
ar
X

iv
:2

40
3.

00
39

0v
1

 [
cs

.C
C

]
 1

 M
ar

 2
02

4

Deterministic Weighted Automata under Partial Observability

Jakub Michaliszyn1[0000−0002−5053−0347] and Jan Otop1[0000−0002−8804−8011]

University of Wroc law
{jmi,jotop}@cs.uni.wroc.pl

Abstract. Weighted automata is a basic tool for specification in quantitative verification, which al-
lows to express quantitative features of analysed systems such as resource consumption. Quantitative
specification can be assisted by automata learning as there are classic results on Angluin-style learning
of weighted automata. The existing work assumes perfect information about the values returned by
the target weighted automaton. In assisted synthesis of a quantitative specification, knowledge of the
exact values is a strong assumption and may be infeasible. In our work, we address this issue by in-
troducing a new framework of partially-observable deterministic weighted automata, in which weighted
automata return intervals containing the computed values of words instead of the exact values. We study
the basic properties of this framework with the particular focus on the challenges of active learning
partially-observable deterministic weighted automata.

1 Introduction

Finite automata is a fundamental computational model with a wide range of applications spanning from com-
putational complexity, through AI [17] to formal methods [7]. In some applications, however, the qualitative
answers returned by finite automata, i.e., each word is accepted or rejected, are insufficient. For instance,
in formal verification, one can check the existence of execution trances violating a given specification, but
violating traces come from a model rather than the actual system and their severity may differ from critical,
which are likely to occur in the actual system to one, which are unlikely to be reproduced. Similarly, while
checking whether a system has no deadlocks, one can ask whether every request is eventually fulfilled, which
lacks performance guarantees involving a bound on the timeframe for fulfilment.

To address these issues, there has been proposed quantitative verification, in which the specification
refers to quantitative features of the system. Quantitative verification is based on weighted automata, which
return numeric values for words rather than accept/reject words. Weighted automata and their extensions
have been extensively studied [9,5,6]. These models can express the severity of errors [11] and various per-
formance metrics such as average response time [6]. The expressive power of such models entails hardness of
specification.

Specifying quantitative properties may be difficult because in addition to describing events (such as a
system failure) one has to come up with the associated values. This is especially difficult for properties of
an approximate nature such as the aforementioned severity of a failure. Furthermore, the precise values are
often not that important as we would be typically interested whether the number is within some acceptable
interval, e.g., does not exceed our resources. For instance, the exact value of average response time depends
on the computing environment, e.g., its cache size, which is typically not modeled precisely. For the same
reason, assigning reasonable values of the average response time to traces is considerably more difficult than
specifying a deadlock.

In this paper, we address the issue of construction of quantitative specifications. To ease the specification
process, we propose a new framework, in which automata do not reveal the exact values. We study this frame-
work from the specification-synthesis perspective , i.e., we ask whether it is possible to semi-automatically
produce quantitative specifications using automata-learning approach. The conditions may be more involved;
for example, we may want to express properties stating that the values 0-10 are good, 11-20 are satisfactory,
and anything over 20 is bad.

http://arxiv.org/abs/2403.00390v1

1.1 Our framework

We introduce partially-observable deterministic weighted automata (PODWA). These automata behave as
regular deterministic weighted automata over Z, but return an interval (from a given finite set of possible
intervals) that contains the computed value rather than the value itself. The choice of intervals as partial
observations is natural. Other choices are possible, but can increase the complexity – even making the
membership problem undecidable.

Our motivation comes from the specification-synthesis via automata learning. The idea is that we would
like to be able to synthesize quantitative properties without necessarily providing exact values. For that
reason, we focus on problems related to active automata learning. First, we study the equivalence problem.
It is fundamental in automata learning as one needs to answer whether the learned automaton is admissible.
Second, learning algorithms typically construct the structure of an automaton with no weights [2], which
leads to the weight synthesis question: given a PODWA Λ1 and an automaton structure A2 (a deterministic
finite automaton) without weights, is there a weight assignment for A2, which makes it equivalent (w.r.t.
partial observations) to Λ1? Specifically, assuming that such a weight assignment does exist, is there one
such that weights vales are of polynomial order w.r.t. weights from Λ1? Finally, active automata learning
algorithms construct minimal automata [1,2,14]. Thus, to assess feasibility of learning weighted automata in
our framework, we study the minimization problem for PODWA.

1.2 Results

The main contribution of the paper is identifying obstacles in developing a polynomial-time active learning
algorithm for the new model. We start with the basic properties of the model. We show that the class of
PODWA can express more than regular languages and is closed under the complement, but not under the
union or the intersection. Then, we show that:

– the equivalence problem for PODWA is coNP-complete in general, and it can be solved in polynomial
time if weights are given in unary,

– there is a PODWA Λ with weights −1, 0, 1, such that all equivalent minimal-state automata are isomor-
phic and have exponential weights, and

– the minimization via state-merging for PODWA with unary weights is NP-complete.

