
Matching unless otherwise specified.

At first, we briefly go over a polynomial time solution for the case when m = 2.

b
a

c
d

e

f

Figure 3 An example with P1 = {a, b}, P2 = {c, d} and P3 = {e, f}, with all the points on a unit line
segment and a being the midpoint of the segment. For the ‘without replacement’ version, the optimal
solution is Q1 = {a, b}, where a covers the 3-cluster {a, c, f}, b covers the 3-cluster {b, d, e} and the
optimal covering radius is 1. For the ‘with replacement’ version, the optimal solution is Q2 = {a, a},
with the same clusters {a, c, f} and {b, d, e}, and the optimal covering radius being 1/2.

2.3 A Warm-up for m = 2
First, recall that |P1| = |P2| = n. Note that the optimal solution must be the distance between p ∈ P1
and q ∈ P2. We first consider the decision version of the problem; namely, given a radius r, find a
clustering of 2-points {p1i, p2j}, with pxy ∈ Px(x = 1, 2), such that the distance between each of
them and q̂, where q̂ is selected with no replacement from the multiset P1 ∪ P2, is at most r. (Note
that q̂ is not necessarily equal to p1i or p2j .) Once having this decision procedure, we could use a
binary search to compute the smallest radius such a clustering exists.

Given the radius r, we construct a flow network G = (V,E) as follows: besides the source s and
the sink t, there are four layers of nodes. The first layer contains n nodes corresponding to the n
points of P1, the second and the third layers both contain 2n nodes corresponding to the 2n points of
P1 ∪ P2, and the fourth layer contains n nodes corresponding to the n points of P2. Each node p1i
in the first layer has a link going out to a node p`j in the second layer if their distance is at most r;
for example, p1i in the first layer surely has a link going out to p1i in the second layer, due to their
distance being 0. Each node p`i in the second layer has only one out-going link to the node p`i in the



Higashikawa, et al. 7

third layer. Each node p`i in the third layer has a link going out to a node p2j in the fourth layer if
their distance is at most r. Lastly, the source s has a link going out to every node in the first layer,
and every node in the fourth layer has a link going out to the sink t. All the links in the constructed
network has unit capacity.

One sees that the path s-p1h-p`i-p`i-p2j is used to send a unit of flow if and only if 1) p`i is
selected into the set Q, and 2) p`i is matched with p1h (p2j , respectively) in the bottleneck matching
between Q and P1 (P2, respectively). Therefore, the maximum flow has a value n if and only if Q is
determined such that the maximum bottleneck matching distance is at most r. Since the constructed
network is acyclic, its maximum flow can be computed in O(n3) time [22]. A binary search to find
the optimal radius leads to a solution running in O(n3 logn) time.

For the ‘With Replacement’ version, given a radius r, an unweighted bipartite graph between P1
and P2 can be first constructed. In the graph there is an edge between u ∈ P1 and v ∈ P2 if there is
a point w ∈ P1 ∪ P2 such that a circle with radius r centered w can cover both u and v. Then, the
decision problem is to decide whether a perfect matching exists, which can be solved in O(n2.5) time
[16]. A binary search for the optimal radius gives a solution which runs in O(n2.5 logn) time.

For the continuous version, the problem can be solved by computing the geometric bottleneck
matching between P1 and P2 in O(n1.5 logn) time [9]. After the matched edges between P1 and P2
are identified, the set of midpoints of ll the edges in the matching gives us the solution.

The above algorithm can be generalized for two persistence diagrams, with the distance between
two points in the L∞ metric. In general, the sizes of two persistence diagrams might not be the same,
i.e., |P1| might not be the same as |P2|. This can be handled easily using the projection method in [7],
which has been described in subsection 2.1 and will be generalized for m ≥ 3 in Section 4. Hence,
we have the following theorem.

I Theorem 4. The Center Persistence Diagram Problem can be solved in polynomial time, for
m = 2 and for all the three versions (‘Without Replacement’, ‘With Replacement’ and continuous
versions).

In the next section, we will consider the case for m = 3.

