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Abstract. The computation of out/in-branchings spanning the vertices
of a digraph (also called directed spanning trees) is a central problem
in theoretical computer science due to its application in reliable network
design. This concept can be extended to temporal graphs, which are
graphs where arcs are available only at prescribed times and paths make
sense only if the availability of the arcs they traverse is non-decreasing.
In this context, the paths of the out-branching from the root to the
spanned vertices must be valid temporal paths. While the literature has
focused only on minimum weight temporal out-branchings or the ones
realizing the earliest arrival times to the vertices, the problem is still
open for other optimization criteria. In this work we define four different
types of optimal temporal out-branchings (tob) based on the optimiza-
tion of the travelling time (st-tob), of the travel duration (ft-tob), of
the number of transfers (mt-tob) or of the departure time (ld-tob). For
d ∈ {st,mt,ld}, we provide necessary and sufficient conditions for the
existence of spanning d-tobs; when those do not exist, we characterize
the maximum vertex set that a d-tob can span. Moreover, we provide
a log linear algorithm for computing such d-tobs. Oppositely, we show
that deciding the existence of an ft-tob spanning all the vertices is NP-
complete. This is quite surprising, as all the above distances, including
ft, can be computed in polynomial time, meaning that computing tem-
poral distances is inherently different from computing d-tobs. Finally,
we show that the same results hold for optimal temporal in-branchings.

Keywords: Temporal graph · temporal network · link stream · optimal
branching · optimal temporal walk.

1 Introduction

A temporal graph is a graph where arcs are active only at certain time instants,
with a possible delay or travelling time indicating the time it takes to traverse

⋆ Partially supported by: FUNCAP MLC-0191-00056.01.00/22 and PNE-0112-
00061.01.00/16, CNPq 303803/2020-7, Italian PNRR CN4 Centro Nazionale per
la Mobilità Sostenibile, NextGeneration EU - CUP B13C22001000001.
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Fig. 1: (a) Temporal graph with different walks from vertex 1 to vertex 3, each one
represented by a color (two-tone arcs belong to two walks). Yellow: walk realizing
ea(1, 3). Green: walk realizing mt(1, 3). Blue: walk realizing both st(1, 3) and
ld(1, 3). Red: walk realizing ft(1, 3). (b) An ea-tob of G with root 1.

an arc. There is not a unified terminology in the literature to call these objects,
as they are also known as stream graphs [17], dynamic networks [22], temporal
networks [15], and time-varying graphs [16] to name a few. Important categories
of temporal graphs are those of transport networks, where arcs are labeled by
the times of bus/train/flight departures and arrivals [8], and communication
networks as phone calls and emails networks, where each arc represents the in-
teraction between two parties [23]. Temporal graphs find application in a vast
number of fields such as neural, ecological and social networks, distributed com-
puting, epidemiology etc.; we refer the reader to [12] for a survey on temporal
graphs. Fundamental properties of static graphs, as the fact that concatenation
of walks is a walk, do not necessarily hold in temporal graphs. For instance,
a public transports route can happen only at increasing time instants, since a
person cannot catch a bus that already left. This often makes temporal graphs
much harder to handle: e.g. computing strongly connected components takes lin-
ear time in a static graph, but is an NP-complete problem in a temporal graph
[9], and the same happens to Eulerian walks [19], and many other problems. We
will see in the next section that this is also the case for temporal branchings.
Background on Temporal Graphs. Given n ∈ N, we set [n] := {x ∈ N :
x ≤ n}. A temporal graph G is a triple (V,A, τ), where V is the set of vertices,
τ ∈ N is the lifetime, and A ⊆ {(u, v, s, t) : u, v∈V, u ̸= v and s, t ∈ [τ ], s ≤ t} is
the set of temporal arcs. We set |A| := M and |V | := n. Given a ∈ A, we write
a = (t(a),h(a), ts(a), ta(a)), where t(a) and h(a) are, respectively, the tail and
head vertices of the temporal arc a, and ts(a) and ta(a) are, respectively, the
starting time and the arrival time of a. These functions are easily interpreted:
ts(a) is the time at which it is possible to begin a trip along a from vertex t(a) to
vertex h(a), and ta(a) is the arrival time of that trip. The temporal graph G has
the multidigraph DG = (V,A, t,h) as underlying structure. Figure (1a) presents
an example of temporal graph, where every arc a is labeled by the ordered pair
(ts(a), ta(a)). Each arc has an elapsed time el(a) := ta(a) − ts(a). In temporal
graphs, walks make sense only if they are time-consistent, meaning that each arc
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Table 1: Computational time of single source shortest paths in a temporal graph.
ea mt st ld ft

O(M) [13, 24] O(M logn) [2] O(M logM) [1, 24, 25] O(M logM) [1] O(M logn) [2]

of the walk must have an arrival time smaller or equal than the starting time of
the subsequent arc in the walk. More precisely, a temporal (u, v)-walk of length
k ∈ N in G is a (u, v)-walk W = (u, a1, v1, . . . , vk−1, ak, v) in the underlying mul-
tidigraph such that ta(ai) ≤ ts(ai+1) for all i ∈ [k−1]; in this case we also say that
v is temporally reachable from u. For the walk W , we consider the starting time
ts(W ) := ts(a1) and the arrival time ta(W ) := ta(ak). The travelling time of W

is tt(W ) :=
∑k

i=1 el(ai) and the duration of W is dur(W ) := ta(W )−ts(W ). The
length of W is denoted by ℓ(W ). Given u, v ∈ V , WG (u, v) is the set of temporal
walks from u to v in G. We consider the following optimization criteria.

Earliest Arrival time: eaG (u, v) := min{ta(W ) : W ∈ WG (u, v)};
Latest Departure time: ldG (u, v) := max{ts(W ) : W ∈ WG (u, v)};
Minimum Transfers: mtG (u, v) := min{ℓ(W ) : W ∈ WG (u, v)};
Fastest Time: ftG (u, v) := min{dur(W ) : W ∈ WG (u, v)};
Shortest Travelling time: stG (u, v) := min{tt(W ) : W ∈ WG (u, v)}.

Consistently with the literature [3], we refer to the above definitions as dis-
tances.4 All these concepts are widely used (see [1, 2, 8, 13, 24, 25]), although
sometimes they appear with different names. For any d ∈ {ea, ld,mt, ft, st},
we say that a temporal (u, v)-walk realizes dG (u, v) if it attains the minimum (or
maximum if d=ld) of the functions in the corresponding definition of dG (u, v).
Figure (1a) shows, for each d, a temporal walk from vertex 1 to 3 realizing
dG (u, v). Each distance is computable in polynomial-time: Table 1 reports the
time to compute dG (r, v) from a given vertex r to all the other vertices v.

Optimal temporal branchings. In static directed graphs, spanning branch-
ings are well-studied objects; they represent a minimal set of arcs that connect
a special vertex called the root to any other vertex (out-branching), or any ver-
tex to the root (in-branching). They are also called arborescences or spanning
directed trees, since their underlying structure is a tree. Spanning branchings
representing shortest distances are also well-studied. Their existence is guaran-
teed simply by the reachability of any vertex from/to the root and they can be
computed in O(M logM) time by Dijkstra’s algorithm [7]. Branchings are, to
cite a few, important for engineering applications as they represent the cheapest
or shortest way to reach all vertices, and in social networks in relation to informa-
tion dissemination and spreading. We can similarly define spanning branchings
in temporal graphs, here called spanning tobs (Temporal Out-Branchings) and
tibs (Temporal In-Branchings), representing the minimal set of temporal arcs
that temporally connect any vertex from/to the root. This definition of tob has

4 Notice that they do not necessarily satisfy the triangle inequality.
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Fig. 2: Example of d-tobs of the temporal graph G in Figure (1a) for different
distances. The grey vertex is the root of the tob.