These results highlight challenges in learning weighted automata under partial observation. In order to
obtain polynomial-time algorithm for active learning of PODWA, we need to focus on automata with unary
weights. However, equivalence up to partial observation is too permissive to have an active learning algorithm.
One needs a more rigid equivalence notion, which would make minimization decidable in polynomial time,
and prevent exponential blow-up of weights in the minimization process.

1.3 Related work

Typically, the partial observation term applies to equivalence on the set of control states, which has been
used to model decisions under imperfect information in Markov decision processes (partially observable
Markov decision process [18]), graph games (games with imperfect information [8]), or multi-agent system
(multi-player games with imperfect information [3,10]). In contrast, in this work, the state space is intact,
and partial observability refers to the returned value. This is related to games with interval objectives [13],
in which one of the players objective is to make the numeric outcome of the game fall into a set being a
finite union of intervals.

This work is motivated by active automata-learning algorithms, which have been developed for determin-
istic finite automata [1], deterministic weighted word automata [2] and deterministic weighted tree au-
tomata [14] and other types of automata. Similar algorithms have recently been developed for infinite-word
automata: deterministic Büchi automata (DBA) [16] and deterministic limit-average automata [15]. These
algorithms work in polynomial time even though minimization, closely related to active learning, is NP-
complete for DBA. It was made possible thanks to in-depth difficulty assessment of problems related to

2

active learning, which indicated how to extend the learning framework to make polynomial-time learning
algorithms possible [16]. We conduct such an assessment in this work to pave the way for the development
of active learning algorithms.

2 Preliminaries

A word w is a finite sequence of letters from a finite alphabet Σ. By Σ∗ we denote the set of all words over
Σ. By w[i] we denote the ith letter of a word w, and w[i, j] stands for the subword w[i]w[i+1] . . . w[j] of w.
The empty word is denoted by ǫ.

Automata and runs. A deterministic weighted automaton (DWA) is a tuple 〈Σ,Q, q0, δ, c〉 consisting of

1. an alphabet Σ,
2. a finite set of states Q,
3. an initial state q0 ∈ Q,
4. a transition function δ:Q×Σ → Q, and
5. a weight function c:Q× Σ → Z.

The size of a DWA A, denoted by |A|, is its number of states plus the sum of the lengths of all the weights
given in binary.

We extend δ to δ̂:Q×Σ∗ → Q inductively: for each q, we set δ̂(q, ǫ) = q, and for all w ∈ Σ∗, a ∈ Σ, we set

δ̂(q, wa) = δ(δ̂(q, w), a). The run π of a DWAA on a word w is the sequence of states q0δ̂(q0, w[1])δ̂(q0, w[1, 2])
We do not consider any acceptance condition here.

The semantics of a DWA A is a function L(A) from non-empty words Σ∗ \ {ǫ} into integers. For a
non-empty word w of length k, we define L(A)(w) as the sum of weights of transitions along the run of A
on w:

L(A)(w) = c(q0, w[1]) + c(δ̂(q0, w[1]), w[2]) + . . .+ c(δ̂(q0, w[1, k − 1]), w[k]).

Remark 1. The tropical seminring The weighted automata model considered in this paper is an instance
of a more general framrework of weighted automata over semirings [9], where the semiring is the tropical
semiring restricted to integers.

3 Our framework

A Partially-Observable DWA, PODWA, is a pair Λ = (A, S) consisting of a DWA A and a set of a finite
number of pairwise-disjoint intervals S covering Z called observations. We assume that intervals are enumer-
ated by {0, . . . , s} according to the order on Z. The language of a PODWA Λ, denoted as L(Λ), is a function
from Σ∗ \ {ǫ} to {0, . . . , s} such that L(Λ)(w) is the number of the interval containing L(A)(w).

A binary PODWA is a special case of PODWA having only two intervals: (−∞, 0] and (0,+∞). We con-
sider words ending in the interval (0,+∞) as accepted. Then, the function L(Λ) is essentially a characteristic
function of a set that can be seen as a classic language.

Example 1. Consider a single-state automaton A over Σ = {a, b, c}. The weights of the transitions over a, b, c
are, respectively, −1, 0, 1. Consider the set of intervals S = {(−∞, 0], (0,+∞)} and the binary PODWA
Λ = (A, S). Then, L(Λ)(w) = 1 if w contains more occurrences of c than a, and 0 otherwise.

Binary PODWA can define all regular languages (without the empty word) and some non-regular lan-
guages (see Example 1). All PODWA-recognizable languages are context-free and can be emulated by a
deterministic one-counter automaton. On the other hand, deterministic one-counter automata define lan-
guages that cannot be expressed by binary PODWA, as the former rely on the counter value at every
transition while the latter are agnostic of the counter value. For instance, a pumping argument shows that
the language of words that have the same number of (occurrences of) a and b between every pair of c cannot
be expressed by a binary PODWA (or any other PODWA with a reasonable language definition).

