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Abstract. We investigate the complexity of the satisfiability problem
for a modal logic expressing ‘knowing how’ assertions, related to an
agent’s abilities to achieve a certain goal. We take one of the most stan-
dard semantics for this kind of logics based on linear plans. Our main
result is a proof that checking satisfiability of a ‘knowing how’ formula
can be done in ΣP

2 . The algorithm we present relies on eliminating nested
modalities in a formula, and then performing multiple calls to a satisfi-
ability checking oracle for propositional logic.
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Errata: This is a complete version of our paper published in the 18th
Edition of the European Conference on Logics in Artificial Intelligence
(JELIA 2023) hosted by the TU Dresden, Germany, in Sep. 20—22, 2023.
This version corrects the published version since the latter is missing the
algorithms for the satisfiability problem we studied.

1 Introduction

The term ‘Epistemic Logic’ [15] encompasses a family of logical formalisms aimed
at reasoning about the knowledge of autonomous agents about a given scenario.
Originally, epistemic logics restricted their attention to so-called knowing that,
i.e., the capability of agents to know about certain facts. More recently, sev-
eral logics have been proposed to reason about alternative forms of knowledge
(see [32] for a discussion). For instance, knowing whether is looked into in [7];
knowing why in [34]; and knowing the value in [12,3], just to mention a few. Fi-
nally, a novel approach focuses on knowing how –related to an agent’s ability to
achieve a goal [8]. This concept is particularly interesting, as it has been argued
to provide a fresh way to reason about scenarios involving strategies in AI, such
as those found in automated planning (see, e.g., [6]).

The first attempts to capture knowing how were through a combination of
‘knowing that’ and actions (see, e.g., [25,26,18,14]). However, it has been dis-
cussed, e.g., in [16,13], that this idea does not lead to an accurate representation
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of knowing how. In response, a new logic is presented in [31,33] featuring an
original modality specifically tailored to model the concept of ‘knowing how’. In
a nutshell, an agent knows how to a achieve a goal ϕ under some initial condi-
tion ψ, written Kh(ψ, ϕ), if and only if there exists a ‘proper’ plan π, i.e., a finite
sequence of actions, that unerringly leads the agent from situations in which ψ
holds only to situations in which ϕ holds. A ‘proper’ plan is taken as one whose
execution never aborts, an idea that takes inspiration from the notion of strong
executability from contingent planning [29]. As discussed in, e.g., [17,13], the
quantification pattern we just described cannot be captured using logics with
‘knowing that’ modalities and actions. For this reason, the new Kh modality
from [31,33] has reached a certain consensus in the community as an accurate
way of modelling ‘knowing how’. Moreover, it has paved the way to a deep study
of knowing how, and to a rich family of logics capturing variants of the initial
reading. Some examples of which are a ternary modality of knowing how with in-
termediate constraints [21]; a knowing how modality with weak plans [19]; a local
modality for strategically knowing how [9] (and some relatives, see [28,27]); and,
finally, a knowing how modality which considers an epistemic indistinguishability
relation among plans [1].

As witnessed by all the ideas it triggered, the foundational work in [31,33]
greatly improved the understanding of ‘knowing how’ from a logical standpoint.
The literature on logics of ‘knowing how’ explores a wide variety of results, such
as axiom systems (in most of the works cited above), proof methods [23,20],
and expressivity [10], just to name a few. Yet, if we consider ‘knowing how’
logics as suitable candidates for modelling problems in strategic reasoning, it is
important to consider how difficult (or how easy) it is to use these logics for
reasoning tasks. There have been some recent developments on the complexity
of logics with ‘knowing how’ modalities. For instance, model-checking for the Kh

modality above, and some of its variants, is investigated in [5]. The complex-
ity of model-checking and the decidability status of satisfiability for the local
‘knowing how’ modality from [9], and some of its generalizations, is explored
in [24]. These two problems are also explored for ‘knowing how’ with epistemic
indistinguishability in [1]. Notwithstanding, the complexity of the satisfiability
problem for the original Kh modality from [31,33] is still unknown ([22] presents
only a decidability statement). In this work, we shed some light into this matter.

Our contribution is to provide an upper for the satisfiability problem of the
knowing how logic from [31,33], called here LKh. More precisely, we introduce
an algorithm for deciding satisfiability that is in ΣP

2 , the second level of the
polynomial hierarchy (PH) [30]. In short, this complexity class can be though as
those problems invoking an NP oracle a polynomial number of times, and whose
underlying problem is also in NP (see e.g. [2]). Currently, it is unknown whether
PH collapses, or it is strictly contained in PSpace. This being said, having an
algorithm in a lower level of PH is generally understood as a good indication that
the problem is close to, e.g., NP or Co-NP. It is easy to see that NP is a lower
bound for checking satisfiability in LKh, as it extends propositional logic. For an
upper bound, a natural candidate is PSpace, as for instance the model-checking
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problem for LKh is PSpace-complete [5], a potentially higher complexity of what is
proved here for satisfiability. We argue that this is due to the fact that in model-
checking the full expressivity of the semantics is exploited (specially related to
properties of regular languages), whereas for satisfiability, all this expressivity is
completely hidden. Although our procedure does not lead to a tight complexity
characterization, it gives us an interesting upper bound towards filling this gap.

We put forth that our result is not obvious. To obtain it, we combine tech-
niques such as defining a normal form to eliminate nested modalities, calling
an NP oracle to guess propositional valuations and computing a closure over a
matrix of formulas to combine them, adapting the Floyd-Warshall algorithm [4].

The article is organized as follows. In Sec. 2 we introduce some notation and
the basic definitions of the logic LKh. Sec. 3 is devoted to incrementally show our
result. Finally, in Sec. 4 we provide some remarks and future lines of research.

2 Knowing How Logic

From here onwards, we assume Prop is a denumerable set of proposition symbols,
and Act is a denumerable set of action symbols. We refer to π ∈ Act∗ as a plan.

Definition 1. The language LKh is determined by the grammar:

ϕ, ψ ::= p | ¬ϕ | ϕ ∨ ψ | Kh(ϕ, ψ),

where p ∈ Prop. We use ⊥, ⊤, ϕ ∧ ψ, ϕ→ ψ, and ϕ↔ ψ as the usual abbrevia-
tions; Aϕ is defined as Kh(¬ϕ,⊥) (see e.g. [31,33]), while Eϕ abbreviates ¬A¬ϕ.
The elements of LKh are formulas.

