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Abstract
In this paper, we present novel algorithms that efficiently compute a shortest reconfiguration sequence
between two given dominating sets in trees and interval graphs under the Token Sliding model.
In this problem, a graph is provided along with its two dominating sets, which can be imagined
as tokens placed on vertices. The objective is to find a shortest sequence of dominating sets that
transforms one set into the other, with each set in the sequence resulting from sliding a single token
in the previous set. While identifying any sequence has been well studied, our work presents the
first polynomial algorithms for this optimization variant in the context of dominating sets.
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1 Introduction

Reconfiguration problems arise when the goal is to transform one feasible solution into
another through a series of small steps, while ensuring that all intermediate solutions remain
feasible. These problems have been widely studied in the context of graph problems, such
as Independent Set [1, 2, 5, 8, 13, 20], Dominating Set [3, 6, 10, 16, 21, 24], Shortest
Paths [14, 19], and Coloring [4, 7, 9, 11]. Reconfiguration problems have also been studied
in the context of Satisfiability [15, 22]. See [23] for a general survey.

In the case of the Dominating Set and other graph problems, the most commonly
studied reconfiguration rules are Token Jumping and Token Sliding. The feasible solution
can be represented by tokens placed on the vertices of a graph. Under Token Jumping,
tokens can be moved one at a time to any other vertex, while under Token Sliding, tokens
can only be moved one at a time to a neighboring vertex.

We focus on the Token Sliding variant, particularly on finding a shortest reconfiguration
sequence. This optimization variant has been extensively studied in the context of reconfigur-
ing solutions for Shortest Paths [19], Independent Set [17,25], and Satisfiability [22].

Our main contribution is the presentation of two polynomial algorithms for finding a
shortest reconfiguration sequence between dominating sets on trees and on interval graphs.
This is achieved through a novel approach to finding a reconfiguration sequence, which we
believe may have applications in the study of other related reconfiguration problems.

Bonamy et al. [6] have shown that a reconfiguration sequence between dominating sets
under Token Sliding can be found in polynomial time when the input graph is a dually
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2 Shortest Dominating Set Reconfiguration under Token Sliding

chordal graph, which is class of graphs encompassing trees and interval graphs. We extend
these results by demonstrating that finding a shortest reconfiguration sequence on trees and
interval graphs can also be done in polynomial time. A key observation is that we can match
a simple lower bound on the length of the reconfiguration sequence. We show that in case of
dually chordal graphs, such lower bound cannot be matched on some instances and thus our
techniques cannot be directly extended for that case.

We provide a brief overview of the known results, along with our contributions. The lower
bound for cases where the reachability problem is PSPACE-hard follows from the fact that
the reconfiguration sequence must have superpolynomial length in some instances (unless
PSPACE = NP), as otherwise, a reconfiguration sequence would serve as a polynomial-sized
proof of reachability.

Graph class Decision problem Optimization variant
Trees P O(n) (Corollary 4.4)
Interval graphs P O(n3) (Theorem 4.11)
Dually chordal graphs P open
Split PSPACE-complete nω(1)

Bipartite PSPACE-complete nω(1)

Planar PSPACE-complete nω(1)

Table 1 Complexities of problems of reconfiguring dominating sets under Token Sliding on
various graph classes. The decision problem results are due to [6].

2 Preliminaries

Graphs and Trees Given a graph G and vertex v, we denote the set of neighbors of v by
N(v); moreover, N [v] = N(v) ∪ {v}. Given two vertices v and u, we denote dG(v, u) as the
distance between v and u, that is the number of edges on a shortest path between v and u.

Given a rooted tree T rooted at r and vertex v, we denote: the subtree below v as T [v];
the depth of vertex v as d(v) = d(v, r); the parent of v as p(v).

Let σ(u, v) be the set of vertices that follow u on a shortest path from u to v. We assume
that σ(u, u) = ∅.

Multisets Formally, a multiset H of elements from a base set S is defined as a multiplicity
function H : S → N ∪ {0}. We define the support of H as Supp(H) = {v | H(v) ≥ 1}. Let
H and I be multisets, then H ∩ I = min(H, I), H ∪ I = H + I, H \ I = max(H − I, 0),
H△I = (H \ I) ∪ (I \ H). The cardinality is defined as |H| =

∑
v∈S H(v) and v ∈ H if

v ∈ Supp(H). The Cartesian product H × I is a multiset of the base set S × S such that
(H × I)((u, v)) = H(u) · I(v) for all u, v ∈ S.

Note that if one of the operands is a set, we can assume that it is a multiset with
multiplicities of 1 for all elements in the set.

Graph problems Given a graph G = (V, E), a set D of vertices is dominating if every vertex
is either in D or a neighbor of a vertex in D. A multiset H is dominating if Supp(H) is
dominating. We say that given a set S of vertices, the vertices with a neighbor in S are
dominated from S.
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For trees, we solve a more general problem called reconfiguration of hitting sets. A hitting
set of a set system S is a set H such that for each S ∈ S it holds H ∩ S ̸= ∅. A multiset H

is a hitting set if Supp(H) is a hitting set.