3

Binary PODWA can be easily complemented – it suffices to multiply all the weights by −1 and adjust the
initial state (for words with value 0). We show that the class of languages recognizable by binary PODWA is
not closed under union nor intersection. We will prove the former; for the latter observe that closure under
intersection implies closure under union as the union operation can be expressed by the intersection and
complement operations.

Let L∪ be the language of words w that the number of occurrences of c is greater than the number of
occurrences of b or is greater than the number of occurrences of a. Observe that L∪ is the union of two
PODWA-recognizable languages La, Lb, they can be defined as in Example 1. A simple pumping argument
shows that L∪ is not PODWA-recognizable.

Lemma 1. L∪ is not PODWA-recognizable.

Proof. Assume a PODWA Λ = (A, {(−∞, 0], (0,+∞)}) with less than N states that recognizes L∪.
Consider the word w = aNbNcN+1. Clearly, w ∈ L∪ because there are more occurrences of c than a.
Since Λ has less that N states, there is k ≥ 0 and l > 0 with k+ l ≤ N such that the states δ̂(q0, a

k) and

δ̂(q0, a
k+l) are the same.

Since the automaton is deterministic, for any j the states δ̂(q0, a
k) and δ̂(q0, a

k+jl) are the same. Notice

that since the automaton is deterministic, this implies that for any j we have δ̂(q0, a
N) = δ̂(q0, a

N+j·l).
Let wi = ak+i·l. We argue that A(w1) −A(w0) ≥ 0. Notice that for any j we have A(wj+1) −A(wj) =

A(w1)−A(w0). If this number was negative, for a sufficiently large j we would have

A(aN+jlbNcN+1) ≤ 0

which contradicts the fact that this words belongs to L∪.
Similarly, there is k′ ≥ 0 and l′ > 0 with k′ + l′ ≤ N such that the states δ̂(q0, a

Nbk
′

) and δ̂(q0, a
Nbk

′+l′)
are the same.

Let w′
i = aNbk

′+i·l′ . As before, we can show that A(w′
1)−A(w′

0) ≥ 0.

Now consider wF = aN+lbN+l′cN+1. The above reasoning shows that A(wF) ≥ A(w). However, since Λ
recognizes L∪, we have A(wF) ≤ 0 and A(w) > 0, which is a contradiction. ⊓⊔

3.1 Sample fitting

We briefly discuss the following counterpart of the sample fitting problem, which is related to passive learning:
given a set of pairs consisting of a word and an interval, called the sample, and a number n, is there a PODWA
with n states that is consistent with the sample? The sample fitting problem is NP-complete for PODWA;
it is NP-complete even for DFA. However, we discuss it here as the hardness proof is simple and robust.

For membership in NP, observe that if n is larger than the number of letters in the sample (and the
sample does not contain a direct contradiction, i.e., a word with different intervals), then such a PODWA
always exists (and can be a tree). Otherwise, we can nondeterministically pick a PODWA and check it in
polynomial time.

For hardness, consider an instance ϕ of 3-SAT with variables p1, . . . , pm. Consider n = 1,Σ = {q}∪{pi, p1 |
i ≤ m}, and S = {(−∞, 0), [0, 1], [2,+∞)}. The sample consists of:

– (q, [0, 1]), (qq, [2,+∞))
– (pi, [0, 1]), (pi, [0, 1]), (pipi, [0, 1]) (pipiq, [2,+∞)) for each i
– (xyzq, [2,+∞)) for each clause x ∨ y ∨ z of ϕ (we identify ¬pi with pi).

If there is a single-state automaton consistent with this sample, then each letter has a value corresponding
to the only transition over this letter. The value of each letter is an integer. The first condition guarantees
that the value of q is 1. The second guarantees that exactly one letter among pi, pi has value 1 and the other
has the value 0 (we rely on the fact that the weights are over integers). Thus, the values define a valuation
of variables p1, . . . , pm from ϕ. The last condition guarantees that this valuation satisfies every clause of ϕ,
and thus it satisfies ϕ.

4

4 Towards active learning PODWA

The sample fitting problem is intractable for one-state automata, which is a strong negative result for passive
learning. In this section, we now focus on active learning of automata. The classic L∗-algorithm for active
learning of DFA asks membership and equivalence queries. While in the PODWA framework, answering a
membership query amounts to evaluating the DWA over the input word and returning the interval containing
the value, answering equivalence queries is more involved.