already appeared in the literature [13, 14].5 In the context of urban mobility,
suppose that a festival or a concert is just finished in a remote location X late at
night, and you want to guarantee that every person can go back home via public
transports, while optimizing the number of bus/train rides. This problem can
be solved by a spanning tob with root X. We also may ask this tob to arrive
the earliest possible in every point of interest of the city, or to use the least
number of transfers, or optimize any of the distances that we have introduced
before. It is then natural to extend the notion of shortest distance branchings
to the temporal framework. For each d ∈ {ea, ld,mt, ft, st}, we call spanning
d-tob a spanning tob representing the distance d, i.e. for every vertex v, the
unique (r, v)-walk within the branching realizes d(r, v). We define similarly span-
ning d-tibs. Figure (1b) and Figure 2 show, for each d ∈ {ea,mt, st, ld, ft}, a
spanning d-tob with root 1 of the temporal graph in Figure (1a). Notice that
the mt-tob can be modified by adding the arc (9, 10) from vertex 2 to vertex
3 and by deleting the arc (8, 9) from vertex 5 to vertex 3 and still obtaining
a spanning mt-tob. Thus, in general, d-tobs are not unique. In [13] the au-
thors prove that a spanning tob as well as a ea-tob exist iff every vertex is
temporally reachable from the root and provide an algorithm to compute them
in O(M) time. Nonetheless, for all the other distances but ea, the problem of
computing optimal branching is still open and seems to be a more difficult task.
We start observing that for d ̸= ea, the temporal reachability from the root to
any vertex is no longer sufficient for the existence of a spanning d-tob; this is
showed in Figure 3 where for each d ∈ {ld,mt, st, ft} we present a temporal
graph that does not admit a spanning d-tob even if every vertex is temporally
reachable from r. In Figures (3a) and (3c), observe that there is a unique tem-
poral path from r to y; call it P . This is clearly the only spanning tob of the
temporal graphs under consideration. However, P does not realize d(r, x), which
is realized by the temporal arc from r to x. Therefore, P is not a d-tob. We
emphasize that adding the arc from r to x to P would no longer form a tob
(the underlying graph would not be a branching). As for Figure (3b), notice that
there is a unique temporal path that realizes ft(r, x), namely the one made of

5 Notice that [14] proposes it in a simplified context, while the conditions listed in the
definition of [13] are not all necessary to describe the concept (see Lemma 1).
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Fig. 3: Examples of temporal graphs that do not admit a spanning d-tob with
root r. Solid arcs represent a maximum d-tob.

the temporal arcs (r, v, 1, 1) and (v, x, 1, 1). Similarly, there is a unique temporal
path that realizes ft(r, y), namely the one made of the temporal arcs (r, v, 2, 2)
and (v, y, 2, 2). This implies that a possible spanning d-tob must be equal to
the graph itself, which clearly is not a branching. Notice that in the examples,
τ = 2 for d ∈ {mt, ld}, which is the smallest value possible, as when τ = 1 the
temporal graph reduces to a static graph. When d = st, we have that τ = 3: it
can be proven that this is again the smallest value possible (see Appendix F).
Notice also that in all the examples, we can always find a d-tob on the vertex
set equal to {r, v, x}, with d chosen accordingly; this tob is highlighted by solid
arcs in the figures. In Figure (3b), also the dotted arcs form an ft-tob on the
vertex set {r, v, y}. The following questions naturally arise:

1. When does a spanning d-tob exist?
2. If it does not exist, can we identify the maximum set of vertices that can be

spanned by a d-tob (maximum d-tob)?
3. Can we compute a maximum d-tob in polynomial time?
4. Can we answer to all the above questions for d-tibs?

In this paper we solve all these problems.
Our contribution. We first show some characterizations of tobs. Each of them
gives a different insight on these objects. Then, for each d ∈ {st,mt,ld}, we pro-
vide a necessary and sufficient condition for the existence of a spanning d-tob in
a temporal graph; this property is based on the concept of optimal substructure.
Moreover, we characterize the vertex set of a maximum d-tob, which turns out
to be uniquely identified; this property is crucial to find efficient polynomial-
time algorithms for computing a maximum d-tob (Section 4). In particular,
our algorithms compute a d-tob whose path from the root arrives the earliest
possible in every vertex. The characterization does not hold for d = ft, and in
fact we show that computing an ft-tob is an NP-complete problem (Section 5).
Finally, in Section 3, we show that the same results hold for optimal temporal
in-branchings. A summary of our results and of the computational time of our
algorithms can be found in Table 2. We underline that any algorithm computing
d(r, v) for all vertices v of a temporal graph cannot suffice by itself to find a
d-tob. Indeed we have seen in Figure (3a) and (3c) that d(r, y) is well-defined
because y is temporally reachable from the root r, but no d-tobs can span
y. In other words, there are no guarantees that the union of the shortest paths,
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Table 2: Our contribution: summary results. The second column refers to the
time to compute any tob or tib, while the others refer to the time to compute
any d-tob or d-tib for d ∈ {ea,mt,st,ld,ft}.

any ea- mt- st- ld- ft-

tob O(M) [13] O(M) [13] O(M logn) O(M logM) O(M logM) NP-c
tib O(M) O(M logM) O(M logn) O(M logM) O(M) NP-c

with respect to the considered distance d, computed by the aforementioned algo-
rithms would form a tob. In addition, for d =ft we have the extreme case where
computing ft(r, v) is polynomial-time, but finding an ft-tob is NP-complete.
Also, applying Dijkstra’s algorithm on the static expansion of a temporal graph
returns a branching on the static expansion, but does not guarantee to obtain a
tob in the original temporal graph (see Appendix A).
Further Related Results. We have already mentioned the results of [13],
where they also show that the problem of finding minimum weight spanning
tobs is NP-hard. Kuwata et. al. [16] are interested in the temporal reachability
from the root that realizes the earliest arrival time, and they obtain it by making
use of Dijsktra’s algorithm on the static expansion of the temporal graph, which
we already observed does not translate into a tob in the original temporal
graph (Appendix A). Gunturi et. al. [11] present a polynomial-time algorithm
for computing minimum weight tobs: in their model, the weight of the arcs
depend on a function that evolves in time, but walks are not required to be
time-respecting. Different versions of the problem of finding arc-disjoint tobs in
temporal graphs are investigated in [4, 14].

2 Preliminaries

We denote by N the set of positive integers. We set N0 = N ∪ {0}, [n] := {x ∈
N : x ≤ n} and [n]0 := {x ∈ N0 : x ≤ n}, for n ∈ N0. Given a set X and a
property P, we say that X is minimal for property P if X has property P, and
for all Y ⊊ X , Y does not have property P. We remind that a digraph is a pair
D = (V,A) where V is the nonempty and finite set of vertices, and A ⊆ V × V
is the set of arcs. Informally, a multidigraph is a digraph where multiple arcs
are allowed. A multidigraph is formalized by a quadruple D = (V,A, t,h), where
V is the set of vertices, A the set of arcs and t,h : A → V are respectively
the head and the tail function, where we require that ∀a ∈ A, t(a) ̸= h(a),
i.e. no selfloops are allowed6. The in-neighborhood and out-neighborhood of a
vertex v are defined as N−

D
(v) := {u : ∃a ∈ A s.t. t(a) = u,h(a) = v} and

N+
D
(v) := {u : ∃a ∈ A s.t. t(a) = v,h(a) = u}. The in-degree and out-degree

of v are defined respectively as d−
D
(v) := |{a ∈ A : h(a) = v}|, d+

D
(v) := |{a ∈

A : t(a) = v}|. A (u, v)-walk of length k ∈ N0 in D is an alternating ordered
sequence W = (u, a1, v1, . . . , vk−1, ak, vk = v) of vertices u, v1, . . . , vk ∈ V and

6 Notice that if t and h are injective, D is a digraph.
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arcs a1, . . . , ak ∈ A such that t(a1) = u, h(ak) = v and h(ai) = vi = t(ai+1)
for all i ∈ [k − 1]. The set of vertices of W is denoted by V (W ) and the set
of arcs of W by A(W ). A path is a walk where the vertices are all distinct. A
walk W traverses an arc a if a ∈ A(W ). For h ∈ [k] the vh-prefix of W is the
subwalk of W given by (u, a1, v1, . . . , vh); the vh-suffix of W is the subwalk of
W given by (vh, ah+1, . . . , ak, vk). Note that, for a fixed z ∈ V (W ), there are,
in general, many z-prefixes and many z-suffixes of W ; they are unique if W is a
path. Given a (u, v)-walk W and a (v, s)-walk Z, we denote the walk obtained
by their concatenation by W +Z. For V ′ ⊆ V, the multidigraph induced by V ′ in
the multidigraph D is denoted by D[V ′]. A digraph D = (V,A) is called an out-
branching (resp. in-branching) with root r ∈ V if for every v ∈ V there exists a
unique (r, v)-walk (resp. (v, r)-walk) in D. Note that in a branching, every walk is
a path. When using concepts like in-neighborhood, out-neighborhood, in-degree
and out-degree for a temporal graph G, it is intended that we are referring to its
underlying multidigraph DG . From every temporal walk it is possible to extract
a temporal path with the same extremes. A temporal graph G′ = (V ′, A′, τ ′) is
a temporal subgraph of G = (V,A, τ) if V ′ ⊆ V , A′ ⊆ A and τ ′ ≤ τ . When the
temporal graph is clear from the context, we usually omit the subscripts.