Reconfiguration sequence Given a graph G a multiset D of its vertices representing the
placement of tokens, we denote D(u → v) = (D \ {u}) ∪ {v} the multiset resulting from
jumping a token on u to v (or sliding a token on u to v if {u, v} ∈ E(G)). Given a graph
G and a set Π of feasible solutions, we say that a sequence of multisets D1, D2, . . . , Dℓ (of
length ℓ) is a reconfiguration sequence under Token Sliding between D1, Dℓ ∈ Π if

Di ∈ Π for all 1 ≤ i ≤ ℓ,
Di+1 = Di(u→ v) such that v ∈ V (G), u ∈ Di and {u, v} ∈ E(G) for all 1 ≤ i < ℓ.

The sequence can be concisely represented by a sequence of moves. Given a starting
multiset Ds, moves (u1, v1), . . . , (uk−1, vk−1) induce sequence D1, D2, . . . , Dk such that D1 =
Ds, Di+1 = Di(ui → vi) for all 1 ≤ i < k. This allows us to formally give the main problem
of this paper.

Shortest reconfiguration of dominating sets under Token Sliding
Input: Graph G = (V, E) and two dominating sets Ds and Dt.
Output: Shortest sequence of moves (u1, v1), . . . , (uk−1, vk−1) inducing a reconfiguration
sequence under Token Sliding between Ds and Dt.

In the case of trees, we design an algorithm that finds a reconfiguration sequence whenever
the feasible solutions can be expressed as hitting sets of a set system S such that every S ∈ S
induces a subtree of the input tree T . Several problems can be formulated in terms of such
hitting sets.

If S is the set of all closed neighborhoods of T , then the hitting sets of S are exactly the
dominating sets of T .
If S is the set of all edges, then the hitting sets are exactly all vertex covers of T .
An instance of an (unrestricted) vertex multicut is equivalent to a hitting set problem
with S being the set of all paths which must be cut.

The general problem of reconfiguring hitting sets is as follows.

Shortest reconfiguration of hitting sets under Token Sliding
Input: Graph G = (V, E) and two hitting sets Hs and Ht of a set system S ⊆ 2V (T ).
Output: Shortest sequence of moves (u1, v1), . . . , (uk−1, vk−1) inducing a reconfiguration
sequence under Token Sliding between Hs and Ht.

Reconfiguration graph Given a graph G and an integer k, the reconfiguration graph R(G, k)
has as vertices all feasible solutions, in our case dominating multisets, of size k. Two vertices
are adjacent whenever one can be reached from the other in a single move, i.e. sliding a
token. Note that the shortest reconfiguration of dominating sets under Token Sliding
between Ds and Dt is equivalent to finding a shortest path in R(G, |Ds|) between Ds and
Dt. Furthermore, as each move under Token Sliding is reversible, the edges of R(G, k) are
undirected. Thus, finding a shortest path from Ds to Dt is equivalent to finding a shortest
path from Dt to Ds.

It follows that for Ds and Dt, if Ds ̸= Dt and both are in the same connected component
of R(G, |Ds|), then dR(G,|Ds|)(Ds, Dt) is the minimum number of moves inducing a reconfig-
uration sequence between Ds and Dt. If G and |Ds| is clear from the context, we consider
R = R(G, |Ds|).
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Interval graphs A graph G is an interval graph if each vertex v can be mapped to a different
closed interval I(v) on the real line so that v, u ∈ E if and only I(v) ∩ I(u) ̸= ∅. Such a
mapping to intervals is called interval representation.

We denote the endpoints of an interval I(v) as ℓ(v) and r(v) so that I(v) = [ℓ(v), r(v)].
It is known that every interval graph has an interval representation with integer endpoints in
which no two endpoints coincide. We assume that is the case throughout this paper, as such
an interval representation can be computed in linear time [12].

We say that interval I is to the left of J (or that J is to the right of I) if r(I) < ℓ(J).
Similarly, we say that I is nested in J (or that J contains I) if ℓ(J) < ℓ(I), r(I) < r(J).
Furthermore, we say that I left-intersects J (or that J right-intersects I) if ℓ(I) < ℓ(J) <

r(I) < r(J). Note that every pair of intervals is in exactly one of those relations. We say
that two vertices u and v of an interval graph are in a given relationship if their intervals
I(u) and I(v) in a fixed interval representation are in the given relationship.

3 Lower bounds on lengths of reconfiguration sequences

We can obtain a lower bound on the length of a reconfiguration sequence by dropping the
requirement that the tokens induce a feasible solution (such as a dominating set) at each step.
The problem of finding such shortest reconfiguration sequence is polynomial-time solvable by
reducing to the minimum-cost matching in bipartite graphs.