4.1 Equivalence

PODWA Λ1, Λ2 are equivalent if L(Λ1) = L(Λ2). The sets of intervals may be different and hence PODWA
equivalence is invariant to linear operations, which are consistently applied to all weights and intervals.
The equivalence problem asks whether two given PODWAs are equivalent. We show its coNP-hardness via
reduction from (the complement of) the subset sum problem [12]. Let a1, . . . , ak be a list of integers and
T be the target value represented in binary. W.l.o.g. we assume that a1, . . . , ak are even. We construct two
binary PODWA Λ1 = (A1, S), Λ2 = (A2, S) (where S = {(−∞, 0], (0,+∞)}) such that A1 computes the
possible values of sums of subsets of {a1, . . . , ak} minus T , and A2 returns the value in A1 plus 1, i.e.,
L(A2)(w) = L(A1)(w) + 1. Observe that Λ1 and Λ2 are not equivalent if and only if A1 returns 0 for some
word. For such a word A2 returns 1, which is in a different interval than 0. Thus, the PODWAs are not
equivalent if and only if the subset sum problem has a solution.

Lemma 2. The equivalence problem for (binary) PODWA is coNP-hard.

Proof. We discuss the construction of DWA A1,A2 such that PODWA (A1, S) and (A2, S) are equivalent if
and only if there is no subsequence of a1, . . . , ak, which sums up to T .

Without loss of generality, we assume that all values a1, . . . , ak and T are even. The automaton A1 works
over the alphabet {0, 1} and input words are interpreted as the characteristic sequence of picked numbers
minus T , i.e., the weighted accumulated over a word w ∈ {0, 1} equals the sum of ai such that i ∈ {1, . . . , k}
and w[i] = 1 with T subtracted. One can easily construct such an automaton with k + 2 states q0, . . . , qk+1:
it moves from qi to qi+1 regardless of the letter if i ≤ k − 1; the transition over 1 have weight ai+1 and
the transition over 0 has weight 0. Then, from qk it moves to qk+1 with both transitions of the weight −T .
Finally, in qk+1 it has self-loops of the weight 0.

Next, the automaton A2 has the same structure as A1, but the last weight is −T + 1 rather than −T .
Observe that if there is a word w distinguishing L((A1, S)) and L((A2, S)), then it has to have the value
0 in A1 and 1 in A2 — since the values of the two automata differ by 1 and the values of A1 are even. So
the two automata are not observationally equivalent exactly when the word w encodes the solution for the
considered instance of the subset sum problem. ⊓⊔

The subset sum problem has a pseudo-polynomial time algorithm and hence the hardness result from
Lemma 2 relies on weights having exponential values w.r.t. the automata sizes. Assuming unary weights in
automata and the interval endpoints leads to a polynomial-time algorithm for equivalence of PODWA. More
precisely, a PODWA (A, S) is unary if weights in A and interval ends in S are represented in unary.

Theorem 1. The equivalence problem is coNP-complete for PODWA and in PTime for unary PODWA.

Proof. The lower bound for the binary case follows from Lemma 2. For the upper bound, we show that
PODWA equivalence reduces to Z-reachability in 2-dimensional vector addition systems (VASS), i.e., reach-
ability in which values of counters may become negative. The weights in the resulting VASS are from the
weighted automata. The Z-reachability problem for fixed-dimension VASS is NP-complete if vectors’ values
are represented in binary, and it is in PTime if they are represented in unary [4].

First, consider PODWA Λ1 = (A1, S1) and Λ2 = (A2, S2). If they are not equivalent, then there is i 6= j
and a word w such that A1(w) belongs to an i-th interval and A2(w) belongs to a j-th interval. Without
loss of generality, i < j and hence there are values λ1, λ2 such that A1(w) < λ1 and A2(w) ≥ λ2. There are

5

|S1| · |S2| candidates for pairs λ1, λ2 and one can verify all pairs. Therefore, we assume that λ1, λ2 are given
and focus on finding w such that A1(w) < λ1 and A2(w) ≥ λ2.

We construct a VASS V of dimension 2 such that there is a path from the initial state s0 with counters
(0, 0) to the final state t with counters (0, 0) if and only if there is a word w such that A1(w) < λ1 and
A2(w) ≥ λ2. The VASS V is as a product of automata A1 and A2, where each transition is labeled by a
vector of the weights of the corresponding transitions in A1 and A2. The V has an additional sink state
t, which is the terminal state, such that from any other state one can reach t over a transition labeled by
(−λ1 + 1,−λ2). Additionally, t has self-loops labeled by (1, 0) and (0,−1). Finally, the initial state s of V is
the pair consisting of initial states of A1 and A2.

Formally, for i = 1, 2 let Ai = 〈Σ,Qi, q0,i, δi, ci〉. The VASS V = 〈Q, q0, τ〉 is defined as follows: Q =
Q1 ×Q2 ∪ {t}, q0 = 〈q0,1, q0,2〉, and τ ⊆ Q × Z

2 ×Q consist of three types of tuples:

– tuples 〈(q, s), x, (q′, s′)〉, for all q, q′ ∈ Q1, s, s
′ ∈ Q2 such that there exists a ∈ Σ satisfying δ1(q, a) = q′,

δ1(s, a) = s′, and x = 〈c1(q, a, q
′), c2(s, a, s

′)〉
– tuples 〈(q, s), (−λ1 + 1,−λ2), t〉, for all q ∈ Q1, s ∈ Q2, and
– tuples 〈t, (1, 0), t〉 and 〈t, (0,−1), t〉.

