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Abstract. Intuitively, a learning algorithm is robust if it can succeed
despite adverse conditions. We examine conditions under which learning
algorithms for classes of formal languages are able to succeed when the
data presentations are systematically incomplete; that is, when certain
kinds of examples are systematically absent. One motivation comes from
linguistics, where the phonotactic pattern of a language may be under-
stood as the intersection of formal languages, each of which formalizes
a distinct linguistic generalization. We examine under what conditions
these generalizations can be learned when the only data available to
a learner belongs to their intersection. In particular, we provide three
formal definitions of robustness in the identification in the limit from
positive data paradigm, and several theorems which describe the kinds
of classes of formal languages which are, and are not, robustly learnable
in the relevant sense. We relate these results to classes relevant to natural
language phonology.

Keywords: identification in the limit, grammatical inference, regular languages,
model theory, locally testable, piecewise testable

1 Introduction

This paper presents an analysis of Gold-style learning [8] of formal languages
from systematically deficient data and the conclusions one can draw from three
different definitions of correctness. For our purposes, the omissions in the data
arise from other constraints. We specifically consider data presentations which
are the intersection of two languages, one of which is the target of learning.

The analysis is illustrated with, and motivated by, classes of formal languages
that are both computationally natural and of particular interest to natural lan-
guage phonology [11]. These classes are well-studied subregular classes which
often have multiple characterizations, including language-theoretic, automata-
theoretic, logical, and algebraic. The classes used to exemplify this work include
the Strictly Local languages [20], the Strictly Piecewise languages [23], and the
Tier-Based Strictly Local languages [13, 18].



As an example, suppose we are interested in learning the formal language L
containing all strings which do not contain bb as a substring. As explained in more
detail in section 2, a positive data presentation for this language would eventually
include strings like babaaca (because it does not contain the bb substring). Now
suppose the observable sequences are also subject to a constraint that words
must not contain a b preceding c at any distance. In this case, the word babaaca
would not be part of the data presentation. Is it still possible to learn L if such
words are never presented?

We provide three formal definitions of robustness in the identification in the
limit from positive data learning paradigm, and several theorems which describe
the kinds of classes of formal languages which are, and are not, robustly learnable
in the relevant sense.4

We opt to explore a modification of Gold-style instead of the Probably Ap-
proximately Correct learning framework (PAC 26) in order to avoid the issue of
defining a distance between formal languages. In the PAC framework, data is
drawn from a stationary distribution, and a learner is required to be reasonably
correct based on the data presented to it. This data could be considered “defi-
cient” if the distribution poorly represents the target concept. As discussed by
Eyraud et al. [5], PAC is not necessarily well-suited for the problem of learn-
ing formal languages. The approximate nature of correctness in PAC requires a
notion of distance between formal languages to judge the quality of a proposed
solution. There are many feasible metrics [22, 4, 25], and the PAC results are
expected to be sensitive to the chosen metric. We choose to study robust learning
in a model where this is not a concern.

Generally, research on identification in the limit from positive data in the
presence of data inaccuracies have identified the following three types [16, chap. 8].

1. Noisy data. A data presentation for a formal language L includes intrusions
from the complement of L.

2. Incomplete data. A data presentation for a formal language L omits examples
from L. That is, if E represents the set of omitted examples, the presentation
is actually a text for L− E rather than for L itself.

3. Imperfect data. Data presentations for a formal language L which both in-
cludes intrusions from the complement of L and omits examples from L.

In this work we only study the identification in the limit from incomplete posi-
tive data. Fulk and Jain [7] study the problem of learning from incomplete data
when there are finitely many data points omitted, which is unlike the case we
consider where there can be infinitely many omitted examples. On the other
hand, Jain [14] considers cases where there are infinitely many omissions. This
work, like that of Fulk and Jain [7], establishes hierarchies of classes that are ex-
actly learnable or not in the presence of inaccurate data. While our first theorem

4 The notion of robustness studied here is different from the one studied by Case et al.
[3]. There, a class is “robustly learnable” if and only if its effective transformations
are learnable too. As such, their primary interest is classes “outside the world of the
recursively enumerable classes.” This paper uses the term “robustly learnable” to
mean learnable despite the absence of some positive evidence.



regards exact identification, our other theorems relax that requirement. Addi-
tionally, Freivalds et al. [6] and Jain et al. [15] consider learning from a finite set
of examples which contains at least all the good examples, which intuitively are
well-chosen illustrations of the language. As learners must succeed with finitely
many examples, this scenario potentially omits infinitely many. The scenario we
consider, however, does not make provision for good examples.