Let G be a graph, Ds, Dt ⊆ V (G) be the multisets representing tokens. Then M ⊆ Ds×Dt

is a matching between Ds and Dt if for every v ∈ Ds, there is exactly Ds(v) pairs (v, ·) ∈M

and similarly for every v ∈ Dt, there is exactly Dt(v) pairs (·, v) ∈ M . Note that M is a
multiset and the same pair may be contained in M multiple times.

We say that u ∈ Ds and v ∈ Dt are matched in M if (u, v) ∈M . We also use M(u) to
denote the set of matches of u, that is the vertices v such that (u, v) ∈M . The cost c(M) of
the matching M is defined as

c(M) =
∑

(u,v)∈M

dG(u, v) ·M(u, v).

We say that a matching has minimum cost if its cost is the minimum over all possible
matchings between Ds and Dt and denote this cost as c∗(Ds, Dt). We use σM (u) to denote
the vertices which follow u on some shortest path to some match M(u) ̸= u. Formally

σM (u) =
⋃

v ̸=u:(u,v)∈M

σ(u, v).

We define M−1 so that M−1(v, u) = M(u, v) for all u ∈ Ds, v ∈ Dt.

▶ Lemma 3.1. Every sequence of moves inducing a reconfiguration sequence between Ds and
Dt under Token Sliding has length at least c∗(Ds, Dt).

Proof. Suppose a reconfiguration sequence using fewer than c∗(Ds, Dt) moves exists. Let M

be a matching between Ds and Dt of minimum cost. Then we can track the moves of each
token and construct a matching M ′ between Ds and Dt given by the starting and ending
position of each token. Note that the cost of each matched pair is at most the length of the
path travelled by the given token. Thus in total the cost of M ′ is at most the total number
of moves used. Hence, we have c(M ′, Ds, Dt) < c∗(Ds, Dt), a contradiction. ◀

The following observation shows that in a minimum-cost matching, if a token can be
matched with zero cost, we can assume that is the case for all such tokens.
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▶ Lemma 3.2. For graph G, let Ds, Dt be multisets of the same size and let I = Ds ∩Dt.
Then there exists minimum-cost matching M in G between Ds and Dt such that for every
v ∈ I we have M(v, v) = I(v).

Proof. Given a minimum matching M between Ds and Dt and v such that M(v, v) < I(v),
we show that we can produce M ′ of the same cost such that

∑
u∈I M ′(u, u) >

∑
u∈I M(u, u).

Note that there exist (x, v), (v, y) ∈ M with x ̸= v, y ̸= v as otherwise M((v, v)) = I(v).
Then we define M ′ = (M \ {(x, v), (v, y)}) ∪ {(v, v), (x, y)}.

We have c(M ′) − c(M) = −dG(x, v) − dG(v, y) + dG(v, v) + dG(x, y) = −dG(x, v) −
dG(v, y) + dG(x, y). From the triangle inequality dG(x, y) ≤ dG(x, v) + dG(v, y), thus we have
that the cost of M ′ is at most the cost of M and thus is minimum. By repeated application,
we arrive at minimum-cost matching M∗ with M∗(v, v) = I(v) for all v. ◀

The following observation shows that, given Ds and Dt, if we pick a token in Ds and
slide it along an edge to decrease its distance to its match in a minimum-cost matching,
the resulting D′

s and Dt have minimum cost of matching of exactly one less than Ds and
Dt. Thus if each move in the reconfiguration sequence is of such a kind, the length of the
resulting sequence will match the lower bound of Lemma 3.1.

▶ Lemma 3.3. Let M∗ be a minimum-cost matching between Ds and Dt, (u, g) ∈M∗ and
v ∈ σ(u, g) a vertex that follows u on a shortest path from u to g. Furthermore, let

M =
(
M∗ \ {(u, g)}

)
∪ {(v, g)}.

Then M is a minimum-cost matching between Ds(u→ v) and Dt. Furthermore, c∗(Ds, Dt) =
c∗(Ds(u→ v), Dt) + 1.

Proof. From definition c(M∗)− c(M) = dG(u, g)− dG(v, g), but v is the vertex on the path
from u to g, so dG(u, g)− dG(v, g) = 1 and c∗(Ds(u→ v), Dt) ≤ c∗(Ds, Dt)− 1.

Suppose that c∗(Ds(u→ v), Dt) < c∗(Ds, Dt)− 1, i.e., there exists matching M ′ between
Ds(u→ v) and Dt such that c(M ′) < c(M). From M ′, we construct a matching M ′′ between
Ds and Dt such that c(M ′′) < c(M∗), which is a contradiction.