Now, assume that there is a word w such that A1(w) < λ1 and A2(w) ≥ λ2. Then we construct a path in
V corresponding to w, which leads from s with counter values (0, 0) to some state with counter values (a, b),
where a < λ1 and b ≥ λ2. Since weights are integers, a ≤ λ1 − 1. Next, we take a transition to t and the
counter values change to (a′, b′) such that a′ ≤ 0 and b′ ≥ 0. Finally, we can reach counter values (0, 0) by
taking self-loops over t labeled by (1, 0) and (0,−1). Conversely, consider a path π in V from s with counter
values (0, 0) to t with counter values (0, 0). Then, let s′ be the last state before reaching t and (x, y) be the
counter values at that position. Observe that x ≤ λ1 − 1 and y ≥ λ2 and hence the prefix of π up to s′ with
(x, y) corresponds to a word w such that A1(w) < λ1 and A2(w) ≥ λ2. ⊓⊔

4.2 Unary weights

Theorem 1 suggests that restricting the attention to unary PODWA can make learning feasible. However,
below we show that minimization of automata with bounded weights from {−1, 0, 1}may involve exponential-
blow up weights, i.e., the decrease in the number of states is possible only through introduction of weights
of exponential value:

Theorem 2. There exists a sequence of PODWA Λn = (An, S), for n > 1, with weights −1, 0, 1 such that for
all n > 1 every PODWA (B, S) equivalent to Λn with B having the minimal number of states, has exponential
weights in n.

Proof. We define, for each n > 1, a PODWA Λn = (An, {(−∞, 0), [0, 0], (0,+∞)}) over Σ = {a, b, i} with
weights {−1, 0, 1} such that the minimal equivalent PODWA to Λn needs weights exponential in n.

The automaton An is depicted in Figure 1 a). Intuitively, the value of the word depends on its first n+1
letters. If the word starts with the prefix ika, where 0 ≤ k < n, then it has the value +1 unless it is followed
by bn−k, in which case its value is 0 (and symmetrically with ikb and −1). Words ik have value 0.

An example of a minimal automaton equivalent to Λn is depicted in Figure 1 b). To show its minimality,
observe that for j, k ∈ {0, . . . , n+ 1} s.t. j < k, the words ij and ik have to lead to different states, because
L(Λn)(i

j in−ja) = 2 and L(Λn)(i
kin−ja) = 0.

There are infinitely many minimal automata equivalent to λn though. For example, one can multiply all
the weights of the automaton in Figure 1 b) by 2. We can show that all automata equivalent to Λn with the
minimal number of states are structurally isomorphic to the automaton in Figure 1 b); this proof is relegated
to the appendix.

In all such automata for any j < n we have c(qj , a) = −
∑n

k=j+1 c(qk, b) and similarly c(qj , b) =

−
∑n

k=j+1 c(qk, a). Therefore, one can inductively show that for j < n − 1 we have c(qj , a) = −c(qj , b) =

2n−j−2(c(qn−1, a)+c(qn, a)). Since c(qn−1, a) and c(qn, a) are both positive (because in−1, in have the value
0 and in−1a, ina have positive values), we conclude that the value of c(q0, a) is exponential in n. ⊓⊔

6

a) q0start

q1qa1 qb1

q2qa2 qb2

q3qa3 qb3

.

.

qnqan qbn

s

∗ : 0

i : 0

i : 0

i : 0

i : 0

i : 0
a : 1
b : −1

a
: 1

a
: 1

a
: 1

a
: 1

a : 0

a : 0

a : 0

a
: 1

b : −
1

b : −
1

b : −
1

b : −
1

b : 0

b : 0

b : 0

b : 1

b) q0start

q1

q2

q3

. . .

qn

s

∗ : 0

a : 2n

b : −2n

i : 0

a : 2n−1

b : −2n−1

i : 0

a : 2n−2

b : −2n−2

i : 0

a : 2n−3

b : −2n−3

i : 0

a : 21

b : −21

i : 0

a : 2
b : −2
i : 0

Fig. 1. a) The automaton Λn. The omitted edges lead to s with weight 0. b) A minimal automaton equivalent to Λn.

4.3 Minimization

The L∗-algorithm relies on the right congruence relation, which has its natural counterpart for DWA. The
right congruence relation defines the structure of the minimal DWA (which is unique) and hence the active
learning algorithm can be applied to minimize DWA. Observe that minimal-size PODWA need not be unique.