3 Temporal Branching and Preliminary Results

3.1 Temporal Out-Branching

In this section, we present the formal notion of temporal out-branching, give
some useful characterizations, and define related optmization problems.

Definition 1. A temporal graph T = (V,A, τ) is called a temporal out-branching
(tob) with root r ∈ V if A is a minimal set of temporal arcs such that for all
v ∈ V , there exists a temporal (r, v)-walk in T .

The following lemma provides characterizations of a tob, which are crucial
for the proofs of the results of Section 4.

Lemma 1. Let T =(V,A, τ) be a temporal graph. The following facts are equiv-
alent:7

1. T is a TOB with root r;
2. For all v ∈ V there is a temporal (r, v)-walk in T . Additionally, d−

T
(r) = 0

and, for all v ∈ V \ {r}, d−
T
(v) = 1;

3. For all v ∈ V there is a temporal (r, v)-walk in T , and |A| = |V | − 1;
4. The underlying digraph DT of T is an out-branching with root r and for all

v ∈ V , the unique (r, v)-walk in T is temporal.

Proof. See Appendix B.

In a tob with root r, the unique temporal walk from r to v is a temporal path.

7 In [13], Properties 2 and 3 are not recognized as equivalent.
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Definition 2. A temporal graph G = (V,A, τ) admits a tob with root r if there
exists a temporal subgraph T = (VT , AT , τT ) of G that is a tob with root r. Such
a T is said a tob of G. T is called a spanning tob of G if VT = V ; a maximum
tob of G if |VT | is the largest possible.

We now expand the concept of tob to the various distances considered in the
introduction. The idea is that we are not only interested in temporally reaching
the maximum number of vertices from the root, but we want also to minimize
their distance from the root, which can translate into arriving the earliest possi-
ble, the fastest possible, by starting the journey the latest possible, by travelling
the shortest time possible or by making the least number of transfers possible,
depending on the preferences and needs.

Definition 3. Let d ∈ {ea, ld,mt, ft, st} and let T = (VT , AT , τT ) be a tob
with root r of a temporal graph G = (V,A, τ). We say that T is a d-tob of G if
dT (r, v) = dG (r, v) for every v ∈ VT . T is a spanning d-tob of G if VT = V ; is
a maximum d-tob of G if |VT | is the largest possible.

Observe that Lemma 1 and Definition 3 imply the following remark.

Remark 1. A temporal graph G admits a tob T = (VT , AT , τT ) with root r iff
every v ∈ VT is temporally reachable from r in G. Moreover, if T is a d-tob of
G then T is a spanning d-tob of G[VT ].

Problem 1 (Maximum d-tob). Let d ∈ {ea, ld,mt, st, ft} and G be a temporal
graph. Find a maximum d-tob of G.

Problem 1 has already been solved for d = ea in [13]. Their result also implies
that a maximum ea-tob of G spans all the vertices that are temporally reachable
from the root. We will see that also for every d ∈ {ld,mt, st}, the vertex set of
a maximum d-tob of a temporal graph is uniquely determined, which is key for
the polynomiality of the related problems (Section 4). However, the property of
being temporally reachable from the root is not sufficient anymore, as showed
in Figure 3. Instead for ft, we show that the related problem is NP-complete
(Section 5). As we will see, in the polynomial cases we can constrain ourselves
to the earliest arrival paths that realize the distances. For this, we define:

Definition 4. Given a temporal graph G = (V,A, τ), for any u, v ∈ V and d ∈
{mt, st, ld, ft}, we define eadG (u, v) := min{ta(W ) : W realizes dG (u, v)}. A
tob T =(VT , AT , τT ) with root r of G is an ead-tob if it is a d-tob and, for
every v ∈ VT , we have that eadT (r, v) = eadG (r, v). T is called spanning if
VT = V ; maximum if |VT | is the largest possible.

3.2 Temporal In-Branching

In this section, we present definitions of temporal in-branchings and prove that
the related problems are computationally equivalent to tobs.
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Definition 5. A temporal graph T = (VT , AT , τT ) is called a temporal in-
branching (tib) with root r if AT is a minimal set of temporal arcs such that for
all v ∈ V , there exists a temporal (v, r)-walk in T . A temporal graph G = (V,A, τ)
admits a tib with root r if there exists a temporal subgraph T of G that is a tib
with root r; we also say that T is a tib of G. T is spanning if VT = V , and it
is maximum if |VT | is the largest possible. Given d ∈ {ea, ld,mt, ft, st} and
T a tib with root r of G, we say that T is a d-tib of G if for every v ∈ VT ,
dT (v, r) = dG (v, r). If in addition VT = V , then T is a spanning d-tib, and if
|VT | is the largest possible, then T is a maximum d-tib.

Problem 2 (Maximum d-tib). Let d ∈ {ea, ld,mt, st, ft} and G be a temporal
graph. Find a maximum d-tib of G.

The next proposition shows that finding maximum tibs can be reduced to finding
maximum tobs in an auxiliary temporal graph. We define the reversal of a
temporal graph G = (V,A, τ) as the temporal graph G⟲ = (V,A⟲, τ) where the
order of the timesteps is reversed as well as the direction of the arcs. Formally,
A⟲ = {(h(a), t(a), τ − ta(a) + 1, τ − ts(a) + 1) : a ∈ A} := {a⟲ : a ∈ A}. A
similar transformation has been used e.g. in [3].

Proposition 1. Given a temporal graph G, it holds that:

1. T is a maximum ea-tib of G iff T ⟲ is a maximum ld-tob of G⟲;
2. T is a maximum ld-tib of G iff T ⟲ is a maximum ea-tob of G⟲;
3. For each d∈{mt, st, ft}, T is a maximum d-tib of G iff T ⟲ is a maximum

d-tob of G⟲.

Proof. See Appendix C.

4 Computing maximum d-tobs for d ∈ {mt,st,ld}

The following concept allows us to establish a necessary and sufficient condition
for the existence of a spanning d-tob with root r in a temporal graph.

Definition 6. Let G be a temporal graph and W be a temporal (u, v)-walk in G.
For every d ∈ {ld,mt, ft, st} we say that:

– W is d-prefix-optimal if ∀x ∈ V (W ), any x-prefix of W realizes dG (u, x);
– W is ead-prefix-optimal if it is d-prefix-optimal and ∀x ∈ V (W ), any x-

prefix of W realizes eadG (u, x).

Theorem 1. Let G = (V,A, τ) be a temporal graph, r ∈ V and d ∈ {ld,mt, st}.
Then G admits a spanning d-tob with root r if and only if there exists a d-prefix-
optimal temporal (r, v)-path in G for all v ∈ V .

Proof. See Appendix D.



10 D. Bubboloni et al.

Notice that Theorem 1 does not hold for d = ft. Indeed the temporal graph
in Figure (3b) has an ft-prefix-optimal path from r to any other vertex, but
does not admit a spanning ft-tob as previously observed. We are now ready to
characterize the vertex set of a maximum d-tob.

Corollary 1. Let G = (V,A, τ) be a temporal graph, r ∈ V , and d ∈ {ld,mt, st}.
Then a maximum d-tob T with root r of G has vertex set:

VT = {v ∈ V : there exists a d-prefix-optimal (r, v)-path in G }. (1)

Proof. See Appendix E.

The next sections present algorithms for finding d-tobs of a given tempo-
ral graph in polynomial time, when d ∈ {mt, st, ld}. In particular, we show
that these algorithms always return an ead-tob. This implies that for d ∈
{mt, st, ld}, the existence of a d-prefix-optimal (r, v)-path in G is equivalent
to the existence of an ead-prefix-optimal (r, v)-path in G. For d = ft this is
no longer true: indeed consider Figure (3b). The only ft-prefix-optimal (r, y)-
path is W = (r, (r, v, 2), v, (v, y, 2), y), but it is not eaft-prefix-optimal: in fact,
eaft(r, v) = 1 since the path (r, (r, v, 1), v) realizes ft(r, v) and arrives in v at
time 1, while W arrives in v at time 2. This difference will be crucial for showing
that computing an ft-tob is an NP-complete problem (Section 5). Corollary 1
shows that, even if v is temporally reachable from r, if none of the walks that
realize d(r, v) is d-prefix-optimal, then no d-tob can span v.