Let x ∈M ′(v) and set M ′′ = (M ′\{(v, x)})∪{(u, x)}. The cost c(M ′′) ≤ c(M ′)+1, since
the distance between v and u is 1. That means if c(M ′) < c(M), then c∗(Ds, Dt) < c(M∗),
but M∗ is minimum-cost matching.

Therefore, M is a minimum-cost matching between Ds(u→ v) and Dt and c∗(Ds, Dt) =
c∗(Ds(u→ v), Dt) + 1. ◀

4 Algorithms for finding a shortest reconfiguration sequence

In the following sections, we present algorithms for finding a shortest reconfiguration sequence
between dominating sets on trees and interval graphs under Token Sliding.

4.1 Trees
We present an algorithm that, given a tree T and two hitting sets Hs, Ht of a set system
S such that every S ∈ S induces a subtree of T , finds a shortest reconfiguration sequence
between Hs and Ht under Token Sliding. As dominating sets are exactly the hitting sets
of closed neighborhoods, the algorithm finds a shortest reconfiguration sequence between
two dominating sets. Note that S need not be provided on the input.
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Figure 1 Illustrations accompanying the proof of Theorem 4.1. The green squares denote tokens
of Hs, the purple squares denote tokens of Ht. The grey areas show examples of S in the two
considered cases.

Consider the reconfiguration graph R(G, |Hs|), whose vertices are the all the hitting
multisets of S of size |Hs|. The high-level idea is to extend two paths in R(G, |Hs|), one
from Hs and another from Ht, until they reach a common configuration. We repeatedly
identify a subtree T [v] of the rooted T for which the configurations Hs and Ht are identical,
except for v itself. Then, we modify either Hs or Ht by sliding the token (or tokens) on v to
its parent, ensuring that Hs and Ht become equal when restricted to T [v].

Algorithm 1 describes the algorithm. We assume that the input tree is rooted in some
vertex r.

Algorithm 1 Reconfiguration of hitting sets in trees

1: procedure ReconfTree(T, Hs, Ht)
2: if Hs = Ht then return ∅
3: v ← vertex v such that Hs(v) ̸= Ht(v) and Hs(u) = Ht(u) for all u ∈ T (v).
4: if Hs(v) > Ht(v) then
5: return (v, p(v)) + ReconfTree(T, Hs(v → p(v)), Ht)
6: else
7: return ReconfTree(T, Hs, Ht(v → p(v))) + (p(v), v)

The proof of correctness uses techniques of Section 3. While the correctness of the algo-
rithm can be proved without them, we believe this presentation is helpful for understanding
the proofs in subsequent sections.

▶ Theorem 4.1. Let T be a tree on n vertices and Hs and Ht hitting sets of a set system S
in which every S ∈ S induces a subtree of T . Then ReconfTree (Algorithm 1) correctly
computes a solution to Shortest reconfiguration of hitting sets under Token
Sliding. Furthermore, it runs in time O(n).

Proof. We will show that ReconfTree outputs a sequence of dR(Hs, Ht) moves which
induces a reconfiguration sequence between the two hitting sets Hs, Ht of S. If Hs = Ht,
then dR(Hs, Ht) = 0 and the procedure correctly outputs an empty sequence. Thus assume
that Hs ̸= Ht.

Suppose that T is rooted in r and let v be a vertex such that Hs(v) ̸= Ht(v) and
Hs(u) = Ht(u) for all u ∈ T (v). Without loss of generality, assume that Hs(v) > Ht(v) as
otherwise, we can swap Hs and Ht.

▷ Claim 4.2. Hs(v → p(v)) is a hitting set of S.
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Proof. Suppose that H ′
s = Hs(v → p(v)) is not a hitting set of S. It follows that

Supp(Hs) ⊈ Supp(H ′
s) and therefore Hs(v) = 1 and H ′

s(v) = 0 and H ′
s is not intersecting

only sets S ∈ S such that v ∈ S and p(v) /∈ S. Furthermore, Ht(v) = 0 as Ht(v) < Hs(v).
Let S ∈ S be a set not intersecting H ′

s and let y ∈ S ∩Ht. Such y distinct from v must
exist as Ht is a hitting set of S and v /∈ Ht. If y ∈ T [v], then y ∈ Hs as Hs(y) = Ht(y) by
the choice of v, which contradicts H ′

s not intersecting S. This case is shown in Figure 1a.
Therefore y ∈ T \ T [v]. Note that the path connecting v with y must visit p(v), thus as

S induces a subtree and contains u and y, it contains p(v) as well and therefore S intersects
H ′

s. This case is shown in Figure 1b. ◁

▷ Claim 4.3. The number of moves outputted by ReconfTree(T, Hs, Ht) is equal to
dR(Hs, Ht).

Proof. We first claim that if Hs, Ht are two hitting sets of S with the same size, then
dR(Hs, Ht) = c∗(Hs, Ht). Furthermore, we show that a move from v to p(v) decreases the
cost of a minimum-cost matching between Hs and Ht by one, where v is a vertex such
that Hs(v) ̸= Ht(v) and Hs(u) = Ht(u) for all u ∈ T (v). This together implies that each
outputted move decreases the distance in the reconfiguration graph by one.