As just mentioned, our strongest definition of correctness requires a learner
to recover exactly the target language on a text drawn from the intersection of
two languages. A key result under this definition is that of its strength, namely
that very few classes of languages are independent of interference under it.

Our main result comes under our second notion of correctness, strong ro-
bustness, which requires a learner only to recover a language compatible with
the target grammar when restricted to the intersection. Under this definition, we
show that classes of languages identifiable with string extension learners [10, 12]
are strongly robust in the presence of interference from all other classes of lan-
guages.

Finally, we present our weakest correctness definition, weak robustness, re-
moving the prior requirement of learning a language in the correct concept class.
Under this definition the class of Tier-Based Strictly Local languages is robustly
learnable, specifically by the algorithm presented by Lambert [17].

More generally, the results here are related to the question of whether two
learnable classes of languages C and D imply a successful learning algorithm for
the class of languages formed by their pointwise intersection {LC ∩ LD : LC ∈
C,LD ∈ D}. In the case of identification in the limit from positive data, the
answer in the general case is negative.5 However, the results above – in particular
strong robustness – help us understand the conditions sufficient for this situation
to occur. In this way, this work helps take a step towards a compositional theory
of language learning.

2 Background

2.1 Identification in the Limit

Gold [8] introduced a number of different definitions of what it means to learn a
formal language. In this work, we concern ourselves only with the notion of learn-
ability in the limit from positive data (ilpd), which is also called explanatory
learning from text [16].

Let Σ denote a fixed finite set of symbols and Σ∗ the set of all strings of
finite length greater than or equal to zero. A formal language L (a constraint)
is a subset of Σ∗.

A text t can be thought of as a function from the natural numbers to Σ∗.
Let

⇀
tn represent the sequence ⟨t0, t1, . . . , tn−1⟩, the length-n initial segment of a

5 Alexander Clark (personal communication) provides a counterexample. Let C =
{L∞, L1, . . . } where Ln = {am : 0 < m < n} ∪ {bn+1} and L∞ = a+ ∪ {b}. Let
D = {a∗}. Both classes are ilpd-learnable but {LC ∩ LD : LC ∈ C,LD ∈ D} is not.



text t. Note
⇀
tn is always of finite size. Let T denote all texts and

⇀T represent the
collection of finite initial segments of these texts. Using the notation for sequences
instead of functions, we write ti instead of t(i). For a text t, let ct(t) = {w :
∃n ∈ N, tn = w}, and similarly ct(

⇀
tn) = {w : 0 ≤ i < n, ti = w}. For a given

language L, we say t is a text for L if and only if ct(t) = L. The set of all texts
for a language L is denoted TL.

Osherson et al. [21] discuss a modification that allows a text to exist for
the empty language: tn may be either an element of L or a distinct symbol ⊚
representing a lack of data. Consequently, the empty language has exactly one
text; for each n ∈ N, tn = ⊚. We denote this text with t⊚.

We denote with G a collection of grammars, by which we mean a set of
finitely-sized representations, each of which is associated with a formal language
in a well-defined way. If a grammar G ∈ G is associated with a formal language
L, we write L(G) = L, and say that G recognizes, accepts, or generates L.

An ilpd-learner is a function φ :
⇀T → G. The learner converges on t iff there

is some grammar G ∈ G and some i ∈ N such that for all j > i, L(φ(⇀tj)) = L(G).
If, for all texts t for a language L, it holds that φ converges on t to a grammar
G such that L(G) = L, then φ identifies L in the limit. If this holds for
all languages of a class C, then φ identifies C in the limit and can be called a
C-ilpd-learner.

Angluin [1] proved the following theorem.

Theorem 1. Let C be a collection of languages which is indexed by some com-
putbale function. C is ilpd-learnable iff there exists a computably enumerable
family of finite sets S such that for each Li ∈ C, there exists a finite Si ⊆ Li

such that for any Lj ∈ C which contains Si, Lj ̸⊂ Li.

The finite set Si is called a telltale set for Li with respect to C.