4.1 Algorithm for mt

Algorithm 1 computes a maximum mt-tob with root r of a given tempo-
ral graph. First observe that, given an mt-prefix-optimal temporal (r, v)-walk
W = (r = v0, a1, v1, . . . , ak, vk = v), we have that mt(r, vi)=mt(r, vi+1) − 1 <
mt(r, vi+1) for all i ∈ [k − 1], i.e. the sequence of distances in any mt-prefix-
optimal walk is strictly increasing. The main idea of the algorithm is then to
compute a priori the mt-distances of all vertices from the root, and then build
the mt-tob guided by these computed distances, using their strict monotonicity
property. More specifically, given h = max{mt(r, v) : v ∈ V }, the algorithm
grows an mt-tob starting from the root and adding, at step i∈ [h], all the ver-
tices at distance i. During this process, when adding some vertex v, we choose,
among its neighbors at distance i−1, which one can be the parent of v. To choose
the right parent, we look at the incoming temporal arcs having tail in vertices at
distance i− 1 and we consider only the arcs a′ = (u′, v, s′, t′) such that, if Wu′ is
the unique temporal (r, u′)-path in the mt-tob built so far, then s′ ≥ ta(Wu′),
i.e. the new arc can be concatenated with Wu′ to obtain a temporal (r, v)-path.
Among the arcs fulfilling these constraints, we choose a′ minimizing t′, the ar-
rival time in v; such arc a′ exists if and only if there exists an mt-prefix-optimal
(r, v)-path in G. We prove that such choice of a′ ensures that we are actually rep-
resenting in the tob a temporal (r, v)-path that realizes the distance mt(r, v)
and has the earliest arrival time among the walks realizing such distance, i.e.
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Algorithm 1: Computing a maximum mt-tob of a temporal graph.

Input: A temporal graph G = (V,A, τ), and a vertex r ∈ V .
Output: A maximum mt-tob T = (VT , AT , τT ) of G with root r.

1 EA(r)← 0; ∀v ∈ V \ {r}, EA(v)← +∞;
2 d(r)← 0; ∀v ∈ V \ {r}, d(v)← mtG (r, v);
3 VT ← {r}; AT ← ∅; τT ← 0; h← max{d(v) : v ∈ V };
4 for i = 1, . . . , h do
5 for each v ∈ V such that d(v) = i do
6 S ← {(u′, v, s′, t′) ∈ A : s′ ≥ EA(u′), d(u′) = i− 1};
7 if S ̸= ∅ then
8 a← choose (u, v, s, t) ∈ argmin(u′,v,s′,t′)∈S t′;

9 EA(v)← t, VT ← VT ∪ {v}, AT ← AT ∪ {a}, τT ← max{τT , t};
10 end

11 end

12 end

we are computing an eamt-tob. The algorithm takes O(M log n) time to com-
pute all the initial mt distances (see Table 1), while the remaining part of the
algorithm takes O(M) time as it requires only one scan of each temporal arc.

Theorem 2. Algorithm 1 returns a maximum mt-tob of a temporal graph, for
a chosen root, in O(M log n) time. Besides, the output is an eamt-tob.

Proof. See Appendix G.

4.2 Algorithm for ld and st

Algorithm 2 computes a maximum d-tob T with root r for a given temporal
graph when d ∈ {ld, st}, and it is more involved with respect to Algorithm 1.
The issue is that if W = (r = v0, a1, . . . , ak, vk = v) is a d-prefix-optimal walk,
then it is possible to have d(r, vi−1) = d(r, vi) for some i ∈ [k]. Indeed, if d =
ld, then all the vertices in the walk share the same latest departure time, i.e.
ts(W ) = ld(r, vi) for all i∈ [k]. If d = st and el(ai) = 0 for some i∈ [k], then
st(r, vi−1) = st(r, vi). However, in any case we have that d(r, vi−1) ≤ d(r, vi) for
all i∈ [k]. This implies that, by letting Di denote the set of vertices at distance
di from r with the distances di being in increasing order, to choose the parent of
each vertex of Di in T , we cannot look only at vertices in D0 ∪ · · · ∪Di−1, but
also at the ones in Di itself (in particular, only at the ones in Di when d = ld).
Note that this gives us an additional difficulty as we cannot simply choose an
arbitrary vertex v ∈ Di to be the next one to be added to T , as it might happen
that the good parent of v (i.e. the in-neighbor of v within an ead-prefix-optimal
(r, v)-walk) has not been added to T yet. To overcome this, we add vertices
in Di to T in increasing order of the value of ead(r, v). Observe however that
ead(r, v) is not known a priori, so to do that we use a queue that keeps the
outgoing temporal arcs from vertices in T in increasing order of their arrival
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Algorithm 2: Computing a maximum d-tob, with d ∈ {ld, st}.
Input: A temporal graph G = (V,A, τ), a vertex r ∈ V , d ∈ {ld, st}.
Output: A maximum d-tob T = (VT , AT , τT ) of G with root r.

1 EA(r)← 0; ∀v ∈ V \ {r}, EA(v)← +∞;
2 d(r)← 0; ∀v ∈ V \ {r}, d(v)← dG (r, v);
3 ⟨d1, . . . , dh⟩ ← ordered list of finite d values with no repetitions;
4 VT ← {r}; AT ← ∅; τT ← 0, D0 ← {r};
5 for i = 1, . . . , h do
6 Di ← {v ∈ V \ {r} : d(v) = di};
7 if d = ld then enqueue all (r, v, s, t) ∈ A such that s = di in a min

priority queue Q with weight t;
8 if d = st then enqueue all (u, v, s, t) ∈ A such that u ∈ D0 ∪ . . . ∪Di−1

and v ∈ Di in a min priority queue Q with weight t;
9 while Q ̸= ∅ do

10 dequeue a← (u, v, s, t) from Q;
11 while s < EA(u) or t ≥ EA(v) or (d = st and t− s ̸= di − d(u)) do
12 if Q = ∅ then go to Line 5 with next value of i;
13 dequeue a← (u, v, s, t) from Q;

14 end
/* a = (u, v, s, t) is s.t. a ∈ argmin(u′,v′,s′,t′)∈Q t′, s ≥ EA(u),

t < EA(v) = +∞, and if d = st, t− s = di − d(u). */

15 EA(v)← t, VT ← VT ∪ {v}, AT ← AT ∪ {a}, τT ← max{τT , t};
16 enqueue all (v, v′, s′, t′) ∈ A such that v′ ∈ Di in Q with weight t′;

17 end

18 end

time. These ideas are formalized below. At step i of the for loop at lines 5-18,
Algorithm 2 adds to T the vertices of Di that are reachable by a d-prefix-optimal
walk. To this aim, it uses a min priority queue Q for temporal arcs a with head
vertices in Di with weight ta(a). For d = ld, Q is initialized with all the outgoing
temporal arcs from r with starting time di, as they are the only arcs that can
realize a latest departure time equal to di. For d = st, Q is initialized with all
the temporal arcs with tail in D0 ∪ . . . ∪Di−1 and head in Di. The vector EA
in the algorithm, initialized at +∞ for all the vertices but the root, keeps track
of the arrival time in the vertices every time they are added to the tob. In the
while loop at lines 9-17, we dequeue temporal arcs from Q that cannot possibly
be within an ead-prefix-optimal walk. Formally, if such loop is not broken in line
12, then at the end we are left with an arc a = (u, v, s, t) ∈ argmin(u′,v′,s′,t′)∈Q t′,
i.e. an arc that minimizes the arrival time in the queue, satisfying:

– s ≥ EA(u), so that a is temporally compatible with the temporal (r, u)-walk
Wu that is already present in the tob, i.e. Wu+(u, a, v) is a temporal walk;

– t < EA(v), which ensures that we add to the tob a new vertex each time;
– t− s = di − d(u) if d = st, ensuring that Wu + (u, a, v) realizes st(r, v).

We then add v and the temporal arc a to the tob and we update the arrival
time in v to EA(v) = t, which is equal to ead(r, v) and will be no longer updated
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until the end of the algorithm. Finally, we add to Q all the outgoing arcs from v
with head vertices in Di. When at distance di there are no arcs satisfying these
constraints, i.e. the queue Q at line 12 is empty, we go to the next distance di+1,
as it means that we have already spanned all the possible vertices in Di. The
initial computation of all d(r, v) requires O(M logM) by Table 1. Concerning
the remaining part of the algorithm, the i-th iteration of the for loop considers
only arcs whose head is in Di, hence each arc is considered only in one of the
iterations of the for loop. Moreover, each arc is dequeued from Q at most once.
As the dequeue from Q costs O(logM) we obtain a running time of O(M logM).

Theorem 3. For any d∈{ld, st}, Algorithm 2 returns a maximum d-tob of
a temporal graph, for a chosen root, in O(M logM) time. Besides, the output is
an ead-tob.

Proof. See Appendix H.