We prove the claim by induction on c∗(Hs, Ht) that dR(Hs, Ht) = c∗(Hs, Ht) for any
hitting sets Hs, Ht of the same size. First note that c∗(Hs, Ht) = 0 if and only if Hs = Ht.
Now, suppose that c∗(Hs, Ht) ≥ 1.

Let M∗ be a minimum-cost matching between Hs and Ht such that tokens with distance
0 are matched to each other, such matching exists by Lemma 3.2.

Let H ′
s = Hs(v → p(v)). As all tokens in T (v) are matched by M∗ only to the same

vertex, it holds M∗(v) ⊆ V \ T [v]. Therefore p(v) is the next vertex on the path from v

to some g ∈ M∗(v) and thus by Lemma 3.3 it holds c∗(H ′
s, Ht) = c∗(Hs, Ht) − 1. As H ′

s

is a hitting set of S by the previous claim, it follows from the induction hypothesis that
dR(H ′

s, Ht) = c∗(H ′
s, Ht). Now, note that dR(Hs, Ht) ≥ c∗(Hs, Ht) by Lemma 3.1. On the

other hand,

dR(Hs, Ht) ≤ dR(H ′
s, Ht) + 1 = c∗(H ′

s, Ht) + 1 = c∗(Hs, Ht)

as Hs can be reached from H ′
s by a single token slide. This concludes the proof of the

inductive step.
As dR(H ′

s, Ht) = dR(Hs, Ht)−1, each call of the algorithm decreases the distance between
the hitting sets by one and also outputs one move. Thus the resulting reconfiguration sequence
is shortest possible. ◁

We now describe how to implement Algorithm 1 so that it achieves the linear running
time. Note that we assume that the input Hs and Ht of the initial call of ReconfTree are
subsets of V (T ) and therefore |Hs|, |Ht| ≤ n. Next, we show how to compress the output to
O(n) size. Whenever |Hs(v)−Ht(v)| > 1, we can perform all |Hs(v)−Ht(v)| moves from v

to p(v) at once and output them as a triple (v, p(v), |Hs(v) −Ht(v)|) if Hs(v) > Ht(v) or
(p(v), v, |Hs(v)−Ht(v)|) in case Hs(v) < Ht(v).

Note that with this optimization, the vertex v on line 3 is distinct for each call of
ReconfTree. Furthermore, we can fix in advance the order in which we pick candidates of
v on line 3 by ordering the vertices of T by their distance from r in decreasing order. This is
correct as the depth of the lowest vertex satisfying the condition of line 3 cannot increase in
the subsequent calls. Then, the process of finding v on line 3 has total runtime of O(n) over
the course of the whole algorithm. ◀
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▶ Corollary 4.4. Let T be a tree on n vertices and Ds, Dt dominating sets of T such that
|Ds| = |Dt|. Algorithm 1 finds a shortest reconfiguration sequence between Ds and Dt under
Token Sliding in O(n) time.

In general, the length of the reconfiguration sequence can be up to Ω(n2), for instance
when Ω(n) tokens are required to move from one end of a path to the other end, as each
must move to a distance of at least Ω(n). However, when this happens, a lot of tokens move
by one edge and we can move them at the same time, so the running time of the algorithm
can be smaller than the number of moves.

4.2 Interval graphs
In this section, we describe a polynomial-time algorithm for finding a shortest reconfiguration
sequence between two dominating sets under the Token Sliding model in interval graphs.
As with trees, we demonstrate that the distance between two dominating sets in interval
graphs is equal to the lower bound established in Lemma 3.1. Our approach involves a
minimum-cost matching between the dominating sets Ds and Dt to identify a valid move. The
key insight of this algorithm is that we can always recalculate the minimum-cost matching
to enable sliding at least one token along a shortest path towards its corresponding match.

The following pseudocode outlines the algorithm. A minimum-cost matching M between
Ds and Dt is assumed to be provided on the input.

Algorithm 2 Reconfiguration of dominating sets in interval graphs

1: procedure ReconfIG(G, Ds, Dt, M)
2: if Ds = Dt then return ∅
3: if ∃(u, v) ∈M, u′ ∈ σ(u, v) such that Ds(u→ u′) is dominating then
4: return (u→ u′) + ReconfIG(G, Ds(u→ u′), Dt)
5: if ∃(u, v) ∈M, v′ ∈ σ(v, u) such that Dt(v → v′) is dominating then
6: return ReconfIG(G, Ds, Dt(v → v′)) + (v′ → v)
7: M ′ ← FixMatching(G, Ds, Dt, M)
8: return ReconfIG(G, Ds, Dt, M ′)
9: procedure FixMatching(G, Ds, Dt, M)