Example 2. Consider the two binary PODWA presented in Figure 2. They both define the language such
that all word have positive values exept for the word a, which has a negative value. Both PODWA are
equivalent and minimal; if there was an equivalent PODWA with the underlying DWA of a single state q,
then either c(q, a) ≥ 1, which would contradict the value for a, or c(q, a) ≤ 0, which would contradict the
value for aa. Clearly, the automata are non-isomorphic.

Remark 2 (The right congruence for DWA). For a function f : Σ∗ \ {ǫ} → Z, consider a relation ≡f defined
on non-empty words w, v as follows:

w ≡f v if and only if for all u ∈ Σ∗ we have f(wu)− f(w) = f(vu)− f(v).

7

q0start q1 q0start q1

a : −1
b : 2

∗ : 2

a : −1

b : 2 ∗ : 2

S = {(−∞, 0], (0,+∞)}

Fig. 2. Two binary PODWA that are equivalent and minimal but not isomorphic.

The relation ≡f is a counterpart of the right congruence relation for DWA and one can easily show the
counterpart of the Myhill-Nerode theorem: f is defined by some DWA if and only if ≡f has finitely many
equivalence classes, and the relation ≡f defines the structure of the minimal DWA. This relation cannot be
straightforwardly adapted to PODWA as the result f(wu)− f(w) cannot be inferred from observations for
wu and w. More generally, Example 2 implies that there is no counterpart of ≡f for PODWA as it would
imply the uniqueness of the structure of minimal PODWA.

We discuss the complexity of minimization for PODWA, assuming that the set of intervals S is fixed
and weights are given in unary. We say that DWA A2 is observationally equivalent to a PODWA (A1, S),
if PODWA (A1, S) and (A2, S) are equivalent. The O-minimization problem is to find a minimal-size DWA
A2 that is observationally equivalent to a given PODWA (A1, S). We study the decision variant of the O-
minimization problem obtained by stating bound k on A2, i.e., given a PODWA Λ = (A1, S) and k > 0, is
there a DWA A2 with at most k states, which is observationally equivalent to Λ.

Minimization by merging. A natural approach to minimization of automata is to define an equivalence
relation on the set of states of the input automaton A, corresponding to states being semantically indis-
tinguishable, and construct the output automaton B based on the equivalence classes. In that approach,
semantically indistinguishable are merged into a single state. Minimization by merging alleviates the prob-
lems arising from ambiguity of minimal automata; it guarantees that the input automaton and the minimized
one are structurally related. We study minimization by merging for PODWA.

A DWA B is obtained from a DWA A by merging if there is a surjective (partial) function f :QA →
QB from the set of reachable states of A onto the set of states B such that δA(q, a) = q′ if and only if
δB(f(q), a) = f(q′).

The unary O-minimization by merging problem is, given an unary PODWA (A, S) and k > 0, is there a
DWA B, with at most k states and (the absolute value of) weights bounded by the weights of A, obtained
by merging from A that is observationally equivalent to (A, S).

Theorem 3. The unary O-minimization by merging problem is NP-complete.

Proof. The problem is in NP as one can non-deterministically pick a weighted automaton with unary weights
A′ along with the homomorphism witnessing that A′ can be obtained by merging from A. Next, we can
check observational equivalence of A and A′ in polynomial time (Theorem 1).

We show NP-hardness via reduction from the k-coloring problem. Let G = (V,E) be a graph – for
readability we assume it is a directed graph. We construct a binary PODWA ΛG = (AG, {(−∞, 0], (0,+∞)}),
which can be O-minimized to an automaton with k+ 2 states if and only if the vertices of G can be colored
with k colors such that each edge connects vertices with different colors.

Let Σ = {e+, e− | e ∈ E} where E = {e1, . . . , em}. The states of AG are q0, qf and {qv : v ∈ V }. For an
edge ei = (v, u) we define δ(q0, e

−

i) = v and δ(q0, e
+
i) = u, i.e., over e−i , e

+
i the automaton reaches both ends

of e. All the remaining transitions lead to qf .
We define weights function c so that pairs of states qv, qu can be merged if and only if they correspond

to vertices u, v not connected in G. For any e ∈ E we will ensure that in AG the values of words e−e−, e+e+

are negative and the value of words e−e+, e+e− are positive. This guarantees that e+ and e− cannot lead to

8

the same state. Intuitively, after e− the state in AG has outgoing transitions over e−, e+, where the weight
of e+ is strictly greater than the weight of e−, and for the state reachable over e+, the order of weights is
the opposite.

For every ei = (v, u) ∈ E we define c(q0, e
−

i) = c(q0, e
+
i) = −3i− 1. Then, for qv we define c(qv, e

−

i) = 3i
and c(qv , e

+
i) = 3i + 2. For qu we define c(qu, e

−

i) = 3i + 2 and c(qu, e
+
i , qf) = 3i. For u that is not an

endpoint of ej we set c(qu, e
−

j) = c(qu, e
+
j) = 3j + 1. The weights c(qf , ∗) are all 0.