5 Computing maximum ft-tobs

As previously observed, Theorem 1 does not hold for d = ft. Indeed for ft the
problem becomes NP-complete even in the following very constrained situations:
when el(a) = 0 for all a ∈ A, also called nonstrict temporal graphs, and when
el(a) = 1 for all a ∈ A, also called strict temporal graphs (see e.g. [5]). The
nonstrict model is used when the time-scale of the measured phenomenon is
relatively big: this is the case in a disease-spreading scenario [26] where the
spreading speed might be unclear, or in time-varying graphs [21], where a single
snapshot corresponds e.g. to all the streets available within a day.8

Theorem 4. Let G = (V,A, τ) be a temporal graph and r∈V . Deciding whether
G admits a spanning ft-tob with root r is NP-complete, even if τ = 2 and
el(a)=0 for every a ∈ A, or if τ = 3 and el(a)=1 for every a∈A.

Proof. See Appendix I.

The gaps left by the above theorem are when G has lifetime 1 or when G has
lifetime 2 and all arcs have elapsed time at least 1. In the first case, the temporal
graph reduces to a static graph, so the problem is solvable in polynomial time by
Dijkstra’s algorithm. As for when G has lifetime 2 and all arcs have elapsed time
at least 1, one can see that the maximum ft-tob rooted in r contains exactly r
and every u ∈ V such that (r, u, 1, 2) is an arc in G.

8 The literature often focused on nonstrict/strict variations to provide stronger nega-
tive results. In this paper, we have used the more general model to provide stronger
positive results, while using the nonstrict/strict when providing negative ones.
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6 Conclusions and future work

We have showed that for d ∈ {mt,st,ld}, a spanning d-tob does not always
exist, but computing a d-tob that spans the maximal number of vertices is
polynomial-time. When d=ft, also finding a maximum ft-tob becomes NP-
complete. The fact that not all the vertices can be spanned by a maximum
d-tob could be an issue, for example, in a public transports setting, where we
still want to reach all possible places. A natural follow-up of our work would
be to relax the definition of spanning d-tob, by asking to find a subgraph that
reaches all the vertices from the root with a path realizing the distance, while
having the least amount of arcs possible. Preliminary results suggest that this
might become a much harder problem.
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A The Static Expansion is not enough to compute a
d-tob

The static expansion of a temporal graph G = (V,A, τ) is defined as the digraph
SE(G) = (V,A) where V = {(v, t) : v ∈ V, t ∈ [τ ]} and A = M∪W where M =
{((u, s), (v, t)) : (u, v, s, t) ∈ A} and W = {((v, t), (v, t+ 1)) : v ∈ V, t ∈ [τ − 1]}.
We call M the set of moving arcs and W the set of waiting arcs. This graph
has already being introduced in the literature, e.g. in [17, 20]. Some expediences
can also be introduced in its definition in order to make its dimension being
linear in the size of the original temporal graph, without altering its properties.
The static expansion can be used for computing single source distances dG (r, v)
by using Dijkstra’s algorithm on it, given that each arc in A is provided by
a suitable weight. We recall that in general, given a weighted directed graph
D = (V ′, A′) with non-negative weights, the Dijkstra’s algorithm can compute
the shortest paths from a given vertex r ∈ V ′ (the source vertex) to all the others,
producing a shortest-path out-branching with root r, with running timeO((|A′|+
|V ′|) log |V ′|), which reduces to O(|A′| log |V ′|) if all vertices are reachable from
the source. In particular by running Dijkstra’s algorithm on SE(G) with source
(r, 1) we obtain:

– eaG (r, v) if we give a weight of 1 to all a ∈ W and a weight of (t− s) to all
(u, v, s, t) ∈ M;

– mtG (r, v) if we give a weight of 0 to all a ∈ W and a weight of 1 to all a ∈ M;
– stG (r, v) if we give a weight of 0 to all a ∈ W and a weight of (t− s) to all

(u, v, s, t) ∈ M;
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– ldG (r, v) by computing ea(v, r) on G⟲ (see Section 3.2);
– ftG (r, v) if we give a weight of 0 to all {(r, t), (r, t+1)) : t ∈ [τ−1]}, a weight

1 to all the other waiting arcs, while every (u, v, s, t) ∈ M gets a weight of
(t−s). In this case, ftG (r, v) is the minimum value among the ones obtained
for the vertices {(v, t) : t ∈ [τ ]}.

Unfortunately the out-branching that the Dijkstra’s algorithm returns on SE(G)
does not translate into a d-tob of G. The first problem is that by collapsing back
all the vertices {(v, t) : t ≥ 1} to v, it is not guaranteed that the indegree of every
vertex will remain equal to 1. The point is that we have to choose only one arc
incoming to the group of temporal vertices (v, t) corresponding a same vertex v
of the temporal graph. For example, consider the temporal graph of Figure (4a)
and the out-branching produced by Dijkstra’s algorithm on its static expansion
in Figure (4b): if we collapse again the vertices of the out-branching, we get as
a result the original temporal graph itself. Moreover, notice that in the example
the vertices (v, 1) and (v, 2) reach the same distance through the Dijkstra’s
algorithm (the final distances are put in square brackets next to the vertices),
and the same happens to the vertices (x, 1) and (x, 2). But only the choice of
(v, 1) and (x, 1) will let us achieve a maximum mt-tob, while the choice of (v, 2)
and (x, 2) will not. A similar example can be produced for the other distances.

(1,1)

(2,2)

(1,1)

(2,2)

(1,1)r v x y

(a) Temporal graph G that admits an mt-
tob with root r (solid arcs)

0

0

0

0

1

1

1

1

1

[0] [0]

[1] [1]

[2] [2]

[3] [3]

(r,1) (r,2)

(v,1) (v,2)

(x,1) (x,2)

(y,1) (y,2)

(b) Static expansion of G and out-branching
as output of Dijkstra’s algorithm (solid
arcs). Numbers in square bracket represent
the mt distance computed.

Fig. 4: Example when the Dijkstra’s algorithm on the static expansion present
parities between vertices but only one choice leads to a tob.

B Proof of Lemma 1

Lemma 1 Let T = (V,A, τ) be a temporal graph. The following are equivalent:

1. T is a tob with root r;
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2. For all v ∈ V there is a temporal (r, v)-walk in T . Additionally, d−
T
(r) = 0

and, for all v ∈ V \ {r}, d−
T
(v) = 1;

3. For all v ∈ V there is a temporal (r, v)-walk in T , and |A| = |V | − 1;
4. The underlying digraph DT of T is an out-branching with root r and for all

v ∈ V , the unique (r, v)-walk in T is temporal.

Proof. 1. =⇒ 2. Since the existence of a temporal (r, v)-walk in T for all v ∈ V
is guaranteed by definition, we just need to show that d−

T
(r) = 0 and that, for

every v ∈ V \ {r}, d−
T
(v) = 1. To that purpose, we first describe the set A of

arcs of T . Since from every temporal walk it is possible to extract a temporal
path with the same extremes, we have that there exists a (r, v)-path in T for all
v ∈ V. Fix now one (r, v)-path Pv for each v ∈ V. By the minimality of A, we
deduce that

A =
⋃
v∈V

A(Pv). (2)

As an immediate consequence of (2), there exists no arc in A entering in r and
hence d−

T
(r) = 0. Now suppose, by contradiction, that there exists v ∈ V \ {r}

such that d−
T
(v) ̸= 1. If d−

T
(v) = 0, then v is not reachable from r, a contradiction.

Thus we must have d−
T
(v) ≥ 2. Let a1, a2 ∈ A be two different incoming arcs of

v with ta(a1) ≤ ta(a2). We claim that we can delete the temporal arc a2 from A
while maintaining the property that every vertex is temporally reachable from
r, and thus contradicting the minimality of A. Delete a2. By (2), there exists
v1 ∈ V such that a1 ∈ A(Pv1). Since in a path there cannot be two different
arcs entering the same vertex, we have that a2 /∈ A(Pv1), because a2 ̸= a1. In
particular, a2 is not an arc for the v-prefix X of Pv1 . Let u ∈ V and consider Pu.
Assume that a2 ∈ Pu. Then, since in a path an arc appears at most once, we
have that a2 does not appear in the v-suffix S of Pu. We consider then the (r, u)-
walk given by P = X +S. Note that a2 /∈ A(P ) and that P is temporal because
ta(a1) ≤ ta(a2). Hence u is temporally reachable from r after the removal of a2,
contradicting the minimality of A.
2. ⇐⇒ 3. ⇐⇒ 4. The temporal reachability from the root is guaranteed in
each of the items. The other conditions are equivalent by the following lemma.