10: v ∈ Ds △Dt with minimum possible r(v).
11: if v ∈ Dt then
12: return FixMatching(G, Dt, Ds, M−1)−1 ▷ Symmetric solution, swap Ds, Dt

13: Find y ∈ Dt \Ds, y′ ∈ M(y), v′ ∈ M(v) such that D′
s = Ds(v → y) is dominating

and M ′ = M \ {(v, v′), (y′, y)} ∪ {(v, y), (y′, v′)} is a minimum-cost matching
14: between Ds and Dt.
15: return M ′

The bulk of the proof consists of showing that the procedure FixMatching is correct, in
particular that the call on line 13 succeeds. First, we present a technical observation related
to shortest paths in interval graphs.

▶ Observation 4.5. Let P = (v1, v2, . . . , vk) be a shortest path between v1 and vk in an
interval graph with r(v1) < r(vk) and k ≥ 3. Then vi+1 right-intersects vi and vi+2 does not
intersect vi for all i ∈ {1, . . . , k − 2}.

Proof. If for some i ∈ {1, . . . , k − 2} vi+2 intersects vi, then we can create a shorter path
from v1 to vk by removing vi+1 from P , contradicting P being a shortest path.
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Figure 2 Illustrations accompanying the proof of Lemma 4.6. The green squares denote tokens
of Ds, the purple squares denote tokens of Dt.

Suppose that for some i ∈ {1, . . . , k − 2} it holds r(vi+1) < r(vi). Note that a shortest
path contains no nested intervals with a possible exception of v1 and vk, as every other
nested interval can be removed to make the path shorter. Thus vi+1 left-intersects vi. Let vj

be the first next vertex after vi such that r(vi) < r(vj). If none such exists, then vi must
intersect vk and thus the path can be made shorter. Otherwise we show that vj intersects
vi. If it does not, then ℓ(vj) > r(vi). But for the path to be connected, another interval va

must cover [r(vi), ℓ(vj)]. Such interval either has r(vj) < r(va), thus vj is nested in va or
r(vi) < r(va) < r(vj), contradicting the choice of vj . ◀

The following lemma shows that we can efficiently recompute the minimum-cost matching
to ensure that for some token a valid move across a shortest path to its match will be
available.

▶ Lemma 4.6. The call of FixMatching on line 7 returns a minimum-cost matching M ′

between Ds and Dt such that at least one the following holds.
There is (u, v) ∈M ′, u′ ∈ σ(u, v) such that Ds(u→ u′) is dominating,
there is (u, v) ∈M ′, v′ ∈ σ(v, u) such that Dt(v → v′) is dominating.

Proof. The idea of the proof is in showing that if no token can move along a shortest path
to its match, then there is always a way to modify the matching which does not increase cost
and makes moving along a shortest path possible for at least one token. In particular, we
need to show that the operation of finding y on line 13 always succeeds and the constructed
M ′ is a minimum-cost matching between Ds and Dt.

As the algorithm has not finished on line 2, it holds Ds ̸= Dt. Let M be a minimum-cost
matching between Ds and Dt. If for some (u, v) ∈M, w ∈ σ(u, v), w′ ∈ σ(v, u) Ds(u→ w)
or Dt(v → w′) is dominating, then we would not have reached line 7. Therefore, assume
that for every (u, v) ∈ M, w ∈ σ(u, v), w′ ∈ σ(v, u) neither Ds(u → w) nor Dt(v → w′) is
dominating.

Let (v, v′) ∈M such that v ̸= v′ and min(r(v), r(v′)) is minimum possible. Without loss
of generality, assume that r(v) < r(v′) as otherwise, we can swap Ds and Dt.

▷ Claim 4.7. For every w ∈ σM (v), I(w) right-intersects I(v).

Proof. Suppose that I(w) contains I(v). Then Ds(v → w) is dominating, a contradiction.
Now suppose that I(v) contains I(w). Then by Observation 4.5 it holds (v, w) ∈M , which
implies that v ∈ σ(w, v) and Dt(w → v) is dominating as N [v] ⊆ N [w], a contradiction.

The remaining case is that I(w) left-intersects I(v). Then again, by Observation 4.5 it
holds (v, w) ∈M and this contradicts the choice of v as r(w) < r(v). ◁

Now, let w ∈ σM (v) be a fixed vertex and consider why Ds(v → w) = D′
s is not

dominating. Let x1, . . . , xk ⊂ N(v) \N(w) be the vertices that are not dominated by D′
s.
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▷ Claim 4.8. There exists y ∈ N(v) ∩ (Dt \Ds) such that all xi are adjacent to y.