2.2 String Extension Learning

Heinz [10] introduced string extension learning, a general type of set-based ilpd-
learning algorithm based solely on the information contained in strings. A gener-
alization of this technique is discussed here; for another generalization, see Heinz
et al. [12]. The learner is defined as follows:

φ(
⇀
ti) =


∅ if i = 0, ti = ⊚

∅⊕ f(ti) if i = 0, ti ̸= ⊚

φ(
⇀
ti−1) if i ̸= 0, ti = ⊚

φ(
⇀
ti−1)⊕ f(ti) otherwise,

where f is a function that extracts information from a string and ⊕ is an oper-
ation for inserting information into a grammar.

Finally there is an interpretation relation |=, describing the language rep-
resented by the grammar. The statement w |= G means that w satisfies the
interpretation of G given by this relation. The language of the grammar G then
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Fig. 1. Piecewise, local, and tier-based factors [18].

is L(G) = {w : w |= G}. If it is the case that w |= (G ⊕ f(w)) for all G and w,
then φ is consistent. Often, a learner is defined with the following constraints:
f extracts a set of factors of some sort, grammars are sets of the same type, ⊕
is set union, and w |= G iff f(w) ⊆ G. Such a learner is consistent.

This may appear to simply refer to any incremental learner, but we add one
further restriction: the class of string extension learners is defined to be the
subfamily of these learners that are guaranteed to converge on any text. Every
learner defined by Heinz et al. [12] satisfies this property, as does the incremental
learner defined by Lambert [17] that will be explored further in section 3.3.

2.3 Model-theoretic Factors and Related Formal Language Classes

Lambert et al. [19] discuss a model-theoretic notion of factors. A simplification,
sufficient for the present discussion, involves only a collection of symbol-labeled
domain elements along with a binary relation between them. The relation induces
a graph. A k-factor of a model is a collection of k nodes connected by the
transitive closure of the relevant binary relation. Grammars and formal languages
can be defined in terms of such k-factors.

Different binary relations give rise to different k-factors. Figure 1 shows some
examples for the word ababc. The precedence relation (<) (upper left) yields
several 3-factors: aab, aac, aba, abb, abc, bab, bac. The sucessor relation (◁) (lower
left) yields fewer 3-factors: aba, bab, abc. The precedence relation can be restricted
to a tier T ⊆ Σ of salient symbols. In Figure 1, T = {b, c}. It follows that the
tier-precedence relation (<{b,c}) (upper right) yields only the 2-factors: bb, bc.
The tier-successor relation (◁{b,c}) (lower right), is a binary relation relating
positions on the tier to the positions that are “next” on the tier. Hence, it yields
the 2-factors bb, bc.

Consider grammars G which are sets of k-factors and say w |= G only if the k-
factors in w are a subset of G. Such a definition for the relations ◁, <,◁T yields
the classes of formal languages that are testable in the strict sense: strictly k-
local (sl) [20], strictly k-piecewise (sp) [23, 9], or tier-based strictly k-local (tsl)
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Fig. 2. A hierarchy by subclass of subregular classes.

[13, 18], respectively.6 Such classes are string extension learnable where f maps
w to its k-factors, and ⊕ is set union [10].

Next consider grammars G which are sets of sets of k-factors and and say
w |= G only if the k-factors in w are an element of G. Such a definition for
the ◁, <, and <T relations yields the testable classes: locally k-testable (lt)
[20], piecewise k-testable (pt) [24], or tier-based locally k, T -testable (tlt) [18],
respectively. These classes are string extension learnable where f maps w to its
k-factors, and ⊕ is set insertion [10].

The model-theoretic perspective combined provides a uniform way to char-
acterize these well-studied classes. It also fits well into the generalized string
extension scheme above because both the functions f and the operation ⊕ are
understood simply in terms of k-factors.

The aforementioned results hold for classes where the parameters k, T are
fixed. It is of special interest in linguistics to learn the family of k, T -tsl lan-
guages when k is fixed but T is not. Lambert [17] provides an incremental learn-
ing algorithm for this class of languages, and in section 3.3, it is shown that this
class is robustly learnable in a weak sense.

The aforementioned language classes and others are shown in Figure 2 in-
cluding some complement classes indicated with the prefix ‘co’. Many other
subregular classes exist, but only these few will be discussed in this work. For
more details, readers are referred to Lambert et al. [19]. SF is star-free [20].