3 3-Bottleneck Matching is NP-complete

We will first focus on the L2 metric in this section and at the end of the proof it should be seen that
the proof also works for the L∞ metric. For m = 3, we can color points in P1, P2 and P3 in color-1,
color-2 and color-3. Then, in this case, the problem is really to find n disks centered at n points
from P1 ∪ P2 ∪ P3, with smallest radii r∗i (i = 1..n) respectively, such that each disk contains exact
3 points of different colors (possibly including the center of the disk); moreover, maxi=1..n r

∗
i is

bounded from above by a given value r. We also say that these 3 points form a cluster.
It is easily seen that (the decision version of) 3-Bottleneck Matching is in NP. Once the n guessed

disks are given, the problem is then a max-flow problem, which can be verified in polynomial time.
We next show that Planar 3-D Matching (Planar 3DM) can be reduced to 3-Bottleneck Matching

in polynomial time. The former is a known NP-complete problem [6]. In 3DM, we are given three
sets of elements E1, E2, E3 (with |E1| = |E2| = |E3| = γ) and a set T of n triples, where T ∈ T
implies that T = (a1, a2, a3) with ai ∈ Ei. The problem is to decide whether there is a set S of γ
triples such that each element in Ei appears exactly once in (the triples of) S. The Planar 3DM incurs
an additional constraint: if we embed elements and triples as points on the plane such that there is an
edge between an element a and a triple T iff a appears in T , then the resulting graph is planar.

An example for Planar 3DM is as follows: E1 = {1, 2}, E2 = {a, b}, E3 = {x, y}, and
T = {(1, a, x), (2, b, x), (2, b, y), (1, b, y)}. The solution is S = {(1, a, x), (2, b, y)}.
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Given an instance for Planar 3DM and a corresponding planar graph G with O(n) vertices, we
first convert it to a planar graph with degree at most 3. This can be done by replacing a degree-d
element node x in G with a path of d nodes x1, ..., xd, each with degree at most 3 and the connection
between x and a triple node T is replaced by a connection from xi to T for some i (see also Figure
4). We have a resulting planar graph G′ = (V (G′), E(G′)) with degree at most 3 and with O(n)
vertices. Then we construct a rectilinear embedding of G′ on a regular rectilinear grid with a unit
grid length, where each vertex u ∈ V (G′) is embedded at a grid point and an edge (u, v) ∈ E(G′) is
embedded as an intersection-free path between u and v on the grid. It is well-known that such an
embedding can be computed in O(n2) time [26].

Let x be a black node (• in Figure 4) with degree d in G. In the rectilinear embedding of G′, the
paths from xi to xi+1 (i = 1, ..., d− 1) will be the basis of the element gadget for x. (Henceforth,
unless otherwise specified, everything we talk about in this reduction is referred to the rectilinear
embedding of G′.) We put a copy of • at each (grid point) xi as in Figure 4. (If the path from xi to
xi+1 is of length greater than one, then we put • at each grid point on the path from xi to xi+1.)

We now put color-2 and color-3 points (� and �) at 1/3 and 2/3 positions at each grid edge which
is contained in some path in an element gadget (in the embedding of G′). These points are put in a
way such that it is impossible to use a discrete disk centered at a • point with radius 1/3 to cover three
points with different colors. These patterns are repeated to reach a triple gadget, which will be given
later. Note that this construction is done similarly for elements y and z, except that the grid points in
the element gadgets for y and z are of color-2 (�) and color-3 (�) respectively.

I Lemma 5. In an element gadget for x, exactly one xi is covered by a discrete disk of radius 1/3,
centered at a (colored) grid point out of the gadget.

Proof. Throughout the proof, we refer to Figure 4. Let x be colored by color-1 (e.g., •). In the
rectilinear embedding, let the path length between x1 and xd be D. Then, the total number of points
on the path from x1 to xd, of colors 1, 2 and 3, is 3D + 1. By the placement of color-2 and color-3
points in the gadget for x, exactly 3D points of them can be covered by D discrete disks of radii
1/3 (centered either at color-2 or color-3 points in the gadget). Therefore, exactly one of xi must be
covered by a discrete disk centered at a point out of the gadget. J

When xi is covered by a discrete disk of radius 1/3 centered at a point out of the gadget x, we
also say that xi is pulled out of x.

x

d=3

gadget for x

x1 x2 x3

Figure 4 The gadget for element x.