We show that G is k-colorable if and only if ΛG can be O-minimized to an automaton with k+ 2 states.
First, observe that the values e−i e

−

i and e+i e
+
i in AG are −1 and the values e−i e

+
i and e+i e

−

i are 1 and hence
qu and qv cannot be merged. Second, q0 and qf cannot be merged with one another or any other state; all
words starting from q0 are negative, and all word starting from q0 retain their values. No other state has
such a property. Therefore, if AG is minimized by merging to an automaton with k + 2 states, then k is at
least equal to the chromatic number of G.

Conversely, assume that λ:V → {1, . . . , k} is a valid coloring of G. We construct a DWA A′
G with the

same structure as AG, with the property that states corresponding to nodes of the same color have the same
values of outgoing edges. Recall that for u that is not an endpoint of ej we set c(qu, e

−

j) = c(qu, e
+
j) = 3j+1.

Changing any such weight to 3j or 3j + 2 leads to an equivalent automaton. Indeed, the state qu can be
reached with values −3i−1, where i 6= j and hence the values −3i−1+3j,−3i−1+3j+1,−3i−1+3j+2 are
either all positive or all negative. With that observation, we can modify weights in AG such that for u, v with
the same color, the weights of all outgoing transitions from qi, qv are the same and hence the states can be
merged. Assume that u[1], . . . , u[k] have the same color; then for every edge e at most one of these vertexes
can be an endpoint of e; if there is such u[i] then we fix weights of all transitions (qu[1], e

−), . . . , (qu[k], e
−)

to be the same as the weight of (qu[i], e
−). If there is no such vertex, we do not change the weights. We

fix weights over e+ accordingly. Observe, the in the resulting automaton states qu[1], . . . , qu[k] have all the
outgoing transitions to qf , and transitions over the same letter have the same weight. Therefore, they all can
be merged into the same state. ⊓⊔

5 Conclusions

This paper introduces partially-observable deterministic weighted automata, which address the difficulty in
specification synthesis originating from the need of feeding the exact values to the specification procedure.
We have studied the basic properties of the model as well as problems related to specification synthesis
via automata learning: equivalence and minimization. The main contribution of the paper is identifying
obstacles in developing polynomial-time active learning algorithm for the new model. While our framework is
unlikely to admit such an algorithm, it is possible that restricting the equivalence notion may lead framework
admitting polynomial-time active learning algorithm.

Acknowledgements

This work was supported by the National Science Centre (NCN), Poland under grant 2020/39/B/ST6/00521.
The Version of Record of this contribution (without the appendix) is published in LNAI,volume 14281,

and is available online at the following URL: https://doi.org/10.1007/978-3-031-43619-2_52 .

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. Information and computation, 75(2):87–
106, 1987.

2. Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Varricchio. Learning
functions represented as multiplicity automata. J. ACM, 47(3):506–530, 2000.

3. Patrick Blackburn, Johan FAK van Benthem, and Frank Wolter. Handbook of modal logic. Elsevier, 2006.
4. Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reachability in two-

dimensional vector addition systems with states is pspace-complete. In 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2015, pages 32–43. IEEE Computer Society, 2015.

9

https://doi.org/10.1007/978-3-031-43619-2_52

5. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages. ACM Trans. Comput.
Log., 11(4):23:1–23:38, 2010.

6. Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata. ACM Trans. Comput.
Log., 18(4):31:1–31:44, 2017.

7. Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick Bloem. Handbook of model checking,
volume 10. Springer, 2018.

8. Laurent Doyen and Jean-François Raskin. Games with imperfect information: theory and algorithms. In
Krzysztof R. Apt and Erich Grädel, editors, Lectures in Game Theory for Computer Scientists, pages 185–212.
Cambridge University Press, 2011.

9. Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer Science & Business
Media, 2009.

10. Dimitar P Guelev and Catalin Dima. Epistemic atl with perfect recall, past and strategy contexts. In Compu-
tational Logic in Multi-Agent Systems: 13th International Workshop, CLIMA XIII, Proceedings 13, pages 77–93.
Springer, 2012.

11. Thomas A. Henzinger and Jan Otop. From model checking to model measuring. In Pedro R. D’Argenio and
Hernán C. Melgratti, editors, CONCUR 2013 - Concurrency Theory - 24th International Conference. Proceedings,
volume 8052 of Lecture Notes in Computer Science, pages 273–287. Springer, 2013.

12. John E. Hopcroft and Jefferey D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Adison-Wesley Publishing Company, Reading, Massachusets, USA, 1979.

13. Paul Hunter and Jean-François Raskin. Quantitative games with interval objectives. In Venkatesh Raman
and S. P. Suresh, editors, 34th International Conference on Foundation of Software Technology and Theoretical
Computer Science, FSTTCS 2014, volume 29 of LIPIcs, pages 365–377. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2014.