3 Robustness

When two or more constraints interact, the intersection of their licensed sets
may no longer provide enough data to learn the constraints. Formally, we are
interested in whether languages in C can be ilpd-learned from texts that are
systematically deficient in some way.

A rare sort of robustness is when the individual constraints are retrievable
exactly from the intersection, entirely unaffected by the increased sparsity of
data. Consider any L ∈ C and any other language M . This sort of robustness
would mean that L is ilpd-learnable on all texts for L ∩M . In this case, there
is a learner φ which can still exactly learn L despite interference from M .

6 Technically, local classes need to be augmented with symbols marking word edges.



If L might be unrecoverable, there could still be a guarantee that one can
recover a grammar whose language produces the same intersection. This sort
of robustness would mean that a learner φ, on any text for L ∩ M , need only
converge to a grammar G such that L(G) ∩M = L ∩M . In this case, there is a
learner φ which may fail to exactly learn L, but learns another language which
is ‘good enough’ up to M .

We study two types of this latter form of robustness. If this equivalent con-
straint L(G) always belongs to the same class C as the original constraint L,
then that class is strongly robust in the presence of the M ; else the robustness is
only weak. This section discusses these notions in order of decreasing strength.

3.1 Unaffectedness

The strongest form of robustness is that in which constraints are guaranteed to
be extractable without loss of information from the interacting pattern.

Definition 1. A class C is unaffected by another class D iff there is a learning
function φ such that for all languages L ∈ C and all languages M ∈ D, φ
converges to a grammar for L on all texts for L ∩M .

C is affected by D iff it is not unaffected by D. The strictness of this criterion
is suggested by the following theorem.

Theorem 2. Every ilpd-learnable class which includes two languages is af-
fected by any class D where ∅ ∈ D.

Proof. Let C be a class which contains distinct languages L1, L2 and let D be a
class containing ∅. There is only one text for L1 ∩∅ = L2 ∩∅ = ∅, which is t⊚.
If a learner exists which correctly converges to L1 on t⊚, it would not correctly
converge to L2 on this same text and vice versa. ⊓⊔

Nearly every class in Figure 2 contains the empty set. Over a non-empty
alphabet, the sole exception is the class of cofinite languages cofin, which may
exclude only finitely many strings. However, even the cofinite languages can be
shown to affect classes with general properties.

Theorem 3. Every ilpd-learnable class which includes two distinct finite lan-
guages is affected by cofin.

Proof. Let C be a class which contains two distinct finite language L1 and L2.
Because they are finite, their complements ∁L1 and ∁L2 belong to cofin. The
intersection L1∩∁L1 = L2∩∁L2 = ∅ has but a single text: t⊚. If a learner exists
which correctly converges to L1 on t⊚, it would not correctly converge to L2 on
this same text and vice versa. ⊓⊔

Because both fin and sp contain both the empty language and at least
one nonempty finite language (Σk for nonzero k), neither they nor any of their
superclasses can be unaffected by either the fin or cofin classes.



The sl and sp classes are not saved from being affected by cofin even if
restricted to their subclasses containing only infinite languages. Let L be the
language of all and only those words over Σ which, if longer than n symbols, do
not contain a specific symbol a ∈ Σ. In other words, a appears only in words
shorter than n symbols. Further let M be the cofinite language containing all
and only those words over Σ of length at least n. The intersection of L and
M is (Σ − {a})≥n, an (n + 2)-sl proper subset of L. and which contains all
and only those piecewise factors (subsequences) over Σ − {a}. For k < n + 2,
all and only those local factors (substrings) over this same alphabet are present
in the language. In any case, because a does not appear in the data, it will be
forbidden. Therefore for any parameters, the sl and sp learners will converge on
some superset of this intersection which contains no instances of a, rather than
on L itself.

In general, ilpd-learnable classes are affected by certain overlapping classes.

Theorem 4. If L is a language in an ilpd-learnable class C, and M ⊂ L
belongs to C ∩D for some class D, then C is affected by D.

Proof. Let C and D be language classes such that C is ilpd-learnable and con-
tains a language L and D overlaps with C such that C ∩D contains a language
M ⊂ L. Then L ∩ M = M and, since C is ilpd-learnable and M is in C, the
C-learner must converge to M on a text for L ∩M . ⊓⊔

Corollary 1. An ilpd-learnable class that contains a language L is affected by
all subclasses of itself that contain any smaller language M ⊂ L.