Proof. First, we will show that I(xi) is to the left of I(w) for all xi. Note that as each no xi

is adjacent to w, I(xi) is either to the left or to the right of I(w).
Suppose there is some I(xi) to the left of I(w) and some I(xj) to the right of I(w), then

I(v) contains I(w), which as previously argued may not be the case. The remaining case
is that all I(xi) are to the right of I(w), which would imply that I(w) left-intersects I(v),
which again was shown not to hold. Therefore, each I(xi) is to the left of I(w). This further
implies that ℓ(v) < r(xi) < ℓ(w), thus each I(xi) is either nested in I(v) or left-intersects
I(v).

Observe that each xi is adjacent to some yi ∈ Dt \Ds and r(v) < r(yi) by the choice of v.
Therefore, there exists y ∈ Dt \Ds such that I(y) contains min(r(x1), . . . , r(xk)). Together,
we get

ℓ(y) < min(r(x1), . . . , r(xk)) ≤ max(r(x1), . . . , r(xk)) < ℓ(w) < r(v) < r(y) (1)

and therefore y is adjacent to all xi. See Figure 2a for an illustration. As ℓ(y) < r(v) < r(y),
I(y) either right-intersects I(v) or contains I(v) and thus v and y are adjacent. ◁

The rest of the proof consists of two claims. The first is that Ds(v → y) is dominating.
The second is that (v, y) ∈M ′ for some minimum-cost matching M ′ between Ds and Dt.

▷ Claim 4.9. Ds(v → y) is dominating.

Proof. Let D′ = Ds(v → y). If y contains v, then N [v] ⊆ N [y], therefore Ds ⊆ D′
s and D′

s

is dominating. Thus assume that y right-intersects v, which is the only remaining case as
shown above.

Suppose u ∈ N(v) is a vertex which is not dominated from D′
s. Note that u must not be

adjacent to y and at the same time be adjacent to v, therefore u is to the left of y. Then u

is to the left of all w ∈ σM (v) as ℓ(y) < ℓ(w), thus u is not dominated in Ds(v → w) and
therefore u = xi for some i. This implies that u is not adjacent to y and this contradicts the
choice of y. ◁

Let v′ ∈ Dt such that v′ ̸= v and (v, v′) ∈M . Similarly, let y′ ∈ Ds such that y′ ̸= y and
(y′, y) ∈M . We define the new matching M ′ as

M ′ =
(
M \ {(v, v′), (y′, y)}

)
∪ {(v, y), (y′, v′)}.

▷ Claim 4.10. M ′ is a minimum-cost matching between Ds and Dt.

Proof. We prove that c(M ′) ≤ c(M). Given that d(v, y) = 1 it suffices to show that

d(v, y) + d(v′, y′) ≤ d(v, v′) + d(y, y′)
d(v′, y′) ≤ d(v, v′) + d(y, y′)− 1.

Let wv ∈ σ(v, v′) and wy ∈ σ(y′, y).

Case 1: wv and wy are adjacent. We can construct a walk W from v′ to y′ by concatenating
shortest paths between each two consecutive vertices in (v′, wv, wy, y′). It holds that d(v′, y′)
is at most the number of edges of W and therefore

d(v′, y′) ≤ d(v′, wv) + d(wv, wy) + d(wy, y′)
= d(v′, v)− 1 + 1 + d(y, y′)− 1
= d(v, v′) + d(y, y′)− 1.
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Case 2: wv and wy are not adjacent and I(wv) is nested in I(y). Suppose that v′ = wv.
Given that I(wv) is nested in I(y), it follows that N [v′] ⊆ N [y] and thus as v′, y ∈ Dt we
have that Dt \ {v′} is dominating. Therefore, Dt(v′ → v) is dominating, a contradiction. See
Figure 2b for an illustration.

Thus assume further that v′ ̸= wv and therefore d(v, v′) ≥ 2. Let w2
v ∈ σ(wv, v′). Note

that w2
v must be adjacent to y as N [wv] ⊆ N [y]. See Figure 2c for an illustration. We

can construct a walk between v′ and y′ by concatenating shortest paths between each two
consecutive vertices in (y′, y, w2

v, v′) of total length

d(y′, y) + 1 + d(v, v′)− 2 = d(v, v′) + d(y, y′)− 1

and therefore d(v′, y′) ≤ d(v, v′) + d(y, y′)− 1.

Case 3: wv and wy are not adjacent and I(wv) is not nested in I(y). Recall that by
Equation (1) it holds ℓ(y) < ℓ(wv). Furthermore, r(y) < r(wv), as otherwise I(wv) would be
nested in I(y).

Let us now consider the possible orderings of the right endpoints of I(v), I(y), I(wv), I(wy).
The possibilities are restricted by the fact that by Equation (1) it holds r(v) < r(y) < r(wv),
thus there remain 4 possible orderings. The case r(v) < r(y) < r(wv) < r(wy) can be ruled
out as it contradicts I(y) and I(wy) intersecting and I(wv) and I(wy) not intersecting at
the same time. Similarly r(v) < r(y) < r(wy) < r(wv) and r(v) < r(wy) < r(y) < r(wv) is
not possible as it would contradict I(v) and I(wv) intersecting and at the same time I(wv)
and I(wy) not intersecting.