We now illustrate how to construct a triple gadget T = (x, y, z). It is basically a grid point on
which we put three points with different colors. (In Figure 5, we simply use a N representing such a
triple gadget.) The interpretation of T being selected in a solution for Planar 3DM is that the three
colored points at N is covered by a disk of radius zero, centered at one of these three points. When
one of these three points at N is covered by a disk of radius 1/3 centered at some other points (on



Higashikawa, et al. 9

the path from one of the elements x, y or z to T ), we say that such a point is pulled out of the triple
gadget T by the corresponding element gadget.

I Lemma 6. In a triple gadget for T = (x, y, z), to cover the three points representing T using
discrete disks of radii at most 1/3, either all the three points are pulled out of the triple gadget T by
the three element gadgets respectively, or none is pulled out. In the latter case, these three points can
be covered by a discrete disk of radius zero.

Proof. Throughout the proof, we refer to Figure 5. At the triple gadget T , if only one point (say •) is
pulled out or two points (say, • and �) are pulled out, then the remaining points in the triple, � and �
or � respectively, could not be properly covered by a discrete disk of radius 1/3 — such a disk would
not be able to cover a cluster of exactly three points of distinct colors. Therefore, either all the three
points associated with T are pulled out by the three corresponding element gadgets, hence covered by
three different discrete disks of radii 1/3; or none of these three points is pulled out. Clearly, in the
latter case, these three points associated with T can be covered by a discrete disk of radius zero, as a
cluster. J

In Figure 5, we show the case when x would not pull any point out of the gadget for T . By
Lemma 5, y and z would do the same, leading T = 〈x, y, z〉 to be selected in a solution S for Planar
3DM. Similarly, in Figure 6, x would pull a • point out of T . Again, by Lemma 5, y and z would pull
� and � points (one each) out of T , which implies that T would not be selected in a solution S for
Planar 3DM.

x2

x3x1

gadget for y

triple gadget for T=(x,y,z)

gadget for z

Figure 5 The triple gadget for T = 〈x, y, x〉 (represented as N, which is really putting three element
points on a grid point). In this case the triple 〈x, y, z〉 is selected in the final solution (assuming operations
are similarly performed on y, z). Exactly one of xi (in this case x2) is pulled out of the gadget for the
element x.

We hence have the following theorem.

I Theorem 7. The decision versions of 3-Bottleneck Matching for both the ‘Without Replacement’
and ‘With Replacement’ cases are NP-complete, and the decision version of the continuous 3-
Bottleneck Matching is NP-hard.

Proof. We discuss the ‘Without Replacement’ discrete case first, and will drop the keyword ‘Without
Replacement’ until the end of the proof. As explained a bit earlier, (the decision version of) 3-
Bottleneck Matching is obviously in NP. Moreover, we show in Lemma 5 and Lemma 6 that, given
an instance for Planar 3DM with n triples over 3γ base elements we can convert it into an instance
I of 3Kn points of three colors (Kn points are of color-1, color-2 and color-3 respectively) in
polynomial time, where K is related to this polynomial running time. We just formally argue below
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x2

x3x1

gadget for z

gadget for y

triple gadget for T=(x,y,z)

Figure 6 The triple gadget for T = 〈x, y, x〉 (represented as N, which is really putting three element
points on a grid point). In this case the triple 〈x, y, z〉 would not be selected in the final solution. Note
that the black round point in the triple gadget is pulled out by the element x, and the other two points
are pulled out similarly by the element y and z.

that Planar 3DM has a solution of γ triples if and only if the converted instance I of 3Kn points can
be partitioned into Kn clusters each covered by a discrete disk of radius 1/3; moreover, there are
exactly γ such clusters which are covered by discrete disks with radii zero.

‘Only if part:’ If the Planar 3DM instance has a solution, we have a set S of γ triples which
uniquely cover all the 3γ elements. Then, at each of the corresponding γ triple gadgets, we use a
discrete disk of radius zero to cover the corresponding three points. By Lemma 5, in each element
gadget x exactly one point xi could be pulled out of the gadget, connecting to these selected triple
gadgets. By Lemma 6, the triple gadgets can be covered exactly in two ways. Hence the triples not
corresponding to S will be covered in the other way: for T = 〈x, y, z〉 not in S, one point of each
color will be pulled out of the triple gadget for T .