Our main result on unaffectedness is a characterization of which classes C
are not affected by which classes D. We prove this result by adapting Angluin’s
[1980] characterization of the ilpd-learnable classes. Following Osherson et al.
[21], we obtain this result via an adaptation of Blum and Blum’s [1975].

Theorem 5. Let L,M ⊆ Σ∗ and suppose φ is a learning function which iden-
tifies L on all texts for L ∩M . Letting TL∩M denote all texts for L ∩M , then
there is some σ ∈ ⇀TL∩M such that

1. ct(σ) ⊆ L ∩M
2. φ(σ) = G where L(G) = L.

3. ∀τ ∈ ⇀TL∩M [ct(τ) ⊆ L ∩M → φ(στ) = φ(σ)].

In other words, if a learner identifies a language L in the limit on texts from
L ∩M , then there is some point in each text from which the learner is ‘locked’
into a particular grammatical hypothesis.

Proof. The proof is by contradiction. If the theorem is not true, it must be the
case that for every σ ∈ ⇀TL∩M such that (1) and (2) above are true, there is a

τ ∈ ⇀TL∩M such that ct(τ) ⊆ L ∩M , but φ(στ) ̸= φ(σ).
If this is true, then it is possible to construct a positive text for L ∩ M

with which φ fails to converge, thus contradicting the initial assumption that φ
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Fig. 3. Dots represent a telltale set for L, distinguishing it from L′, despite interference
from some third language M whose intersection with L is X.

identifies L in the limit on all texts for L∩M . It will be helpful to consider some
text t for L ∩M . Construct the new text q recursively as follows. Let q(0) = t0.
Note that ct(q(0)) is a subset of L∩M . q(n) is determined by the following cases:

Case 1. φ(q(n−1)) = G where L(G) = L. Then by the reductio assumption
we know that there exists some τn such that ct(τn) ⊆ L∩M and φ(q(n−1)τn) ̸=
G. Let q(n) = q(n−1)τntn, and note that ct(q(n)) is a subset of L ∩M .

Case 2. φ(q(n−1)) = G where L(G) ̸= L. Then let q(n) = q(n−1)tn. As in the
other case, ct(q(n)) is a subset of L ∩M .

Observe that ct(q) = L∩M and thus q is a text for L∩M . This is because
t is a text for L ∩ M and an element of t is added to q at every step in its
construction. However, φ fails to converge on q because for every i ∈ N such
that φ(q(i)) = G where L = L(G), there is a later point q(i+1), where φ(q(i+1))
does not equal G by the construction above (Case 1). Therefore, we contradict
the original assumption that φ identifies L on all texts for L∩M and the reductio
assumption is false, proving the theorem. ⊓⊔

Now one can state a property of all classes C which are unaffected by another
class D. A crucial concept is the telltale set despite interfence of a language
in some class, defined below and demonstrated in Figure 3.

Definition 2. Any finite S ⊂ Σ∗ is a telltale set of a language L ∈ C despite
interference from M ∈ D iff S ⊆ L∩M and for any L′ ∈ C such that L′ ∩M
contains S, it holds that L′ ̸⊂ L.

If a learner guesses language L upon observing a telltale set for L despite inter-
ference from M , then it is guaranteed that the learner has guessed the smallest
language in C which contains the sample. Thus the learner has not overgeneral-
ized as no other language in the class of languages which includes the sample is
strictly contained within L.

Theorem 6. Let C,D be collections of languages which are both indexed by
some computable functions. C is unaffected by D iff there exists a computably
enumerable family of finite sets S such that for each Li ∈ C and Mj ∈ D,
there exists a finite Si,j ⊆ Li ∩Mj such that Si,j is a telltale set for Li despite
interference from Mj.