Thus, the only remaining ordering is r(wy) < r(v) < r(y) < r(wv). This by Observa-
tion 4.5 implies that either wy = y′ or r(y′) < r(y). In either case, it follows that r(y′) < r(v)
which contradicts the choice of v. ◁

We have shown that for any two dominating sets Ds ̸= Dt and a minimum-cost matching M

between them, we can construct another minimum matching M ′ such that at least one of the
following statements holds. There exists either v ∈ Ds and y ∈ Dt such that (v, y) ∈M ′ and
Ds(v → y) is dominating or, by a symmetric proof with Ds and Dt swapped, there exists
v ∈ Dt, y ∈ Ds such that (y, v) ∈M ′ and Dt(v → y) is dominating. In either case, we have
shown that v and y can be adjacent and thus y ∈ σ(v, y). Furthermore, M ′ is constructed as
described on 7 and y can be found by testing all vertices in Dt. This concludes the proof. ◀

▶ Theorem 4.11. Let G be an interval graph with n vertices and Ds, Dt its two dominating
sets such that |Ds| = |Dt|. Then ReconfIG correctly computes a solution to Shortest
reconfiguration of dominating sets under Token Sliding in time O(n3), where k

is the size of the output.

Proof. We first show that the resulting reconfiguration sequence has the shortest possible
length.

▷ Claim 4.12. The number of moves outputted by ReconfIG is dR(Ds, Dt)

Proof. We will show that dR(Ds, Dt) = c∗(Ds, Dt) by induction over c∗(Ds, Dt). If c∗(Ds, Dt) =
0, then Ds = Dt and dR(Ds, Dt) = 0, which we can efficiently recognize.

Suppose that c∗(Ds, Dt) > 0. Let M be a minimum-cost matching between Ds and
Dt. Without loss of generality, let (u, v) ∈ M ′, u′ ∈ σ(u, v) such that D′

s = Ds(u → u′) is
dominating. By Lemma 4.6, either such u, u′, v already exist or we can recompute M ′ so
that they exist.
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Figure 3 Dually chordal graph where the lower bound from minimal matching is not achievable.
The minimum-cost matching between the red and the blue vertices is 2 but to reconfigure one into
the other, we need at least 3 moves.

Note that by Lemma 3.3, c∗(D′
s, Dt) = c∗(Ds, Dt)−1 and thus by the induction hypothesis

dR(D′
s, Dt) = c∗(D′

s, Dt). Note that dR(Ds, Dt) ≤ dR(D′
s, Dt) + 1 as Ds can be reached

from Ds by a single token slide. At the same time, by Lemma 3.1, it holds dR(Ds, Dt) ≥
c∗(Ds, Dt) = c∗(D′

s, Dt) + 1 = dR(D′
s, Dt) + 1. Thus dR(Ds, Dt) = dR(D′

s, Dt) and with
each output of a token slide, we decrease the distance in dR by exactly one. Therefore, the
resulting reconfiguration is shortest possible. ◁

▷ Claim 4.13. ReconfIG can be implemented to run in time O(n3).

Proof. We initially compute a minimum-cost matching between Ds and Dt by reducing to
minimum-cost matching in bipartite graphs, which can be solved in O(n3) [18].

Now, we describe how to implement Algorithm 2 efficiently. If we want to find a suitable
v in FixMatching, we suppose that all greedy moves, i.e. moves along shortest paths
to matches that result in a dominating set, have been done. This is not necessary, we
can see that the assumption is invoked only on constantly many vertices for each call of
FixMatching. Checking if a greedy move can be performed requires only linear time and
the total number of moves is at most O(n2), thus the total running time is O(n3). ◁

◀

5 Conclusion

In this paper, we have presented polynomial algorithms for finding a shortest reconfiguration
sequence between dominating sets on trees and interval graphs, addressing the open question
left by Bonamy et al. [6]. Their work provided an efficient algorithm for finding a reconfigu-
ration sequence between two dominating sets in dually chordal graphs, which include trees
and interval graphs as subclasses. We have shown that in case of trees and interval graphs,
we can always match the lower bound of Lemma 3.1. That is not the case for dually chordal
graph in general, see Figure 3.

While our work contributes to the understanding of reconfiguration problems in trees and
interval graphs, the general case of dually chordal graphs remains open. Additionally, the
case of cographs is still open, and we conjecture that a polynomial-time solution is achievable.

It would be interesting to find a class of graphs for which in the case of dominating
sets, the optimization variant is NP-hard while the reachability variant is polynomial-time
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solvable. Furthermore, it would be intriguing to provide a polynomial-time algorithm for the
optimization variant in a class of graphs that may require “detour”.
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