‘If part:’ If the converted instance I of 3Kn points can be partitioned into Kn clusters each
covered by a discrete disk of radius 1/3 and there are exactly γ clusters whose covering discrete disks
have radii zero, then the triples corresponding these clusters of point form a solution to the original
Planar 3DM instance. The reason is that, by Lemma 6, the remaining points will be covered by a
discrete disk of radius 1/3 (and cannot be further shrunk). Moreover, by Lemma 5, at each element
gadget, exactly one point will be fulled out, leading to the corresponding triple gadget being covered
by a discrete disk of radius zero — which implies that exactly one element is covered by a selected
triple.

It can be seen by now the proof works for the ‘With Replacement’ discrete version without any
change in the proof. For the continuous version, the NP-hardness holds with the same reduction.
The reason for the NP-hardness to hold is that the optimal grouping of three points (0,0), (0,1/3),
(0,2/3) is to use (0,1/3) as the continuous center, even though itself is still discrete. However, the NP
membership does not hold anymore for the continuous case (since a guessed solution involve real
numbers). This closes our proof. J

Note that in the above proof, if Planar 3DM does not have a solution, then we need to use discrete
disks of radii at least 2/3 to have a valid solution for 3-Bottleneck Matching. This implies that finding
a factor-(2 − ε) approximation for (the optimization version of) 3-Bottleneck Matching remains
NP-hard.

I Corollary 8. It is NP-hard to approximate (the optimization version of) 3-Bottleneck Matching
within a factor 2− ε, for some ε > 0 and for all the three versions.
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We comment that the NP-hardness proofs in [13, 25] also use a reduction from Planar 3DM;
however, those proofs are only for the L2 metric. Here, it is clear that our reduction also works for the
L∞ metric without any modification — this is due to that all clusters in our construction are either
horizontal or vertical, therefore the distances within a cluster would be the same under L2 and L∞.
With respect to the CPD-B problem, points in color-i, i = 1, 2, 3, are the basis for us to construct
a persistence diagram. To handle the line Y = X in a persistence diagram, let the diameter of the
(union of the) three constructed point sets of different colors be D̂, we then translate these points as a
whole set rigidly such that all the points are at least 2D̂ distance away from Y = X . We then have
three persistence diagrams. (The translation is to neutralize the infinite multiplicity of Y = X , i.e., to
enforce that all points on Y = X can be ignored when computing the bottleneck distance between
the corresponding persistence diagrams.) Hence, we have the following corollary.

I Corollary 9. It is NP-hard to approximate (the optimization version of) Center Persistence
Diagram problem under the bottleneck distance for m ≥ 3 within a factor 2− ε, for some ε > 0 and
for all the three versions.

In the next section, we present tight approximation algorithms for the above problems.

4 A Tight Approximation

4.1 Approximation for m-Bottleneck Matching

We first present a simple Algorithm 1 for m-Bottleneck Matching as follows. Recall that in the
m-Bottleneck Matching problem we are given m sets of planar points P1, ..., Pm, all with the same
size n. Without of generality, let the points in Pi be colored with color-i.
1. Pick any color, say, color-1.
2. Compute the bottleneck matching M1,i between P1 and Pi for i = 2, ...,m.
3. For the m− 1 edges (p1

j1
, piji

) ∈ M1,i for i = 2, ...m, where pxy ∈ Px for x = 1, ...,m, form a
cluster {p1

j1
, p2
j2
, ..., pmjm

} with p1
j1

as its center.

We comment that the algorithm itself is similar to the one given for m = 3 in [13], which has
a different objective function (i.e., minimizing the maximum perimeter of clusters). We show next
that Algorithm 1 is a factor-2 approximation for m-Bottleneck Matching. Surprisingly, the main tool
here is the triangle inequality of a distance measure. Note that we can not only handle for any given
m ≥ 3, we also need some twist in the proof a bit later for the three versions of the Center Persistence
Diagram problem, where the diagrams could have different sizes.

I Theorem 10. Algorithm 1 is a polynomial time factor-2 approximation for m-Bottleneck Match-
ing for all the three versions (i.e., ‘Without Replacement’, ‘With Replacement’ and continuous
versions).

Proof. One clearly sees that the running time of Algorithm 1 is O(mn1.5 logn).
(1) We discuss the ‘Without Replacement’ first. In an optimal solution form-Bottleneck Matching

with its radius OPT, let {q1, q2, ..., , qm} denote a cluster with its discrete center q̂, where qi is in
color-i, for i = 1, ...,m.