Lemma 2 ([10], Theorem 4.3). Let D = (V,A) be a digraph and r ∈ V. The
following facts are equivalent:

1. D is an out-branching with root r;
2. ∀v ∈ V there exists a walk from r to v, d−

D
(r) = 0, and ∀v ∈ V \ {r},

d−
D
(v) = 1;

3. ∀v ∈ V there exists a walk from r to v and |A| = |V | − 1.

4. =⇒ 1. The temporal reachability from the root is guaranteed by hypothesis.
Since DT is an out-branching, by Lemma 2 it has |V |−1 arcs, which means that
if we delete any arc then we necessarily disconnect some vertex from the root.
Hence A is minimal.
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C Proof of Proposition 1

Proposition 1 Given a temporal graph G, it holds that:

1. T is a maximum ea-tib of G iff T ⟲ is a maximum ld-tob of G⟲;
2. T is a maximum ld-tib of G iff T ⟲ is a maximum ea-tob of G⟲;
3. For each d∈{mt, st, ft}, T is a maximum d-tib of G iff T ⟲ is a maximum

d-tob of G⟲.

Proof. Observe that (G⟲)⟲ = G and that W = (u, a1, v2, a2, . . . , vk, ak, v) is a
temporal (u, v)-walk in G if and only if W⟲ = (v, a⟲k , vk, . . . , a

⟲
2 , v2, a

⟲
1 , u) is a

temporal (v, u)-walk in G⟲. Then note that for any walk W in G it holds that
(W⟲)⟲ = W , ts(W

⟲) = τ − ta(W ) + 1, ta(W
⟲) = τ − ts(W ) + 1, ℓ(W ) =

ℓ(W⟲), dur(W ) = dur(W⟲) and tt(W ) = tt(W⟲). It is also easy to see that
T is a tib with root r if and only if T ⟲ is a tob with root r. Let now W
and W ′ be two (v, r)-walks in G. We claim that W realizes ea(v, r) in G if
and only if W⟲ realizes ld(r, v) in G⟲. Indeed, ta(W ) ≤ ta(W

′) if and only if
τ − ts(W

⟲) + 1 ≤ τ − ts(W
′⟲) + 1 if and only if ts(W

⟲) ≥ ts(W
′⟲). Similarly,

we claim that W realizes ld(v, r) in G if and only if W⟲ realizes ea(r, v) in G⟲.
Indeed, ts(W ) ≥ ts(W

′) if and only if τ − ta(W
⟲) + 1 ≥ τ − ta(W

′⟲) + 1 if
and only if ta(W

⟲) ≤ ta(W
′⟲). We now prove that, for d ∈ {ft,mt, st}, W

realizes d(v, r) in G if and only if W⟲ realizes d(r, v) in G⟲. In fact it holds that
ℓ(W ) ≤ ℓ(W ′) if and only if ℓ(W⟲) ≤ ℓ(W ′⟲), tt(W ) ≤ tt(W ′) if and only if
tt(W⟲) ≤ tt(W ′⟲) and dur(W ) ≤ dur(W ′) if and only if dur(W⟲) ≤ dur(W ′⟲).
This concludes our proof.

D Proof of Theorem 1

To prove Theorem 1, we first need the following Lemma.

Lemma 3. Let W be a d-prefix-optimal temporal (r, u)-walk in G and v ∈
V (W ). Let S be a v-suffix of W and let Wv be a d-prefix-optimal temporal
(r, v)-walk in G. If ta(Wv) ≤ ts(S), then Wv + S is a d-prefix-optimal temporal
(r, u)-walk in G.

Proof. Since ta(Wv) ≤ ts(S) by hypothesis, then W̄ = Wv + S is a temporal
(r, u)-walk. Clearly W̄ realizes dG (r, x) for every x ∈ V (Wv) by construction.
We now need to prove that W̄ realizes dG (r, x) for all x ∈ V (S). So consider an
arbitrary x ∈ V (S). If d = ld, then since W and Wv are ld-prefix-optimal, we
get ts(W ) = ts(Wv) = ld(r, v) = ld(r, x), so we are done. Let now X be the
v-prefix of W such that W = X + S. If d = mt, then W and Wv are paths and
ℓ(X) = mt(r, v) = ℓ(Wv). Consequently W̄ realizes mt(r, x). If d = st, then
tt(X) = tt(Wv). Consequently W̄ realizes st(r, x).

Theorem 1 Let G = (V,A, τ) be a temporal graph, r ∈ V and d ∈ {ld,mt, st}.
Then G admits a spanning d-tob with root r if and only if for all v ∈ V , there
exists a d-prefix-optimal temporal (r, v)-path in G.
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Proof. =⇒ By the definition of d-tob with root r and the uniqueness of
temporal walks from the root to any other vertex in a tob (see Lemma 1), it
follows that all walks in a d-tob are paths and are d-prefix-optimal.
⇐= For every v ∈ V , let Wv be a temporal d-prefix-optimal (r, v)-path in G.
Let A′ :=

⋃
v∈V A(Wv). For B ⊆ A′, denote by T [B] the temporal subgraph of

G having vertex set V and temporal arc set B, and consider the property:
P

d,B
) for all v ∈ V , there exists in T [B] a temporal d-prefix-optimal (r, v)-walk.

Note that P
d,A′ is satisfied. Thus it is possible to consider the minimal subsets

B of arcs in A′ satisfying P
d,B

. Let AT ⊆ A′ be one of such minimal sets and let
T := T [AT ]. We show that T is a d-tob for G. Clearly, by the construction of
T , it is enough to show that T is a tob. Furthermore, in view of Lemma 1, it
suffices to show that d−

T
(r) = 0 and that for all v ∈ V \ {r}, d−

T
(v) = 1, since the

temporal reachability from vertex r to any other vertex is already guaranteed
by property P

d,AT
. Since A′ does not contain arcs entering in r, this holds also

for AT and hence we have that d−
T
(r) = 0. Suppose now, by contradiction, that

there exists v ∈ V \ {r} such that d−
T
(v) ̸= 1. Since d−

T
(v) = 0 implies that

v is not reachable from r, we necessarily have d−
T
(v) ≥ 2. Let a1, a2 ∈ AT be

two different incoming temporal arcs of v with ta(a1) ≤ ta(a2). We claim that
P

d,AT \{a2} is satisfied, and thus the minimality of AT is contradicted. Indeed, by

definition of AT , there exists v1 ∈ V and a temporal (r, v1)-path Wv1 such that
a1 ∈ A(Wv1). Since in a path two distinct arcs entering in the same vertex do not
appear, we have that a2 /∈ A(Wv1). In particular, a2 is not an arc for the v-prefix
X of Wv1 . Let u ∈ V and consider Wu a temporal (r, u)-path in T . Assume that
a2 ∈ Wu. Then, since in a path an arc appears at most once, we have that a2 does
not appear in the v-suffix S of Wu. We consider then the (r, u)-walk given by
W̄ = X+S. Then a2 /∈ A(W̄ ) and we have that ta(X) = ta(a1) ≤ ta(a2) ≤ ts(S).
As a consequence, by Lemma 3, W̄ is a d-prefix-optimal walk in T [AT \ {a2}].

E Proof of Corollary 1

Corollary 1 Let G = (V,A, τ) be a temporal graph, r ∈ V , and d ∈ {ld,mt, st}.
Then a maximum d-tob T with root r of G has vertex set:

VT = {v ∈ V : there exists a d-prefix-optimal (r, v)-walk in G }

Proof. Consider G[VT ]. Let v ∈ VT and W a d-prefix-optimal (r, v)-temporal
walk in G. By definition of d-prefix-optimal walk, for every u ∈ V (W ), it holds
that u ∈ VT , which implies that W is also a d-prefix-optimal (r, v)-temporal
walk in G[VT ]. Hence, by Theorem 1, G[VT ] admits a spanning d-tob T , which
is also a d-tob of G. We now show that T is maximum. By Remark 1 it suffices
to prove that if V ′ ⊆ V is such that V ′ \ VT ̸= ∅, then G[V ′] does not admit a
spanning d-tob with root r. Let u ∈ V ′ \VT : by hypothesis there does not exist
a d-prefix-optimal temporal (r, u)-walk in G, hence there does not exist one in
G[V ′]. By Theorem 1, G[V ′] does not admit a spanning d-tob.
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F Existence of st-tob when τ ≤ 2

Claim. If τ ≤ 2, then a temporal graph G = (V,A, τ) admits a st-tob with root
r ∈ V if and only if each vertex is temporally reachable from r.