14. Ines Marusic and James Worrell. Complexity of equivalence and learning for multiplicity tree automata. Journal
of Machine Learning Research, 16:2465–2500, 2015.

15. Jakub Michaliszyn and Jan Otop. Minimization of limit-average automata. In Zhi-Hua Zhou, editor, Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pages 2819–2825. ijcai.org, 2021.

16. Jakub Michaliszyn and Jan Otop. Learning infinite-word automata with loop-index queries. Artif. Intell.,
307:103710, 2022.

17. Ian Millington. AI for Games. CRC Press, 2019.
18. Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of markov decision processes. Math. Oper.

Res., 12(3):441–450, 1987.

A Appendix

Theorem 2. There exists a sequence of PODWA Λn = (An, S), for n > 1, with weights −1, 0, 1 such that for
all n > 1 every PODWA (B, S) equivalent to Λn with B having the minimal number of states, has exponential
weights in n.

Proof. Here we only fill the remaining details of the proof presented in the main body of the paper. For
readability, we will say “the value (−∞, 0) / [0, 0] / (0,+∞)” rather than the technically correct “the value
0/1/2”.

Assume that Aw is an minimal automaton observationally equivalent to Λn = (An, S). We have already
argued that Aw has n+2 states: the initial state q0, states qj , for j ∈ {1, . . . , n}, reachable over the words ij

and the state s reachable over in+1. Here we argue that the remaining transitions of Aw are as in Figure 1
b).

Observe that from any state qj for j ≤ n there is a transition over a with a positive weight (so that the
word ija is in (0,+∞)) and a transition over b with a negative weight (so that the word ijb is in (−∞, 0)).

The transitions from s can only lead to s: note that all words starting with in+1 have the value [0, 0] in
Λn. If the word in+2 led to a state qj for jn + 1, then in+2a would have the value (0,+∞) by the above
observation. It also follows that the weight of all edges from s (to itself) is 0.

It remains to show that the for any j ≤ n we have δ(qj , a) = qj+1 and δ(qj , b) = qj+1.
First, we show that

for all j < k ≤ n in Aw we have δ(qj , a) 6= δ(qk, a) (1)

10

Assume towards contradiction that δ(qj , a) = δ(qk, a). Consider w1 = ija and w2 = ika such that j < k and

q = δ̂(q0, w1) = δ̂(q0, w2). We show that δ̂(q, bn−k) = s. This is because the value of w1b
n−k and w2b

n−ka in
Λn is both [0, 0] and s is the only state where the weight of the transition a is 0.

On the other hand, the value of Aw for w1b
n−k is in (0,+∞). Since δ̂(w1b

n−k) is s, this means that the
value of Aw for w1b

n−kbk−j is in (0,+∞). But the value of Ab for this word is in [0, 0], which contradicts
the equivalence.

We now show that
for all j we have δ(qj , a) 6= q0 and δ(qj , b) 6= q0 (2)

Assume w.l.o.g. that δ(qj , a) = q0. Observe that δ̂(q0, i
jabn−j) = s. Let Y be the set of states along the

run over ijabn−j, i.e., Y = {δ̂(q0, w) | ∃v ∈ Σ∗.wv = ijabn−j} and

X = {q0, . . . , qn, s} \ Y

Observe that δ̂(q0, i
ja) = q0, i.e., the state q0 occurs at least twice in the run over ijabn−j and hence the

set Y has at most n+ 1 states. Therefore, X is non-empty and does not contain s as s ∈ Y . Let qG be the
state with the greatest index in X . Since some state from Y has a transition over b to s, (1) implies that for
qG /∈ Y we have δ(qG, b) 6= s. Thus, δ(qG, b) = qL for some L ≤ G.

Now, consider the words of the form wc = ijaiG(biG−L)c for c > 0. The value of Λn for each wc is either
(0,+∞) or [0, 0]. However, since all the weights for i are 0, and the transition from qG over b has a negative
weight, for some large enough c the value of Aw for wc will be negative – a contradiction.

We finally show that for each for each k ≤ n we have δ(qk, a) = δ(qk, b) = qk+1 and δ(qn, a) = δ(qn, b) = s.
From (1) and (2) it follows that the states of Aw after reading words a, ia, . . . , ina are some permutation
of the states q1, . . . , qn, s – and the same for b.

Assume w.l.o.g. that for some k < n we have δ(qk, a) 6= qk+1 (resp., δ(qn, a) 6= s). It means that there is
l < n such that δ(ql, a) = qm for m ≤ l. Also, there is a state qs such that δ(qs, b) = qm.

Now consider the word
wc = isb(aim−l)c

Notice that for each c, we have that δ̂(wc) = ql and c(ql, a) > 0. It follows that for sufficiently large c,
the value of Aw for wc is in (0,+∞) – which is a contradiction with the value of An.

11

	Deterministic Weighted Automata under Partial Observability