Proof. (⇒) Suppose C is unaffected by D. Then there exists φ which for all
L ∈ C and M ∈ D identifies L despite interference from M . By Theorem 5, there
is a locking sequence σ for L where ct(σ) ⊆ L ∩M . We show that the ct(σ) is



a telltale set for L despite interference from M . First, as locking sequences are
finite, ct(σ) is finite too. Now for contradiction assume that there is some L′ ∈ C
such that ct(σ) ⊆ L′, and L′ ⊂ L. Then, per Theorem 5, φ fails to identify L′

on a text t for L′ where t begins with στ , as φ(σ) = G where L(G) = L.
(⇐) Assume that for every L ∈ C and M ∈ D, L has a telltale set S despite

interference from M , and further assume some enumeration of grammars and of
these sets. Let X be the first (only) telltale set such that X ⊆ ct(

⇀
ti) and let

G = φ(
⇀
ti) be the first grammar in the enumeration such that X ⊆ ct(

⇀
ti) ⊆

L(G) if such objects exist, otherwise let X and G be the first set and grammar
in their respective enumerations.

Now consider any L ∈ C,M ∈ D, any text t for L∩M and let G be the n-th
grammar in the enumeration, but the first such that L(G) = L. As S is finite,
there is an i1 such that S ⊆ ct(

⇀
ti1) ⊆ L(G). Thus for all j ≥ i1, φ(

⇀
tj) returns G

unless there is some G′ earlier in the enumeration such that L(G′) ∈ C, and S′

is a telltale set for L(G′) despite interference from M and S′ ⊆ ct(
⇀
ti1) ⊆ L(G′).

However, we can find i2 ≥ i1 which ensures that no such G′ exists. Suppose
there is some G′ earlier in the enumeration such that S′ ⊆ ct(

⇀
ti1) ⊆ L(G′).

Then L(G′) cannot properly include L because S′ is a telltale set for L(G′) and
both L,L(G′) ∈ C. Thus there must be some sentence s in L∩M that is not in
L(G′) ∩M . As t is a text for L ∩M , there is a k such that s ∈ ct(

⇀
tk).

Thus for any j ≥ k, φ(
⇀
tj) ̸= G′ since s ̸∈ L(G′) and thus ct(

⇀
tj) ̸⊆ L(G′).

It follows that for each Gm (such that L(Gm) ∈ C) which occurs earlier in the
enumeration than G (i.e. m < n), there is some km such that ct(

⇀
tkm

) ̸⊆ L(Gm).
There are only finitely many grammars before G in the enumeration and so by
letting i2 be the largest element of {i1}∪ {km : 0 ≤ m < n}}, we guarantee that
for any j ≥ i2, φ(

⇀
tj) = G. ⊓⊔

In short, for each L ∈ C and for each M ∈ D, there must be a telltale set for
L contained with L∩M . This highlights the difficulty of this paradigm. The only
classes unaffected by others to our knowledge are the singleton language classes
{L}, which are unaffected by every class D. Future work involves identification
of non-trivial C,D of linguistic interest such that C that is unaffected by D.

3.2 Strong Robustness

There are few cases of classes being unaffected by another. Yet this raises a
question: should we care if the learned constraint is incorrect only on data that
it cannot encounter? Learning a language consistent with the data should suffice.

Definition 3. A class C is strongly robust in the presence of another class
D iff there exists a learning function φ such that for all languages L ∈ C and
M ∈ D, there exists a grammar G such that L(G) ∈ C, L(G) ∩ M = L ∩ M ,
and φ converges to G on all texts for L ∩M .

Theorem 7. If a class C is intersection-closed (i.e. closed under finitary in-
tersection) and string extension learnable by a learner φ which for any initial



segment of a text
⇀
ti guarantees as output a unique minimum grammar G = φ(

⇀
ti)

where L(G) ∈ C such that ct(
⇀
ti) ⊆ L(φ(⇀ti))7, then C is strongly robust in the

presence of any class D.

Proof. Let C be an intersection-closed, string extension learnable class whose
associated learner φ guarantees a unique minimum grammar whose language is
in C and compatible with the received text. That is, given any text t it holds
that for any initial segment

⇀
ti of t we have ct(

⇀
ti) ⊆ L(φ(⇀ti)) and there is

no grammar X ̸= φ(
⇀
ti) such that L(X) ∈ C and ct(

⇀
ti) ⊆ L(X) ⊆ L(φ(⇀ti))

Further, let L ∈ C, let M be any language, and let G be the grammar obtained
by applying φ to a text drawn from L ∩M .

If L ⊂ L(G) then L(G) is not the minimal language in C compatible with
the data, contradicting the assumption.