We read Kh(ϕ, ψ) as: “the agent knows how to achieve ψ given ϕ”. We call ϕ
and ψ, the precondition and the postcondition of Kh(ϕ, ψ), respectively. We read
Aϕ as: “ϕ holds anywhere”; and its dual Eϕ as: “ϕ holds somewhere”. As it is
usually done, we refer to A and E as the universal and existential modalities [11].

Formulas of LKh are interpreted with respect to labelled transition systems
over so-called strongly executable plans. Sometimes, we refer to LTS as models.
We introduce their definitions below.

Definition 2. A labelled transition system (LTS) is a tuple M = 〈S,R,V〉 s.t.:

(1) S is a non-empty set of states;
(2) R = {Ra | a ∈ Act} is a collection of binary relations on S; and
(3) V : Prop → 2S is a valuation function.

Definition 3. Let {Ra | a ∈ Act} be a collection of binary relations on S. Let ε ∈
Act∗ be the empty plan. We define: Rε = {(s, s) | s ∈ S}, and for every π ∈ Act∗,
and a ∈ Act, Rπa = Rπ Ra (i.e., their composition). For every relation Rπ, and
T ⊆ S, define Rπ(T ) = {(s, t) | s ∈ T and (s, t) ∈ Rπ}, and Rπ(t) = Rπ({t}).

The notion of strong executability determines the “adequacy” of a plan. Strong
executability takes inspiration from conformant planning [29], and its jusification
is discussed at length in [31].
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Definition 4. Let π = a1 . . . an ∈ Act∗, and 1 ≤ i ≤ j ≤ n, we denote: πi = ai;
π[i, j] = ai . . . aj; and |π| = n. Moreover, let M = 〈S,R,V〉 be an LTS; we say
that π is strongly executable (SE) at s ∈ S, iff for all i ∈ [1, |π| − 1] and all
t ∈ R(π[1,i])(s), it follows that Rπ(i+1)

(t) 6= ∅. The set of all states at which π is
strongly executable is defined as SE(π) = {s | π is SE at s}. Note: SE(ε) = S.

We illustrate the notions we just introduced with a simple example.

Example 1. Let M = 〈S,R,V〉 be the LTS depicted below and π = ab. We have,
Rπ(s) = {u}, and Rπ[1,1](s) = Ra(s) = {t, v}. It can be seen that s ∈ SE(a);
while s /∈ SE(π) –since v ∈ Rπ[1,1](s) and Rπ(2)

(v) = Rb(v) = ∅. Finally, we have
that SE(ε) = S, SE(a) = {s} and SE(ab) = ∅.

p

s

r

t

r

v

q

u
a b

a

We are now ready to introduce the semantics of LKh, based on [31,33].

Definition 5. Let M = 〈S,R,V〉 be an LTS, we define JϕKM inductively as:

JpKM = V(p) J¬ϕKM = S \JϕKM Jϕ ∨ ψKM = JϕKM ∪ JϕKM

JKh(ϕ, ψ)KM =

{

S if exists π∈Act∗s.t. JϕKM ⊆ SE(π) and Rπ(JϕKM) ⊆ JψKM

∅ otherwise.

We say that a plan π ∈ Act∗ is a witness for Kh(ϕ, ψ) iff JϕKM ⊆ SE(π) and
Rπ(JϕKM) ⊆ JψKM. We use (JϕKM)∁ instead of S \JϕKM. We write M  ϕ as an
alternative to JϕKM = S; and M, s  ϕ as an alternative to s ∈ JϕKM.

Example 2. Let M be the LTS from Ex. 1. From Def. 5, we have JKh(p, r)KM = S
(using a as a witness), while JKh(p, q)KM = ∅ (there is no witness for the formula).

We included the universal modality A as abbreviation since formulas of the
form Aϕ play a special role in our treatment of the complexity of the satisfiability
problem for LKh. It is proven in, e.g., [31,33], that Aϕ and Eϕ behave as the
universal and existential modalities ([11]), respectively. Recall that Aϕ is defined
as Kh(¬ϕ,⊥), which semantically states that ϕ holds everywhere in a model iff
¬ϕ leads always to impossible situations. Formulas of this kind are called here
‘global’. Below, we formally restate the results just discussed.

Proposition 1. Let M = 〈S,R,V〉 and ψ and χ be formulas s.t. JχKM = ∅;
then JKh(ψ, χ)KM = S iff J¬ψKM = S.

Corollary 1. Let M = 〈S,R,V〉 and a formula ϕ, M, s  Aϕ iff JϕKM = S.

We introduce now Prop. 2, which is of use in the rest of the paper.

Proposition 2. Let ψ, ψ′, χ, χ′ and ϕ be formulas, and M an LTS; then:
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(1) Jψ′KM ⊆ JψKM and JχKM ⊆ Jχ′KM implies JKh(ψ, χ)KM ⊆ JKh(ψ′, χ′)KM;
(2) JψKM ⊆ Jψ′KM implies (JKh(ϕ, ψ)KM ∩ JKh(ψ′, χ)KM) ⊆ JKh(ϕ, χ)KM.

We conclude this section with some useful definitions.

Definition 6. A formula ϕ is satisfiable, written Sat(ϕ), iff there is M s.t.
JϕKM 6= ∅. A finite set Φ = {ϕ1, . . . , ϕn} of formulas is satisfiable, written
Sat(Φ), iff Sat(ϕ1 ∧ · · · ∧ ϕn). For convenience, we define Sat(∅) as true. We
use Unsat(ϕ) iff Sat(ϕ) is false; similarly, Unsat(Φ) iff Sat(Φ) is false. Finally,
whenever Sat(ϕ) iff Sat(ϕ′), we call ϕ and ϕ′ equisatisfiable, and write ϕ ≡Sat ϕ

′.

Definition 7. The modal depth of a formula ϕ, written md(ϕ), is defined as:

md(ϕ) =



















0 if ϕ ∈ Prop

md(ψ) if ϕ = ¬ψ

max(md(ψ),md(χ)) if ϕ = ψ ∨ χ

1 + max(md(ψ),md(χ)) if ϕ = Kh(ψ, χ).