From OPT ≥ max{d(q̂, q1), d(q̂, q2), ..., d(q̂, qm)} and the triangle inequality, we have d(q1, qj) ≤
d(q1, q̂) + d(qj , q̂) ≤ 2 · OPT for j = 2, ...,m. This implies a matching between P1 and Pi with
radius at most 2 · OPT, for i = 2, ...,m.

Let APP denote the maximum radius between the m − 1 bottleneck matchings computed in
Algorithm 1; then the radius of the produced solution is APP, and we have APP ≤ d(q1, qj) ≤ 2·OPT
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for j = 2, ...,m. That is, Algorithm 1 is a polynomial time factor-2 approximation for m-Bottleneck
Matching (for the ‘Without Replacement’ version).

(2) We next discuss the ‘With Replacement’ case. Note that we never need to change the algorithm.
In this case, first note that the points in the center C are selected from Pi’s with replacement. Then,

given an optimal solution for this case we notice that some points in Pi’s can be selected multiple
times (i.e., more than once) in C. Let q be such a point in C. If q covers a cluster including itself, then
we leave that cluster alone; otherwise, pick any cluster covered by q and also leave q and that cluster
alone. Then, anytime when q covers {p1

j1
, p2
j2
, ..., pmjm

} once more with q 6∈ {p1
j1
, p2
j2
, ..., pmjm

}, we
switch the center for this cluster to p1

j1
(i.e., the point with color-1). Clearly, we have

d(p1
j1
, piji

) ≤ d(p1
j1
, q) + d(q, piji

) ≤ 2 · OPT,

for i = 2, ...,m. Then, combined with the other (‘Without Replacement’) case covered in part (1),
we can conclude that Algorithm 1 provides a 2-approximation for the ‘With Replacement’ case as
well when m ≥ 3. In fact, the example in Figure 3 shows a simple matching lower bound of factor 2.

(3) The proof for the continuous case would be almost identical as in part (1); in fact, we just
need to define q̂ as an arbitrary point covering the given cluster {q1, q2, ..., , qm}. And the remaining
arguments would be the same. J

4.2 Generalization to the Center Persistence Diagram Problem under
the Bottleneck Distance

First of all, note that the above approximation algorithm works for m-Bottleneck Matching when the
metric is L∞. Hence, obviously it works for the case when the input is a set ofm persistence diagrams
(all having the same size), whose (feature) points are all far away from Y = X , and the distance
measure is the bottleneck distance. (Recall that, when computing the bottleneck distance between
two persistence diagrams using a projection method, we always use the L∞ metric to measure the
distance between two points.)

We next show how to generalize the factor-2 approximation algorithm for m-Bottleneck Matching
to the Center Persistence Diagram problem, first for m = 3. Note that we are given m persistence
diagrams P1, P2, ..., and Pm, with the corresponding non-diagonal point sets being P1, P2, ..., and
Pm respectively. Here the sizes of Pi’s could be different and we assume that the points in Pi are of
color-i for i = 1, ...,m.

Given a point p ∈ Pi, let τ(p) be the (perpendicular) projection of p on the line Y = X .
Consequently, let τ(Pi) be the projected points of Pi on Y = X , i.e.,

τ(Pi) = {τ(p)|p ∈ Pi}.

When m = 2, i.e., when we are only given P1 and P2, not necessarily of the same size, it was
shown by Edelsbrunner and Harer that dB(P1,P2) = d∞B (P1 ∪ τ(P2), P2 ∪ τ(P1)) [7]. (Note that
|P1 ∪ τ(P2)| = |P2 ∪ τ(P1)|.) We next generalize this result. For i ∈ M = {1, 2, ...,m}, let
M(−i) = {1, 2, ..., i− 1, i+ 1, ...,m}. We have the following lemma.

I Lemma 11. Let {i, j} ⊆M = {1, 2, ...,m}. Let τi(Pk) be the projected points of Pk on Y = X

such that these projected points all have color-i, with k ∈M, i 6= k. Then,

dB(Pi,Pj) = d∞B (Pi
⋃

k∈M(−i)

τi(Pk), Pj
⋃

k∈M(−j)

τj(Pk)).

Proof. First, notice that, in terms of sizes, we have

|Pi
⋃

k∈M(−i)

τi(Pk)| = |Pj
⋃

k∈M(−j)

τj(Pk)| =
m∑
l=1
|Pl|.
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Following [7], we have

dB(Pi,Pj) = d∞B (Pi ∪ τi(Pj), Pj ∪ τj(Pi)).