Suppose by way of contradiction that L(G)∩M ̸= L∩M . If L(G)∩M ⊂ L∩M
then there exists some w ∈ L∩M such that w ̸|= G. But w is in the text, violating
the assumption that φ is compatible with the data it receives. Then it must be
that there is some v |= G such that v ∈ M −L, and notably v cannot appear in
the text. The language L(G) ∩ L is in C by intersection-closure, is a subset of
L(G) by definition, and does not contain v; this violates the assumption that φ
returns a grammar for the smallest language compatible with the text.

The only remaining option is that L(G)∩M = L∩M . AsM was unrestricted,
it follows that C is strongly robust in the presence of any class D. ⊓⊔

Each of the fin, sl, lt, sp, and pt classes are intersection-closed and, when
appropriately parameterized, string extension learnable in a way that guarantees
a unique minimum language consistent with the text [10]. Therefore each of these
classes is strongly robust in the presence of any class.

Corollary 2. A intersection-closed class of ilpd-learnable languages C is strongly
robust in the presence of any of its subclasses C ′ ⊆ C.

Proof. Let C and D be classes of languages such that D ⊆ C, where C is ilpd-
learnable and intersection-closed. Let L ∈ C and M ∈ D. Then the intersection
L ∩M is in C. As C is ilpd-learnable, the intersection is learned exactly. ⊓⊔

If two classes, A and B, are string-extension learnable by φA and φB , re-
spectively, then one can define a string-extension learner for their pointwise
intersection, A ⋒B = {a ∩ b: a ∈ A, b ∈ B}, as follows:

f(w) = ⟨fA(w), fB(w)⟩
⟨GA, GB⟩ ⊕ ⟨x, y⟩ = ⟨GA ⊕A x,GB ⊕B y⟩
w |= ⟨GA, GB⟩ ⇐⇒ w |= GA ∧ w |= GB .

The learner thus defined is a pointwise string extension learner for A ⋒B.
For example, the intersection closure of the tsl class, mtsl, is pointwise

string extension learnable. Given the alphabet Σ over which the text is drawn,

7 Note that this is a stronger guarantee than consistency.



construct 2|Σ| k-sl learners in parallel, one for each subset of Σ. Each of these
learners will be responsible for learning the constraints over its associated tier,
by first projecting to that subset of Σ the words it encounters, then extracting
the local factors of the result. Such a learner is not particularly efficient; for an
alphabet of ten unique symbols, this results in 1,024 parallel sl learners.

Theorem 8. If A and B are intersection-closed and string extension learnable,
and both A and B are strongly robust in the presence of the other pointwise
intersected with some third class C, then the class A ⋒ B is strongly robust in
the presence of C.

Proof. Let A and B be string extension learnable classes such that A is strongly
robust in the presence of B ⋒ C and B is strongly robust in the presence of
A ⋒ C. Let φA and φB be the learners for A and B, respectively. Finally, let
L = LA∩LB be some language in A⋒B and let L′ ∈ C. Given some text t drawn
from L∩L′, L(φA(t))∩LB∩L′ = LA∩LB∩L′ = L∩L′, and L(φB(t))∩LA∩L′ =
LA∩LB∩L′ = L∩L′ by strong robustness. The pointwise string extension learner
φ for A⋒B exists such that L(φ(t)) = L(φA(t))∩L(φB(t)) = L∩L′. Therefore
A ⋒B is strongly robust in the presence of C. ⊓⊔

Suppose that A and B are classes that satisfy the conditions of Theorem 7.
That is, they are string extension learnable in a way that guarantees as output a
unique minimum language in the respective class, compatible with the text they
were given. Then they are strongly robust in the face of any interactions, by
that theorem. It then follows immediately from Theorem 8 that their pointwise
intersection A⋒B is similarly strongly robust in the presence of any interactions.
However, we cannot turn this around and make strong claims about A or B based
on the learnability of A ⋒ B. Consider the case where A contains the empty
language and B is the singleton class containing only the empty language. Then
A ⋒ B = B, which as a singleton class is unaffected by any other class C, no
matter what A is. Furthermore, suppose A and C are identical and intersection-
closed, but not ilpd-learnable. Concretely, suppose A = C = Reg, the class of all
regular languages. Then A cannot be strongly robustly learnable in the presence
of C, because it is not learnable in the first place.