We use sf(ϕ) to indicate the set of subformulas of ϕ. We say that Kh(ψ, χ) is a
leaf of ϕ iff Kh(ψ, χ) ∈ sf(ϕ) and md(ψ) = md(χ) = 0 (i.e., md(Kh(ψ, χ) = 1)).

In words, the modal depth of a formula is the length of the longest sequence
of nested modalities in the formula; whereas a leaf is a subformula of depth one.
Notice that, since Aϕ is a shortcut for Kh(¬ϕ,⊥), we have md(Aϕ) = 1+md(ϕ).

Example 3. Let ϕ = Kh(p,Kh(¬q, p → q)) ∨ Kh(r, t); it can easily be checked
that md(ϕ) = 2 and that Kh(¬q, p → q) and Kh(r, t) are its modal leaves.

3 An Upper Bound for the Satisfiability Problem of LKh

In this section we establish an upper bound on the complexity of the satisfiability
problem for LKh, which is the main result of our paper. We start with some
preliminary definitions and results.

Proposition 3. Let ϕ′ be the result of replacing all occurrences of a leaf θ in ϕ
by a proposition symbol k /∈ sf(ϕ); it follows that ϕ ≡Sat (ϕ

′ ∧ (Ak ↔ θ)).

We say that ϕ is in leaf normal form iff md(ϕ) ≤ 1. Prop. 4 tells us that
we can put any formula into an equisatisfiable formula in leaf normal form. The
function Flatten in Alg. 1 tells us how to do this in polynomial time.

Proposition 4. Alg. 1 is in P; on input ϕ, it outputs ϕ0 and ϕ1 such that
md(ϕ0) = 0, md(ϕ1) = 1, and ϕ ≡Sat (ϕ0 ∧ ϕ1).

The result in Prop. 4 allows us to think of the complexity of the satisfiability
problem for LKh by restricting our attention to formulas in leaf normal form. In
turn, this enables us to work towards a solution in terms of subproblems. More
precisely, given ϕ0 and ϕ1 in the leaf normal form that results from Flatten, the
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Algorithm 1 Flatten

require: true

1: function Flatten(ϕ)
2: ϕ0, ϕ1 ← ϕ,⊤
3: loop ⊲ invariant: ϕ ≡Sat (ϕ0 ∧ ϕ1) (see Prop. 3)
4: Θ ← the set of leaves of ϕ0

5: if Θ = ∅ then break end if ⊲ loop guard
6: for all θ ∈ Θ do

7: k ← a proposition symbol not in sf(ϕ0 ∧ ϕ1)
8: ϕ0 ← result of replacing all occurrences of θ in ϕ0 for k
9: ϕ1 ← ϕ1 ∧ (Ak↔ θ)

10: return ϕ0 ∧ ϕ1

ensure: md(ϕ0) = 0 and md(ϕ1) = 1 and ϕ ≡Sat (ϕ0 ∧ ϕ1)

subproblems are (i) determining the satisfiability of ϕ0; and (ii) determining the
satisfiability of ϕ1 based on a solution to (i). The solution to (i) is well-known, ϕ0

is a propositional formula. We split the solution of (ii) into (a) determining when
formulas of the form Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) are satisfiable, see Prop. 5;
(b) determining when formulas of the form ¬Kh(ψ′1, χ

′
1)∧· · ·∧¬Kh(ψ′m, χ

′
m) are

satisfiable, see Prop. 7; and (c) combining (a) and (b), see Prop. 11. We present
(a), (b), and (c), in a way such that they incrementally lead to a solution to the
satisfiability problem for LKh. Finally, in Prop. 12, we show how to combine (i)
and (ii) to obtain an upper bound on the complexity of this problem.

Let us start by solving the first problem: checking whether a conjunction ϕ of
positive formulas in leaf normal form are satisfiable altogether. In a nutshell, we
show that solving this problem boils down to building a set I of the preconditions
of those subformulas whose postconditions are falsified in the context of ϕ, and
checking whether the formulas in I are satisfiable or not. Intuitively, the formulas
in I correspond to ‘global’ formulas. We made precise these ideas in Prop. 5.

Proposition 5. Let ϕ = Kh(ψ1, χ1)∧ · · · ∧Kh(ψn, χn) be such that md(ϕ) = 1;
and let the sets I0, . . . , In be defined as follows:

Ii =

{

{k ∈ [1, n] | Unsat(χk)} if i = 0,

I(i−1) ∪ {k ∈ [1, n] | Unsat({¬ψk′ | k′ ∈ I(i−1)} ∪ {χk})} if i > 0,

where i ∈ [0, n]; further, let I = In. Then: (1) Sat(ϕ) iff (2) Sat(
∧

i∈I ¬ψi).

Proof. (⇒) Suppose that Sat(ϕ) holds, i.e., exists M s.t. JϕKM = S. From this
assumption, we know that, for every j ∈ [1, n], JKh(ψi, χi)K

M = S. The proof is
concluded if J

∧

i∈I ¬ψiK
M 6= ∅. We obtain this last result with the help of the

following auxiliary lemma:

(∗) for all k ∈ Ii, JχkK
M = ∅ and J¬ψkK

M = S

The lemma is obtained by induction on the construction of Ii. The base case
is direct. Let k ∈ I0; from the definition of I0, we get Unsat(χk); this implies
JχkK

M = ∅; which implies S = JKh(ψk, χk)K
M = JA¬ψkK

M = J¬ψkK
M. For

the inductive step, let k ∈ I(i+1) \ Ii. From the Inductive Hypothesis, for all

k′ ∈ Ii, Jχk′K
M = ∅ and J¬ψk′KM = S. This implies (†) J

∧

k′∈Ii
¬ψk′KM = S.
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From the definition of I(i+1), Unsat({¬ψk′ | k
′ ∈ Ii} ∪ {χk}). This is equivalent

to J
∧

k′∈Ii
¬ψk′KM ⊆ J¬χkKM. From (†), S ⊆ J¬χkKM = S. Thus, JχkK

M = ∅

and J¬ψkKM = S. Since I = In; using (∗) we get J
∧

i∈I ¬ψiK
M = S 6= ∅. This

proves (2).