Note that
(Pi

⋃
k∈M(−i)

τi(Pk))− (Pi ∪ τi(Pj)) = (
⋃

k∈M(−i)

τi(Pk))− τi(Pj)

and
(Pj

⋃
k∈M(−j)

τj(Pk))− (Pj ∪ τj(Pi)) = (
⋃

k∈M(−j)

τj(Pk))− τj(Pi)

are really two sets of identical points with color-i and color-j on Y = X respectively. By the
definition of infinite multiplicity property of a persistence diagram, adding these (identical) points
on Y = X would not change the bottleneck matching distance between point sets Pi ∪ τi(Pj) and
Pj ∪ τj(Pi). Consequently,

d∞B (Pi ∪ τi(Pj), Pj ∪ τj(Pi)) = d∞B (Pi
⋃

k∈M(−i)

τi(Pk), Pj
⋃

k∈M(−j)

τj(Pk)).

Therefore, we have

dB(Pi,Pj) = d∞B (Pi
⋃

k∈M(−i)

τi(Pk), Pj
⋃

k∈M(−j)

τj(Pk)).

J

The implication of the above lemma is that the approximation algorithm in the previous subsection
can be used to compute the approximate center of m persistence diagrams. The algorithm can be
generalized by simply projecting each point of color-i, say p ∈ Pi, on Y = X to havem−1 projection
points with every color k, where k ∈ M(−i). Then we have m augmented sets P ′′i , i = 1, ...,m,
of distinct colors, but with the same size

∑
l=1..m |Pl|. Finally, we simply run Algorithm 1 over

{P ′′1 , P ′′2 , ..., P ′′m}, with the distance in the L∞ metric, to have a factor-2 approximation. We leave
out the details for the analysis as at this point all we need is the triangle inequality of the L∞ metric.

I Theorem 12. There is a polynomial time factor-2 approximation for the Center Persistence
Diagram problem under the bottleneck distance with m input diagrams for all the three versions (i.e.,
‘Without Replacement’, ‘With Replacement’ and continuous versions).

Proof. The analysis of the approximation factor is identical with Theorem 10. However, when m is
part of the input, each of the augmented point set P ′′i , i = 1...,m, has a size

∑
l=1..m |Pl| = O(mn).

Therefore, the running time of the algorithm increases to O((mn)1.5 log(mn)), which is, nonetheless,
still polynomial. J

It is interesting to raise the question whether these results still hold if the p-Wasserstein distance
is used, which we depict in the next section. As we will see there, different from under the bottleneck
distance, a lot of questions still remain open.

5 Center Persistence Diagram under the Wasserstein Distance

I Definition 13. The Center Persistence Diagram Problem under the p-Wasserstein Distance
(CPD-W)

Instance: A set of m persistence diagrams P1, ...,Pm with the corresponding feature point sets
P1, ..., Pm respectively, and a real value r.

Question: Is there a persistence diagram Q such that maxiWp(Q,Pi) ≤ r?
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Note that, similar to CPD-B, we could have three versions depending on Q: (1) selected with no
replacement from the multiset ∪i=1..mPi, (2) selected with replacement from the set ∪i=1..mPi, and
(3) arbitrarily selected. We call the first two versions discrete and the third case continuous. Here we
will deal with the continuous case as it is still unknown how to deal with the discrete cases yet.

Given two planar point sets P and Q with size n, they naturally form a complete bipartite graph
〈P,Q〉. Let c(P,Q) be the weight or total cost of the minimum weight matching in the bipartite graph
〈P,Q〉, where the weight or cost of an edge (p, q) is defines as c(p, q) = ‖p− q‖2, for p ∈ P, q ∈ Q.

I Definition 14. The m-BottleneckSum Matching Problem
Instance: A set of m planar point sets P1, ..., Pm such that |P1| = · · · = |Pm| = n, and a real

value r.
Question: Is there a point set Q, with |Q| = n, such that any q ∈ Q is arbitrarily selected and

maxi c(Q,Pi) ≤ r?

The ‘With Replacement’ and ‘With No Replacement’ discrete cases can be defined similarly as in
Section 2. But we only focus on this continuous version here.