Proof. If τ = 1 than the temporal graph reduces to a static digraph and the
problem of finding a st-tob reduces to finding an out-branching, so the thesis
follows. If τ = 2, notice that every temporal label (ts(a), ta(a)) can assume only
three values, namely {(1, 1), (1, 2), (2, 2)}. This implies that every temporal walk
W in G is such that either tt(W ) = 0 or tt(W ) = 1. Moreover, if tt(W ) = 0, then
W is necessarily st-prefix-optimal. We now want to prove that if v is temporally
reachable from r, then there exists a st-prefix-optimal (r, v)-walk in G. Let W be
a (r, v)-walk in G. If tt(Wv) = 0, we are done. Suppose now that tt(W ) = 1 and
thatW is not st-prefix-optimal. Let u be the first vertex ofW starting from v for
which W does not realize st(r, u). This means that there must exists a u-prefix
X of W such that tt(X) = 1 while st(r, u) = 0. This implies that ta(X) = 2
and that there must exists a (r, u)-walk Wu in G such that tt(Wu) = 0, so Wu

is st-prefix-optimal. Let S a u-suffix of W such that W = X + S; notice that
ta(Wu) ≤ 2 = ta(X) = ts(S). Then by constructionWu+S is a st-prefix-optimal
(r, v)-walk in G.

G Proof of Theorem 2

Theorem 2 Algorithm 1 returns a maximum mt-tob of a temporal, for a cho-
sen root, graph in O(M log n) time. Besides, the output is an eamt-tob.

Proof. Let G = (V,A, τ) the temporal graph input of the algorithm and r ∈ V ,
d(v) = mtG (r, v) for all v ∈ V , h = max{d(v) : v ∈ V } and V ′ = {v ∈ V :
v is temporally reachable from r}. For i ∈ [h]0 let Di = {v ∈ V : d(v) = i} and
note that {Di : i ∈ [h]0} is a partition of V ′ with D0 = {r}. Since no confusion
is possible, from now on we will avoid writing the subscripts G. We prove the
following loop invariant:

Claim. At the end of the i-th iteration of the for loop in lines 4-12, VT = {v ∈
V ′ : ∃ an mt-prefix-optimal temporal (r, v)-walk in G and d(v) ≤ i}, EA(v) =
eamt(r, v) for all v ∈ VT , v ̸= r, and T is an eamt-tob with root r of G.

The above claim implies that the final output T of the algorithm is an eamt-tob
with root r of G, which is in particular an mt-tob with root r of G. Moreover, VT

would consist of all the vertices in G for which there exists an mt-prefix-optimal
temporal walk from the root, thus T is a maximum mt-tob by Corollary 1.
We are left to prove the claim. T is initialized as the temporal graph made
of the sole vertex r, so the loop invariant is trivially true. Suppose now that
the loop invariant is true up to a certain i-th iteration, we prove that it holds
for the (i + 1)-th iteration. Let v ∈ V such that d(v) = i + 1. We first prove
that if there exists an mt-prefix-optimal temporal (r, v)-walk in G, say W , then
the set S in line 6 is non-empty. We can always choose W such that it arrives
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the earliest in v among all the mt-prefix-optimal temporal (r, v)-walks, that is
ta(W ) = eamt(r, v). Let ā = (ū, v, s̄, t̄) ∈ A be the last temporal arc of W . It
holds that d(ū) = i and therefore, by the inductive hypothesis, we have that
ū ∈ Vi and EA(ū) = eamt(r, ū) at the end of the i-iteration. Since W is mt-
prefix-optimal, it holds that s̄ ≥ eamt(r, ū) = EA(ū). Therefore ā fulfils the
conditions to belong to S, i.e. S is non-empty. Notice also that since ā ∈ S and
W realizes eamt(r, v), we have that t̄ = eamt(r, v) and so

min
(u′,v,s′,t′)∈S

t′ = t̄ = eamt(r, v) . (3)

We now prove that T is an eamt-tob with root r. We have just showed that
if there exists an mt-prefix-optimal temporal (r, v)-walk in G, then S in line 6
is non-empty. This implies that in line 8 we choose an arc a = (u, v, s, t) ∈ S
that minimizes the arrival time, so this arc is added to AT , while v is added
to VT and EA(v) is set to t. Because D0, . . . , Dh is a partition of V ′, no other
incoming arc to v is added in the algorithm, and therefore v has in-degree equal
to 1 in T . Moreover s ≥ EA(u) since a ∈ S, so if Wu is the unique temporal
(r, u)-path in T (it exists by inductive hypothesis), then Wv = Wu + (u, a, v) is
a temporal (r, v)-path in T . Hence T is a tob with root r. It remains to show
that Wv realizes eamt(r, v). By the inductive hypothesis we have that Wu is
eamt-prefix-optimal. Therefore ℓ(Wv) = ℓ(Wu) + 1 = d(u) + 1 = i + 1 = d(v).
Moreover, by equation (3) and since a ∈ S, we have that EA(v) = ta(Wv) = t =
t̄ = eamt(r, v). This concludes the proof of claim.

Regarding the computational complexity of the algorithm, by Table 1 the
initial computation of all distances requires O(M log n); the remaining part of
the algorithm takes O(M) as it requires only one scan of each temporal arc.
Therefore the overall complexity is O(M log n).

H Proof of Theorem 3

Theorem 3 For any d∈{ld, st}, Algorithm 2 returns a maximum d-tob of a
temporal graph, for a chosen root, in O(M logM) time. Besides, the output is
an ead-tob.

Proof. Let G = (V,A, τ) the temporal graph input of the algorithm and r ∈ V ,
d(v) = dG (r, v) for all v∈V , h = |{d(v) : v ∈ V }| and {d0 < d1 < · · · < dh} =
{d(v) : v ∈ V }. Let V ′ = {v ∈ V : v is temporally reachable from r} and for all
i ∈ [h]0, let Di = {v ∈ V : d(v) = di}. Note that {Di : i ∈ [h]0} is a partition
of V ′ with D0 = {r}. Since no confusion is possible, from now on we will avoid
writing the subscripts G. Note that if d = ld, then each iteration of the for
loop in lines 5-18 is completely independent on the others, as it deals only with
vertices in Di and temporal arcs with both tail and head in Di. We now proceed
by proving the following loop invariant:
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Claim. Given d ∈ {ld, st}, at the end of the i-th iteration of the for loop in
lines 5-18, we have that EA(v) = eadG (r, v) for all v ∈ VT , v ̸= r, and that
T = (VT , AT , τT ) is an ead-tob with root r of G with

VT = {v ∈ V ′ : ∃ a d-prefix-optimal temp. (r, v)-walk in G and d(v) ≤ di}. (4)

The claim above implies that the final output T of the algorithm is an ead-tob
with root r of G, which is in particular a d-tob with root r of G. Moreover, VT

would consist of all the vertices in G for which there exists an d-prefix-optimal
temporal walk from the root, thus T is a maximum d-tob by Corollary 1. We
are left to prove the claim. T is initialized as the temporal graph made of the
sole vertex r, so the loop invariant is trivially true. Suppose now that the loop
invariant is true up to a certain i-th iteration, we prove that it holds for the
(i + 1)-th iteration. We start by proving that if v ∈ Di+1 and there exists a d-
prefix-optimal temporal (r, v)-walk in G, then v ∈ VT at the end of the (i+1)-th
for loop iteration. Let W = (r = x0, a1, x1, . . . , am, xm = v) be one of these d-
prefix-optimal temporal (r, v)-walks in G. Let xj be the last vertex of W starting
from r that is in VT before the beginning of the (i+1)-th iteration (xj possibly
equal to r). By inductive hypothesis, this implies that d(xj) < di+1 and that
d(xl) = di+1 for all l > j. Then the arc aj+1 is added to Q in lines 7-8 at the
beginning of the (i+1)-th iteration. Since W is d-prefix-optimal, aj+1 does not
fulfil the condition in line 11, unless xj+1 has been already added to VT . This
implies that in any case at one point of the while loop xj+1 is being added to
VT , which implies that aj+2 is put in queue Q by line 16. This iteratively proves
that for all l > j, xl will be added to VT at one point of the while loop, and
this includes xm = v. This proves equation (4). To prove the rest of the claim,
we are going to prove the following fact:

Claim. When in the (i+ 1)-th iteration of the for loop of lines 5-18, at the end
of each iteration of the while loop of lines 9–17, we have that T = (VT , AT , τT )
is an ead-tob with root r and ∀v ∈ VT , EA(v) = eadG (r, v).