(⇐) The proof is by contradiction. Suppose (2) and Unsat(ϕ). Then, for all M,
(†) JϕKM = ∅. Let J = {j ∈ [1, n] | Unsat({(

∧

i∈I ¬ψi), ψj})}. Moreover, let
M = 〈S,R,V〉 be s.t. S is the smallest set containing all valuations that make
(
∧

i∈I ¬ψi) true. From (2), we know that S 6= ∅ and J¬ψkKM = S for all k ∈ I.

By induction on the construction of I = In, we get that JχkK
M = ∅ for all

k ∈ I =
⋃n
i=0 Ii. The case for k ∈ I0 is direct since Unsat(χk), thus JχkK

M = ∅.
For the inductive case, let k ∈ Ii \ Ii−1, then Unsat({¬ψk′ | k′ ∈ I(i−1)} ∪ {χk}).
This is equivalent to say that the implication ((

∧

k′∈I(i−1)
¬ψk′ ) → ¬χk) is valid.

Thus, J
∧

k′∈I(i−1)
¬ψk′KM ⊆ J¬χkKM. By hypothesis, J

∧

k′∈I ¬ψk′K
M = S. Thus,

J
∧

k′∈I(i−1)
¬ψk′KM = S, and we get J¬χkKM = S and JχkK

M = ∅. In turn, for

all k ∈ J , since Unsat({(
∧

i∈I ¬ψi), ψk}) and J
∧

i∈I ¬ψiK
M = S we can conclude

that JψkK
M = ∅. Thus, we have that JKh(ψk, χk)K

M = JA¬ψkKM = S, for all
k ∈ I ∪ J . Then, from (†), exists K = {k | JKh(ψk, χk)K

M = ∅} s.t. ∅ ⊂ K ⊆
[1, n] \ (I ∪ J). For all k ∈ K, JψkK

M 6= ∅ since Sat({(
∧

i∈I ¬ψi), ψk}); and

JχkK
M 6= ∅ since Sat({¬ψk′ | k′ ∈ I(i−1)} ∪ {χk}) for all i ≥ 0, even I(i−1) =

In = I. Without loss of generality, let K = [1,m] and M
′ = 〈S,R′,V〉 be s.t.

R′ = {R′aj | aj ∈ Act}, where:

R′aj =

{

JψjK
M

′

× JχjK
M

′

if j ∈ K

Ra(j−m)
if j /∈ K.

In the definition of R′, it is worth noticing that since j /∈ K, Ra(j−m)
is defined,

i.e., Ra(j−m)
∈ R. Then clearly, for all k ∈ K, JKh(ψk, χk)K

M
′

= S. The claim

is that for all k′ ∈ I ∪ J , JKh(ψk′ , χk′)K
M

′

= S. To prove this claim, consider a
function σ : Act∗ → Act∗ s.t. σ(ε) = ε, and σ(akα) = a(k+m)σ(α). For all π ∈

Act∗, if Jψk′K
M ⊆ SE(π) and Rπ(Jψk′K

M) ⊆ Jχk′K
M, then Jψk′K

M
′

⊆ SE(σ(π))
and Rσ(π)(Jψk′K

M
′

) ⊆ Jχk′K
M

′

–since the valuation functions for M and M
′

coincide, the truth sets in M and M
′ coincide for formulas with no modalities.

Then, JKh(ψk′ , χk′ )K
M

′

= S. But we had assumed Unsat(ϕ). Thus, (1) follows.

The following example illustrates the result in Prop. 5.

Example 4. Let ϕ = Kh(p,⊥)∧Kh(q, p), i.e., ψ1 = p, ψ2 = q, χ1 = ⊥ and χ2 = p.
It is clear that Sat(ϕ). Let us build the sets I0, I1 and I2:

– I0 = {1}, as Unsat(χ1) and Sat(χ2) hold;

– I1 = {1, 2}, since it holds Unsat({¬ψ1, χ2});
– I2 = {1, 2} = I, as I1 already contains all the indices in [1, 2].

Thus (as it can be easily checked) we get Sat({¬ψ1,¬ψ2}) (i.e., Sat({¬p,¬q})).
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Algorithm 2 Sat
+
Kh

require: ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) and md(ϕ) = 1
1: function Global(ϕ)
2: I, Ψ ← ∅, ∅
3: for i← 0 to n do

4: K ← ∅
5: for k ← 1 to n do

6: if not Sat(Ψ ∪ {χk}) then K ← K ∪ {k} end if

7: I ← I ∪K
8: Ψ ← Ψ ∪ {¬ψk | k ∈ K}
9: return I

ensure: Global(ϕ) = I0 ∪ · · · ∪ In where Ii is as in Prop. 5

require: ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) and md(ϕ) = 1

10: function Sat
+
Kh

(ϕ)
11: return Sat({¬ψi | i ∈ Global(ϕ)})

ensure: Sat
+
Kh

(ϕ) iff Sat(ϕ)

Interestingly, the result in Prop. 5 tells us that the satisfiability of a formula
Kh(ψ1, χ1)∧· · ·∧Kh(ψn, χn) depends solely on the joint satisfiability of its ‘global’
subformulas (cf. Prop. 1); i.e., subformulas Kh(ψi, χi) whose postconditions χi
are falsified in the context of ϕ. The satisfiability of the ‘global’ subformulas
provides us with the universe, i.e., set of states, on which to build the plans that
witness those formulas that are not in I, and that are not ‘trivially’ true as a
result of their preconditions being falsified in this universe.

Building on Prop. 5, the function Sat
+
Kh

in Alg. 2 gives us a way of checking
whether a formula ϕ = Kh(ψ1, χ1)∧· · ·∧Kh(ψn, χn) is satisfiable. The algorithm
behind this function makes use of a (propositional) Sat oracle, and the function
Global. The Sat oracle tests for pre and postconditions of Kh formulas, as these
are propositional formulas. Intuitively, Global iteratively computes the indices
in the sets Ii in Prop. 5, each of them corresponding to the ‘global’ subformulas of
the input. Once this is done, Sat

+
Kh

checks the joint satisfiability of the negation
of the preconditions of ‘global’ subformulas.

Proposition 6. Let ϕ be as in Prop. 5; Alg. 2 solves Sat(ϕ).