5.1 3-BottleneckSum Matching is NP-hard

In this subsection, we first prove that 3-BottleneckSum Matching is NP-hard. The crux to modify
the proof in Theorem 6 is that the objective function is to minimize the maximum summation of
distances, therefore in Figure 6 around the triple gadget T the sum of distances from Q to Pi’s might
be different. In fact, with the three clusters (a, b, w), (c, d, u) and (e, f, v) alone, the sum of distances
from the corresponding centers, i.e., b, c and e, to the points in different colors in these clusters would
already be all different.

a

b

c d

e

f
gadget for x

gadget for y

gadget for z

triple gadget for T=(x,y,z)

vw

u

X

X

X

Figure 7 A skeleton of the reduction from Planar 3DM to 3-BottleneckSum Matching (and also
to the continuous Center Persistence Diagram problem with m = 3 diagrams). The triple gadget for
T = 〈x, y, x〉, represented as N, is really putting three element points of distinct colors on a grid point.

The reduction is still from Planar 3DM. The main change is, at each grid edge with endpoints in
color-i, we put two points with different colors at the midpoint of that edge. See Figure 7. Then, the
optimal (continuous) center for a cluster of three points in different colors would be the midpoint
of these three points with different colors, i.e., with minimum radius 1/4. In Figure 7, the centers
marked as ‘X’ are for the clusters (a, b, w), (c, d, u) and (e, f, v) respectively. Note that each of the
centers has the same distance to the three points in distinct colors in the corresponding cluster. We
thus have the following theorem.
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I Theorem 15. The continuous version of 3-BottleneckSum Matching is NP-hard.

Proof. The reduction is similar to that in Theorem 7 and can be done in O(n2) time. Let Pi be the
set of points used in color-i in the construction, for i = 1..3 and with |P1| = |P2| = |P3|. Then
we could have exactly |P1| clusters. We claim that P1, P2 and P3 admit a point set Q incurring a
3-BottleneckSum matching with a cost of (|P1| − γ)/4 if and only if the Planar 3DM instance has a
YES solution. We leave out the argument details as they are almost identical to those in Theorem
7. J

We show in the next subsection how Theorem 16 can be extended to the continuous Center
Persistence Diagram problem under the p-Wasserstein distance.

5.2 Continuous Center Persistence Diagram under Wasserstein
Distance is NP-hard

I Corollary 16. The (continuous) Center Persistence Diagram problem under p-Wasserstein
distance with m ≥ 3 input persistence diagrams is NP-hard.

Proof. Our reduction is exactly the same as in Theorem 16. We then move the constructed points at
least 2D̂ distance away from Y = X as in Corollary 9, where D̂ is the diameter of all the constructed
points on the rectilinear grid.

Let Pi be the set of points used in color-i in the construction, for i = 1..3 and with |P1| = |P2| =
|P3|. As all our |P1| clusters form either a horizontal or vertical interval with length 1/2, the L∞
distance would be the same as under L2, i.e., each cluster would contribute a value (1/4)p toward
computing the p-Wasserstein distance between Q and Pi — using the midpoint of the interval as the
corresponding center. Therefore, we claim that P1, P2 and P3 admit a center persistence diagram Q
with a maximum p-Wasserstein distance (|P1|−γ)1/p

4 to all Pi’s if and only if the Planar 3DM instance
has a YES solution. We again leave out the arguments. This concludes the proof. J

Note that, for p <∞, the 2− ε inapproximability bound does not hold anymore as in Corollaries
8 and 9. Moreover, the proof of Corollary 16 does not hold for the discrete versions of CPD-W.
Further research is needed along this line. On the other hand, we comment that the 2-approximation
algorithm still works as the p-Wasserstein distance fulfills the triangle inequality.

6 Concluding Remarks

In this paper, we study systematically the Center Persistence Diagram problem under both the
bottleneck and p-Wasserstein distances. Under the bottleneck distance, the results are tight as we
have a 2 − ε inapproximability lower bound and a 2-approximation algorithm (in fact, for all the
three versions). Under the p-Wasserstein distance, unfortunately, we only have the NP-hardness
for the continuous version and a 2-approximation, how to reduce the gap poses an interesting open
problem. In fact, a similar question of obtaining some APX-hardness result was posed in [5] already,
although the (min-sum) objective function there is slightly different. For the discrete cases under the
p-Wasserstein distance, it is not even known whether the problems are NP-hard.
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