3.3 Weak Robustness

An ilpd-learner only guarantees convergence to a language in its target class
when presented with a text for such a language. When given a text from a
language not in the target class, the result can be anything, even a lack of
convergence. A weaker form of robustness might then be a guarantee that the
learner will necessarily converge to some language consistent with the data, even
if that language is not in the target class C.

Definition 4. A class C is weakly robust in the presence of another class
D iff there exists a learning function φ such that for all languages L ∈ C and
M ∈ D, there exists a grammar G such that L(G)∩M = L∩M , and φ converges
to G on all texts for L ∩M .



This suggests the existence of a third class X, a superclass of C, where X is
strongly robust in the presence of D.

As a concrete example of weak robustness, we shall consider C = D = tsl.
Membership in tsl is closure under suffix substitution on some tier T , and
under insertion and deletion of elements not on that tier. That is, for x ∈ T k,
if u1xu2 ∈ L, v1xv2 ∈ L, then u1xv2 ∈ L, and if u1au2 ∈ L for a /∈ T then
u1u2 ∈ L and vice versa. Let Σ = {a, b, c}, L be the language forbidding ab on
the {a, b} tier, M be that forbidding bc on the {b, c} tier. The intersection L∩M
is not tsl for any tier T . No letter is freely insertable or deletable in L ∩M , so
T = {a, b, c}. Notice that b(ak)a ∈ L ∩M and a(ak)c ∈ L ∩M . If it were tsl,
then we would expect by suffix-substitution that b(ak)c ∈ L ∩M , but it is not,
as b(ak)c /∈ M . It follows that L ∩M /∈ tsl.

Recall the earlier discussion on pointwise intersections. Suppose that A and
B are classes such that A ⋒ B is ilpd-learnable. We have already noted that
this provides no guarantees regarding the robustness or even learnability of A
or B in the presence of some third class C. However, we can state that A and
B are weakly robust in the presence of one another, as the learner for A ⋒ B is
by definition guaranteed to converge exactly on texts from the intersection. In
fact, this example is just such a case. For A = B = tsl, their intersection is (a
subclass of) mtsl and therefore learnable by the algorithm which uses 2|Σ| k-sl
learners operating in parallel mentioned earlier. We have thus shown that TSL
is weakly robust in the presence of itself.

4 Conclusions

We motivated and discussed the notion of learning from data systematically lack-
ing in completeness. The result is four categories of learnability. The strongest,
unaffectedness, provides a guarantee that a telltale set for the target language re-
mains present despite interference. This requires that the correct generalizations
be made even for data that can never appear. Strong robustness, while weaker
than unaffectedness, makes a more reasonable guarantee: the learned language
is only necessarily consistent with the target on data that can naturally occur
in the face of the other constraints. Weak robustness keeps this more reason-
able guarantee, but allows the learner to use grammars outside the target class.
Finally, if none of these hold, the class is not robust.

We showed that each of the fin, sl, lt, sp, and pt classes are strongly
robust in the presence of any other class. On the other hand, we showed that the
tier-based strictly local class of constraints, while quite natural for descriptive
phonology, fails to be even strongly robust in the case where the relevant tier
is unknown. Yet it has superclasses that are strongly robust in the presence of
some types of interference. Such a quality makes this class weakly robust: one
might fail to learn the target grammar, but learn instead a compatible grammar
from the superclass. In the case of tsl, the relevant superclass was mtsl.

Each of these robustness categories is parameterized by the class from which
interfering constraints are drawn. A class may be strongly robust in the presence



of one class, yet not robust at all when faced with another. Open questions in-
clude characterizing the strongly and weakly robust learning paradigms. It would
also be interesting to consider the effects of interference from other constraints
when learning from good examples [6, 15], as well as the problem of learning
from data presentations which misrepresent the target language by including
examples that do not belong to it.

Finally, the strongly robust learning paradigm provides a sufficient condition
for when the pointwise intersection of two learnable classes of languages C and
D is itself also learnable. The fact that each of the fin, sl, lt, sp, and pt
classes are strongly robust in the presence of any other class implies that classes
of languages which must satisfy constraints from more than one of these classes
are also learnable. To put it another way, some learnable classes of languages
can be factored into simpler learnable classes. We hope this work helps lead to
a more fully developed compositional theory of language learning.
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