Let us now move to determining the satisfiability conditions of a formula
¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) in leaf normal form. Prop. 7 establishes that,
for any such a formula, it is enough to check whether each conjunct ψi ∧ ¬χi is
individually satisfiable. Note that this satisfiability check is purely propositional.

Proposition 7. Let ϕ = ¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) be s.t. md(ϕ) = 1; it
follows that Sat(ϕ) iff for all i ∈ [1, n], Sat(ψi ∧ ¬χi).

Proof. (⇒) The proof is by contradiction. Suppose that (†) Sat(ϕ) and for some
i ∈ [1, n] we have (‡) Unsat(ψi ∧ ¬χi). Let M be a model such that JϕKM 6= ∅,
which exists by (†). Then, JKh(ψi, χi)K

M = ∅. From this, we get JψiK
M 6= ∅;

otherwise JKh(ψi, χi)K
M = S. From (‡), we know that JψiK

M ⊆ JχiK
M. Since

ε ∈ Act∗, we have JψiK
M ⊆ SE(ε) = S and JψiK

M = Rε(JψiK
M) ⊆ JχiK

M. But
this means JKh(ψi, χi)K

M = S; which is a contradiction. Thus, RεJψiK
M * JχiK

M;
i.e., JψiK

M * JχiK
M. This means Jψi∧¬χiKM 6= ∅. This establishes Sat(ψi∧¬χi).
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Algorithm 3 Sat
−
Kh

require: ϕ = ¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) and md(ϕ) = 1

1: function Sat
−
Kh

(ϕ)
2: r ← ⊤
3: for i← 1 to n do

4: r ← r and Sat(ψi ∧ ¬χi)
5: return r

ensure: Sat
−
Kh

(ϕ) iff Sat(ϕ)

(⇐) Suppose that (†) for all i ∈ [1, n], Sat(ψi ∧ ¬χi). Let M = 〈S,R,V〉 where:
(‡) S is s.t. for all i, Jψi ∧ ¬χiKM 6= ∅; and (§) for all Ra ∈ R, Ra = ∅. From
(†), we know that at least one S exists, as every ψi and χi are propositional;
thus, each satisfiable conjunction can be sent to a different s ∈ S. From (§),
we know for all π ∈ Act∗, SE(π) 6= ∅ iff π = ε. From (‡) and (§), we know
that JψiK

M = RεJψiK
M * JχiK

M. This means that JKh(ψi, χi)K
M = ∅, for all

i ∈ [1, n]. Hence JϕKM = S which implies Sat(ϕ).

The key idea behind Prop. 7 is to build a discrete universe to force the only
possible witness of a formula of the form Kh(ψi, χi) to be the empty plan. If in
this discrete universe we always have at hand a state which satisfies ψi ∧ ¬χi,
then, the empty plan cannot be a witness for Kh(ψi, χi). If the latter is the
case, then the satisfiability of ¬Kh(ψi, χi) is ensured. Building on this result,
we define, in Alg. 3, a function Sat

−
Kh

to check the satisfiability of a formula
¬Kh(ψ1, χ1) ∧ · · · ∧ ¬Kh(ψn, χn) in leaf normal form. The function proceeds by
traversing each subformula Kh(ψi, χi) and checking the satisfiability of ψi∧¬χi.

Proposition 8. Let ϕ be as in Prop. 7; Alg. 3 solves Sat(ϕ).

We are now ready to extend the results in Props. 5 and 7 to work out the
joint satisfiability of a formula of the form ϕ+ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn),
and a formula of the form ϕ− = ¬Kh(ψ′1, χ

′
1) ∧ · · · ∧ ¬Kh(ψ′m, χ

′
m), both in leaf

normal form. The main difficulty is how to “build” witnesses for the subformulas
Kh(ψi, χi) of ϕ+ in a way such that they do not yield witnesses for the sub-
formulas ¬Kh(ψ′j , χ

′
j) of ϕ−. We show that the key to the solution hinges on

“composition”. We start with a preliminary definition.

Definition 8. Let ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) and ψ be a formula; we
define Π(ϕ, ψ) =

⋃

i≥0 Πi where:

Π0 = {(x, x) | x ∈ [1, n]}

Π(i+1) = Πi ∪{(x, z) | (x, y) ∈ Πi , z ∈ [1, n], and Unsat({ψ, χy,¬ψz})}.

In words, Π(ϕ, ψ) captures the notion of composition of formulas Kh(ψ, χ)
and Kh(ψ′, χ′) into a formula Kh(ψ, χ′). This composition is best explained by
recalling the validity of (Kh(ψ, χ) ∧ A(χ → ψ′) ∧ Kh(ψ′, χ′)) → Kh(ψ, χ′) (see,
e.g. [31,33]). The definition of Π(ϕ, ψ) records the conjuncts of ϕ which can be
composed in this sense. Below, we list some properties of Π(ϕ, ψ).
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Algorithm 4 Plans

require: ϕ+ is as in Def. 9
1: function Plans(ϕ+, ψ)
2: Π← False(n, n) ⊲ Π is an n × n matrix whose entries are all set to ⊥ (false)
3: for x← 1 to n do

4: Π(x, x)← ⊤
5: for x← 1 to n do ⊲ compute all (x, z) ∈ Π(ϕ+, ψ)
6: for z ← 1 to n do

7: for y0 ← 1 to n do

8: for y1 ← 1 to n do

9: Π(x, z)← Π(x, z) or (Π(x, y0) andΠ(y1, z) and not Sat({ψ, χy0 ,¬ψy1}))
10: return {(x, y) | Π(x, y) = ⊤}

ensure: Plans(ϕ+, ψ) = Π(ϕ+, ψ)

Proposition 9. Let ϕ and ψ be as in Def. 8; if (x, y) ∈ Π(ϕ, ψ), then, for any
model M, it holds Jϕ ∧ AψKM ⊆ JKh(ψx, χy)K

M.

Proof. We start by stating and proving an auxiliary lemma: (∗) (x, y) ∈ Πi iff
there is a non-empty sequence π of indices in [1, n] s.t.:

(†) x = π1 and y = π|π|; and
(‡) for all j ∈ [1, |π| − 1], Unsat({ψ, χπj

,¬ψπ(j+1)
}).