At the beginning of the (i + 1)-th for loop iteration, the inductive hypothesis
holds, so the invariant property is true. By contradiction, consider the first it-
eration of the while loop such that the addition of the vertex v to VT and of
the arc a = (u, v, s, t) to AT makes the claim fail. Since we are at the (i + 1)-
th for loop iteration, it holds that d(v) = di+1. Due to line 11, it must hold
that s ≥ EA(u) and, if d = st, then t − s = di+1 − d(u). This implies that
EA(u) < +∞, and since the only way for this to hold is to have u = r, or
to have EA(u) updated to a natural number, in which case u is added to VT

(line 15), we get that u ∈ VT . Also, u must have entered VT before v, so by
hypothesis there exists a (unique) ead-prefix-optimal temporal (r, u)-walk Wu

in T ; in particular ta(Wu) = ead(r, u) = EA(u). Since s ≥ EA(u), then the
walk Wv = Wu + (u, a, v) is a temporal (r, v)-walk in T . Moreover, if d = ld,
then u ∈ Di+1, so ts(Wv) = ts(Wu) = d(u) = di+1 = d(v). If d = st,
then t − s = di+1 − d(u), so tt(Wv) = tt(Wu) + (t − s) = d(u) + (t − s) =
d(u) + (t − s) = di+1. Hence in both cases, Wv realizes d(v) and it is d-prefix-
optimal. This also implies that t = ta(Wv) ≥ ead(r, v). It remains to show
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that v has indegree 1 in T and that t = EA(v) = ead(r, v) to derive the con-
tradiction. Suppose first that v has indegree ̸= 1. Then it must have indegree
> 1 since a is an incoming temporal arc of v that belongs to AT . Then at
a previous step of the while loop an arc a′ = (u′, v, s′, t′) was added to AT ,
which means that in the same step also v was added to VT and EA(v) was
set equal to t′. When a′ was added, u′ must have already been in VT . By hy-
pothesis, there exists a (unique) ead-prefix-optimal temporal (r, u′)-walk Wu′

in T , and W ′ = Wu′ + (u′, a′, v) is such that ead(r, v) = ta(W
′) = t′ = EA(v)

by hypothesis. Since t ≥ ead(r, v) = EA(v), the arc a could have never been
chosen later, as it is fulfilling the condition t ≥ EA(v) in line 11. So v has in-
degree 1 in T . Suppose now that EA(v) ̸= ead(r, v), i.e. that t > ead(r, v).
We know that v has a d-prefix-optimal (r, v)-walk in G; let W be the d-prefix-
optimal (r, v)-walk in G that arrives the earliest in v, i.e. ta(W ) = ead(r, v).
Let y ∈ V (W ) be the first vertex along W such that, when v is added to VT ,
y /∈ VT , and let x ∈ VT be y’s predecessor along W and axy = (x, y, sxy, txy)
the temporal arc connecting them in W (x may coincide with r). By induc-
tive hypothesis we have that y ∈ Di+1. Notice that txy ≤ ta(W ) = ead(r, v).
Since x ∈ VT and we chose v as the first vertex for which EA(v) ̸= ead(r, v),
we have that EA(x) = ead(r, x) when x was added to VT . This implies that
the arc axy is enqueued in Q when x is added to VT . Indeed if d = ld, then
d(x) = d(y) = d(v) = di+1 and so axy ∈ {(x, v′, s′, t′) ∈ A : v′ ∈ Di+1} in
line 16. If d = st, let di′ = d(x) ≤ di+1. If i

′ = i + 1 we conclude as above. If
i′ < i + 1, since y ∈ Di+1, then axy is enqueued in Q at the beginning of the
(i + 1)-th for loop iteration (line 8). We claim that when v was added to VT ,
axy was still in Q. Indeed, axy could have not been dequeued from Q and added
to AT since otherwise y ∈ VT before v was added to VT , which contradicts the
hypothesis. If axy was dequeued from Q without being added to AT , since W
is d-prefix-optimal (and so txy − sxy = d(y) − d(x) = di+1 − d(x) if d = st)
and sxy ≥ ead(r, x) = EA(x), then it must have hold that EA(y) < +∞. This
implies that y was already in VT before v was added to VT , which again con-
tradicts the hypothesis. Therefore, when v was added to VT , it must hold that
t ≤ txy. But txy ≤ ta(W ) = ead(r, v) ≤ t and so t = ead(r, v). This concludes
the proof. Regarding the computational complexity of the algorithm, the initial
computation of all d(r, v), v ∈ V , requires O(M logM) by Table 1. Concerning
the remaining part of the algorithm, notice that the i-th iteration of the for
loop considers only arcs whose head is in Di. This means that each arc will be
considered only in one of the iterations of the for loop. Moreover, each arc is
dequeued from Q at most once. As the dequeue from Q costs O(logM) we obtain
a total running time of O(M logM).

I Proof of Theorem 4

Theorem 4 Let G = (V,A, τ) be a temporal graph and r∈V . Deciding whether
G admits a spanning ft-tob with root r is NP-complete, even if τ = 2 and
el(a)=0 for every a ∈ A, or if τ = 3 and el(a)=1 for every a∈A.
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Proof. The problem is in NP, since computing ftG (r, v) for every vertex v can
be done in polynomial time (Table 1), and because testing whether a given
temporal subgraph T is a tob can be done in polynomial time (see e.g. Lemma
1). To prove hardness, we make a reduction from 3-SAT, largely known to be
NP-complete [6, 18]. For this, consider a formula ϕ in CNF form on variables
X = {x1, . . . , xn} and on clauses C = {c1, . . . , cm}. We first construct G =
(V,A, τ) for the case where every arc has elapsed time 0 (observe Figure (5a) to
follow the construction). First, let V = X ∪ C ∪ {r}. For each variable xi, add
to A the temporal arcs (r, xi, 1, 1) and (r, xi, 2, 2). Then, for each clause cj and
each variable xi appearing in cj , add temporal arc (xi, cj , 1, 1) if xi appears in cj
positively, while add the temporal arc (xi, cj , 2, 2) if xi appears in cj negatively.
We now prove that ϕ is satisfiable if and only if there exists a spanning ft-
tob rooted in r. Suppose first that ϕ admits a satisfying assignment; we show
how to construct a spanning ft-tob T = (V,AT , τT ) rooted in r. For each
variable xi, add to AT the temporal arc (r, xi, 1, 1) if xi is true, while add to
AT the temporal arc (r, xi, 2, 2) if xi is false. Now consider a clause cj and
choose one of the variables that validates cj , say xij . Add to AT the unique
temporal arc with head cj and tail xij . Now observe that the vertices in X are
connected to r in T through direct arcs; hence we get that ftT (r, xi) = 0 for
every xi ∈ X. For a clause cj , if xij appears positively in cj , then xij is true, and
(r, xij , 1, 1) and (xij , cj , 1, 1) are in AT ; therefore ftT (r, cj) = 0. If xij appears
negatively in cj , then xij is false, so (r, xij , 2, 2) and (xij , cj , 2, 2) are in AT ;
therefore ftT (r, cj) = 0. Finally, observe that each vertex different from the
root has indegree 1. By Lemma 1, we get that T is a spanning tob, and since
ftT (r, v) = 0 for every v ∈ V , it follows that T is a spanning ft-tob.

Suppose now that T = (V,AT , τT ) is a spanning ft-tob rooted in r. Since
the only possible (r, xi)-walk is through an arc, we get that either (r, xi, 1, 1) ∈
AT or (r, xi, 2, 2) ∈ AT . If the former occurs, then set xi to true, while if the
latter occurs, then set xi to false. We now argue that this must be a satisfying
assignment to ϕ. For this, consider a clause cj . By Lemma 1, we know that
d−

T
(cj) = 1; so let a = (xij , cj , t, t) be the temporal arc incident to cj in T . If xij

appears positively in cj , then we know that a = (xij , cj , 1, 1) by construction.
And since the temporal (r, cj)-walk must pass by xij , we get that (r, xij , 1, 1) ∈
Aτ , in which case xij is set to true and hence satisfies cj . If xij appears in cj
negatively, then a = (xij , cj , 2, 2). Notice that ftG (r, cj) = 0; since T is an ft-
tob, we must also have ftT (r, cj) = 0. This implies that (r, xij , 2, 2) ∈ AT and
hence xij is set to false, satisfying cj .

In the case where el(a) = 1 for every arc a, the reduction is similar to
the previous one. Specifically, for each xi ∈ X, we add arcs (r, xi, 1, 2) and
(r, xi, 2, 3). For each clause cj , if xi appears positively in cj we add the temporal
arc (xi, cj , 2, 3), while if xi appears negatively in cj we add the temporal arc
(xi, cj , 3, 4). Analogous arguments to the previous ones apply.
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(a) All temporal arcs have elapsed time 0.
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(b) All temporal arcs have elapsed time 1.

Fig. 5: Example of the construction in the proof of Theorem 4. Clause c1 is equal
to (x1 ∨ x2 ∨ ¬x3). The value on top of each arc represents the starting time.