The proof of this lemma is by induction on i. The base case for (∗) is i = 0.
We know that (x, x) ∈ Π0, the sequence containing just x satisfies (†) and
(‡). Conversely, we know that any sequence π of indices in [1, n] s.t. |π| = 1
satisfies (†) and (‡); it is immediate that (π1, π1) ∈ Π0. This proves the base
case. For the inductive step, let (x, z) ∈ Π(i+1), (x, y) ∈ Πi, z ∈ [1, n], and
Unsat({ψ, χy,¬ψz}). From the Inductive Hypothesis, there is π that satisfies (†)
and (‡). Immediately, π′ = πz also satisfies (†) and (‡).

It is easy to see that, if there is π satisfying (†) and (‡), then, (§) for every model
M and j ∈ [1, |π| − 1], JAψKM = S implies Jχπj

KM ⊆ Jψπ(j+1)
KM.

Let us now resume with the main proof. Let (x, y) ∈ Π(ϕ, ψ) and M be any
model. The result is direct if Jϕ ∧ AψKM = ∅. Thus, consider Jϕ ∧ AψKM 6= ∅;
i.e., s.t. Jϕ∧AψKM = S. From (∗), we know that exists a sequence π of indices in
[1, n] that satisfies (†) and (‡). Then, for all j ∈ [1, |π|−1], Jχπj

KM ⊆ Jψπ(j+1)
KM.

Using Prop. 3, Jϕ ∧ AψKM ⊆
⋂|π|
j=1JKh(ψπj

, χπj
)KM ⊆ JKh(ψx, χy)K

M.

Proposition 10. Let ϕ = Kh(ψ1, χ1) ∧ · · · ∧ Kh(ψn, χn) and ψ be a formula;
Π(ϕ, ψ) is the smallest set s.t.: (1) for all x ∈ [1, n], (x, x) ∈ Π(ϕ, ψ); and (2) if
{(x, y0), (y1, z)} ⊆ Π(ϕ, ψ) and Unsat({ψ, χy0 ,¬ψy1}), then, (x, z) ∈ Π(ϕ, ψ).

The function Plans in Alg. 4 can be used to compute the set Π(ϕ, ψ) in
Def. 8. This function looks into whether a pair of indices belongs to this set
using the result in Prop. 10.

Example 5. Let ϕ = Kh(p, p∧q)∧Kh(q, r)∧Kh(r∨s, t) and ψ = ⊤; in this case we
have: ψ1 = p, χ1 = p ∧ q, ψ2 = q, χ2 = r, ψ3 = r ∨ s, and χ3 = t. We can easily
verify that Π(ϕ, ψ) = {(1, 1)(1, 2)(1, 3)(2, 2)(2, 3)(3, 3)}. Indeed, in the initial
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χ1 χ2 χ3

ψ1 ⊤ ⊥ ⊥

ψ2 ⊥ ⊤ ⊥

ψ3 ⊥ ⊥ ⊤

initial step

χ1 χ2 χ3

ψ1 ⊤ ⊤ ⊥

ψ2 ⊥ ⊤ ⊥

ψ3 ⊥ ⊥ ⊤

x = 1, y0 = 1
z = 2, y1 = 2

χ1 χ2 χ3

ψ1 ⊤ ⊤ ⊤

ψ2 ⊥ ⊤ ⊥

ψ3 ⊥ ⊥ ⊤

x = 1, y0 = 2
z = 3, y1 = 3

χ1 χ2 χ3

ψ1 ⊤ ⊤ ⊤

ψ2 ⊥ ⊤ ⊤

ψ3 ⊥ ⊥ ⊤

x = 2, y0 = 2
z = 3, y1 = 3

Fig. 1: A Run of Plans for ϕ = Kh(p, p ∧ q) ∧ Kh(q, r) ∧ Kh(r ∨ s, t) and ψ = ⊤.

step we get Π0 = {(1, 1)(2, 2)(3, 3)}. The pairs of indices correspond to those
of the pre/post conditions of the subformulas Kh(ψi, χi) ∈ sf(ϕ). Then, since
we have {(1, 1)(2, 2)} ⊆ Π0, Unsat({χ1,¬ψ2}), and Unsat({χ2,¬ψ3}), it follows
that Π1 = Π0 ∪{(1, 2)(2, 3)}. The new pairs of indices can intuitively be taken
as the formulas Kh(ψ1, χ2) and Kh(ψ2, χ3). In this case, note the connection
between Kh(ψ1, χ2) and (Kh(ψ1, χ1) ∧ A(χ1 → ψ2) ∧ Kh(ψ2, χ2)) → Kh(ψ1, χ2),
and Kh(ψ2, χ3) and (Kh(ψ2, χ2) ∧ A(χ2 → ψ3) ∧ Kh(ψ3, χ3)) → Kh(ψ2, χ3).
Finally, since we have (1, 2) ∈ Π2 and Unsat({χ2,¬ψ3}), then Π2 = Π1 ∪{(1, 3)}.
The justification for the pair (1, 3) is similar to the one just offered. In Fig. 1 we
illustrate a run of Plans which computes this set (only the steps in which the
matrix is updated are shown).

The composition of formulas Kh(ψ, χ) and Kh(ψ′, χ′) has an impact if we
wish to add a formula ¬Kh(ψ′′, χ′′) into the mix. The reason for this is that
witness plans π and π′ for Kh(ψ, χ) and Kh(ψ′, χ′), respectively, yield a witness
plan π′′ = ππ′ for Kh(ψ, χ′). In adding ¬Kh(ψ′′, χ′′) we need to ensure π′′ is not
a witness for Kh(ψ′′, χ′′), as such a plan renders ¬Kh(ψ′′, χ′′) unsatisfiable. We
make these ideas precise in the definition of compatible below.

Definition 9. Let ϕ+ and ϕ− be formulas s.t.: md(ϕ+) = 1 and md(ϕ−) = 1;
ϕ+ = Kh(ψ1, χ1)∧· · ·∧Kh(ψn, χn); and ϕ− = ¬Kh(ψ′1, χ

′
1)∧· · ·∧¬Kh(ψ′m, χ

′
m).

Moreover, let I, J ⊆ [1, n] be as in Prop. 5 and ψ =
∧

i∈I ¬ψi. We say that ϕ+

and ϕ− are compatible iff the following conditions are met:

(1) Sat(ψ);
(2) for all Kh(ψ′k′ , χ

′
k′ ) ∈ sf(ϕ−),

(a) Sat({ψ, ψ′k′ ,¬χ
′
k′}); and

(b) for all (x, y) ∈ Π(ϕ+, ψ),
if x /∈ J and Unsat({ψ, ψ′k′ ,¬ψx}), then, Sat({ψ, χy,¬χ′k′}).

Def. 9 aims to single out the conditions under which the formulas ϕ+ and ϕ−

can be jointly satisfied. Intuitively, (1) tells us ϕ+ must be individually satisfied
(cf. Prop. 5). In turn, (2.a) tells us ϕ− must be individually satisfied (cf. Prop. 7),
while (2.b) tells us ϕ+ and ϕ− can be satisfied together if no composition of
subformulas in ϕ+ contradicts a subformula in ϕ−. Such a contradiction would
originate only as a result of strengthening the precondition and/or weakening
the postcondition of a composition of subformulas in ϕ+, in a way such that
they would result in the opposite of a subformula in ϕ−. Prop. 11 states that the
conditions in Def. 9 guarantee the satisfiability of a combination of ϕ+ and ϕ−.
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Proposition 11. It follows that ϕ+ and ϕ− are compatible iff Sat(ϕ+ ∧ ϕ−).

Proof. (⇒) Suppose that ϕ+ and ϕ− are compatible. Let M = 〈S,R,V〉 be s.t.
S contains all valuations that make ψ true; and R = {Rak | ak ∈ Act} where

Rak =

{

JψkK
M × JχkK

M if k ∈ K

∅ otherwise,

for K = [1, n] \ (I ∪ J). From (1), we know S 6= ∅. It is not difficult to see that
Jϕ+KM = S (cf. Prop. 5). The proof is concluded if Jϕ−KM = S. We proceed by
contradiction. Let k′ ∈ [1,m] be s.t. JKh(ψ′k′ , χ

′
k′ )K

M = S; i.e., (∗) exists π ∈ Act
∗

s.t. Jψ′jK
M ⊆ SE(π) and Rπ(Jψ

′
jK

M) ⊆ Jχ′jK
M. We consider the following cases.

(π = ε) From (2.a), we know Jψ′k′ ∧ ¬χ′k′K
M 6= ∅; i.e., Jψ′k′K

M * Jχ′k′K
M. This

implies Jψ′k′K
M = Rε(Jψ

′
k′K

M) * Jχ′k′K
M.

(π 6= ε and π = ak1 , . . . , ak|π|
with kj ∈ K and j ∈ [1, |π|]) In this case we have:

(a) ∅ 6= Jψ′k′K
M ⊆ SE(π) ⊆ SE(ak1) = Jψk1K

M;
(b) Jχkj K

M = Rakj (Jψkj K
M) ⊆ Jψk(j+1)

KM; and

(c) Jχk|π|
KM = Rπ(Jψ

′
k′K

M) ⊆ Jχ′k′K
M.

Since S contains all valuations that make ψ true; from (a)–(d) we get:
(d) Unsat({ψ, ψ′k′ ,¬ψk1}) –from (a);
(e) Unsat({ψ, χkj ,¬ψk(j+1)

}) –from (b);
(f) Unsat({ψ, χk|π|

,¬χ′k}) –from (c).
From (e) and π, we obtain a sequence k1 . . . k|π| that satisfies the conditions
(†) and (‡) in the proof of Prop. 9. Then, (k1, k|π|) ∈ Π(ϕ+, ψ). From (a)
and (2.a), k1 /∈ J . We are in an impossible situation: (k1, k|π|) ∈ Π(ϕ+, ψ);
k1 /∈ J ; and Unsat({ψ, χk|π|

,¬χ′k}). This contradicts (2.b); meaning that ϕ+

and ϕ− are not compatible.
(π is none of the above) It is clear that Jψ′k′K

M * SE(π).

In all the cases above we have: Jψ′k′K
M * SE(π) or Rπ(Jψ

′
k′ K

M) * Jχ′k′K
M; i.e.,

JKh(ψ′k′ , χ
′
k′)K

M = ∅, a contradiction. Then, Jϕ−KM = S; and so Sat(ϕ+ ∧ ϕ−).

(⇐) Suppose Sat(ϕ+∧ϕ−); i.e., exists (†) M s.t. Jϕ+∧ϕ−KM = S. From (†) we get
Jϕ+KM = S. Using Cor. 1, we get JAψKM = S. This establishes (1). The proof of
(2.a) is by contradiction. Let Kh(ψ′k′ , χ

′
k′) ∈ sf(ϕ−) be s.t. Unsat({ψ, ψ′k′ ,¬χ

′
k′}).

Then, Jψ′k′K
M ⊆ Jχ′k′K

M. Choosing π = ǫ, we obtain JKh(ψ′k′ , χ
′
k′)K

M = S.
This contradicts Jϕ−KM = S. The proof of (2.b) is also by contradiction. Let
Kh(ψ′k′ , χ

′
k′) ∈ sf(ϕ−), (∗) (x, y) ∈ Π(ϕ+, ψ), (†) Unsat({ψ, ψ′k′ ,¬ψx}), and (‡)

Unsat({ψ, χy,¬χ′k′}). From (†) and (‡), Jψ′k′K
M ⊆ JψxK

M and JχyK
M ⊆ Jχ′k′K

M.
At the same time, from (∗) and Prop. 9, S = Jϕ+KM ⊆ JKh(ψx, χy)K

M. Then,
using Prop. 3, JKh(ψ′j , χ

′
j)K

M = S. This also contradicts Jϕ−KM = S. Thus, ϕ+

and ϕ− are compatible.

Having at hand the result in Prop. 11, we proceed to define an algorithm for
checking the satisfiability of compatible formulas ϕ+ and ϕ−. This is done in two
stages. In the first stage, we build the set Π(ϕ+, ψ), where ψ is the conjunction
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Algorithm 5 Compatible

require: ϕ+ and ϕ− are as in Def. 9
1: function Compatible(ϕ+, ϕ−)

2: Ψ ← {¬ψi | i ∈ Global(ϕ+)}
3: r ← Sat(Ψ) ⊲ check for condition (1)
4: for k′ ← 1 to m do ⊲ check for condition (2.a)
5: r ← r and Sat(Ψ ∪ {ψ′

k′ ,¬χ
′
k′})

6: Π← Plans(ϕ+,
∧
Ψ)

7: for k′ ← 1 to m do ⊲ check for condition (2.b)
8: for x← 1 to n do

9: for y ← 1 to n do

10: if (x, y) ∈ Π and Sat(Ψ ∪ {ψx}) and not Sat(Ψ ∪ {ψ′
k′ ,¬ψx}) then

11: r ← r and Sat(Ψ ∪ {χy,¬χ
′
k′})

12: return r

ensure: Compatible(ϕ+, ϕ−) iff ϕ+ and ϕ− are compatible

of the negation of the precondition of the ‘global’ subformulas in ϕ+. This task
is encapsulated in the function Plans in Alg. 4. Notice that the set Π(ϕ+, ψ)
corresponds to a matrix which is computed using the result in Prop. 10. The
second stage is encapsulated in the function Compatible in Alg. 5. In this func-
tion, lines 2 and 3 check condition (1) in Def. 9, i.e., whether ϕ+ is individually
satisfiable, by verifying the joint satisfiability of the ‘global’ subformulas in ϕ+

(cf. Alg. 2). In turn, lines 4 to 6 in Compatible check condition (2.a) of Def. 9,
i.e., whether ϕ− is individually satisfiable, by verifying the individual satisfiabil-
ity of the subformulas in ϕ+ (cf. Alg. 3). Lastly, in lines 7 to 18 in Compatible,
we check whether the result of composing subformulas in ϕ+ contradicts any of
the subformulas in ϕ−. We carry out this task by making use of the result of the
function Plans which computes such compositions.

Notice that the function Compatible in Alg. 5 makes a polynomial number
of calls to a propositional Sat solver. From this fact, we get the following result.

Proposition 12. Let ϕ+, ϕ− be as in Def. 9; it follows that Alg. 5 solves
Sat(ϕ+ ∧ ϕ−) and is in P

NP (i.e., ∆P
2 in PH).

Proof. By Prop. 11 we get that the function Compatible in Alg. 5 solves
Sat(ϕ+ ∧ ϕ−). Moreover, it makes a polynomial number of calls to a Sat solver
for formulas of modal depth 0. Thus, it runs in polynomial time with access to
a Sat oracle. Therefore, Sat(ϕ+ ∧ ϕ−) is in PNP, i.e., in ∆P

2 .

Prop. 12 is the final step we need to reach the main result of our work.

Theorem 1. The satisfiability problem for LKh is in NP
NP (i.e., ΣP

2 in PH).

Proof. Let ϕ be a LKh-formula. By Alg. 1, we can obtain, in polynomial time, a
formula ϕ′ = ϕ0∧ (Ap1 ↔ Kh(ψ1, χ1))∧· · ·∧ (Apn ↔ Kh(ψn, χn)) in leaf normal
form such that ϕ ≡Sat ϕ

′. We know md(ϕ0) = 0 and md(Kh(ψi, χi)) = 1. Let
Q = {q1 . . . qm} ⊆ Prop be the set of proposition symbols in ϕ′. To check Sat(ϕ′),
we start by guessing a propositional assignment v : Q → {0, 1} that makes ϕ0

true. Then, we define sets P+ = {i | v(pi) = 1} and P− = {i | v(pi) = 0}, from
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which we build formulas

ϕ+ =
∧

i∈P+ Kh(ψi, χi) ϕ− =
(
∧

i∈P− ¬Kh(ψi, χi)
)

∧ ¬Kh(ϕ0,⊥)

(recall that ¬Kh(ϕ0,⊥) = ¬A¬ϕ0 = Eϕ0.) Finally, we use Alg. 5 to check
Sat(ϕ+ ∧ ϕ−). Since Alg. 5 is in PNP (Prop. 12), the whole process is in NPNP.

We conclude this section with an example of how to check the satisfiability
of a formula using the procedure in the proof of Thm. 1.

Example 6. Let ψ = Kh(p ∧ q, r ∧ t) ∨ Kh(p, r). By applying Alg. 1, we get
(k1 ∨ k2) ∧ (Ak1 ↔ Kh(p ∧ q, r ∧ t)) ∧ (Ak2 ↔ Kh(p, r)). Suppose that we set
k1 to true and k2 to false. Based on this assignment, we build formulas ϕ+ =
Kh(p ∧ q, r ∧ t) and ϕ− = ¬Kh(p, r) ∧ ¬Kh(k1 ∧ ¬k2,⊥). Using Alg. 5, we can
check that they are not compatible (and hence not satisfiable; we have Sat(p∧q)
and Unsat({(p ∧ q),¬p}) but not Sat({r ∧ t,¬r})). However, if we set both k1
and k2 to true, then, ϕ+ = Kh(p∧ q, r ∧ t)∧Kh(p, r) and ϕ− = ¬Kh(k1 ∧ k2,⊥).
In this case, Alg. 5 returns they are compatible, and thus satisfiable.

4 Final Remarks

We provided a satisfiability-checking procedure for LKh, the ‘knowing how’ logic
with linear plans from [31,33], obtaining a ΣP

2 upper bound. Although not a
tight bound (as the best lower bound known is NP), we argue this is an inter-
esting result, as our bound is (unless PH collapses) below the PSpace-complete
complexity of model-checking [5]. We argue that, this unusual situation is a con-
sequence of that in model-checking the full expressive power is exploited, while
here we showed that plans are almost irrelevant for the satisfiability of a formula.

Interestingly also, our procedure uses a polynomial transformation into a
normal form without nested modalities, and calls to an NP oracle (i.e., to a
propositional Sat solver). It is well-known that modern Sat solvers are able to
efficiently deal with large formulas (having millions of variables), and usually
support the exploration of the solution state space. Thus, the ideas presented
in this paper can be used to implement a Sat solver for knowing-how logics
relying on modern propositional Sat solving tools. We consider this as part of
the future work to undertake. Also, we would like to obtain a tight bound for the
satisfiability problem. In this regard, we will explore the possibility of providing a
reduction from the problem of checking the truth of Quantified Boolean Formula
(TQBF) with a single ∃∀ quantification pattern (called Σ2Sat in [2]), which is
known to be ΣP

2 -complete.
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